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Abstract New applications are emerging every day exploiting the huge data vol-
ume in community photo collections. Most focus on popular subsets, e.g., images
containing landmarks or associated to Wikipedia articles. In this work we are
concerned with the problem of accurately finding the location where a photo is taken
without needing any metadata, that is, solely by its visual content. We also recognize
landmarks where applicable, automatically linking them to Wikipedia. We show that
the time is right for automating the geo-tagging process, and we show how this can
work at large scale. In doing so, we do exploit redundancy of content in popular
locations—but unlike most existing solutions, we do not restrict to landmarks. In
other words, we can compactly represent the visual content of all thousands of images
depicting e.g., the Parthenon and still retrieve any single, isolated, non-landmark
image like a house or a graffiti on a wall. Starting from an existing, geo-tagged
dataset, we cluster images into sets of different views of the same scene. This is a
very efficient, scalable, and fully automated mining process. We then align all views
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in a set to one reference image and construct a 2D scene map. Our indexing scheme
operates directly on scene maps. We evaluate our solution on a challenging one
million urban image dataset and provide public access to our service through our
online application, VIRaL.

Keywords Image retrieval · Image clustering · Sub-linear indexing · Geotagging ·
Location recognition · Landmark recognition · Image localization

1 Introduction

Images in community photo collections have scaled to billions over the last few
years. Searching into such huge collections traditionally depends on text and other
community generated data; state-of-the-art visual image retrieval has not yet scaled
enough. On the other hand, a number of data mining and clustering approaches have
emerged that exploit data like location, time, user (photographer) and tags. Such
approaches typically focus on popular subsets where visual representation can indeed
help, e.g., images containing landmarks or associated to Wikipedia1 articles.

What is more interesting, new applications are emerging, for instance location
estimation as in Hayes and Efros [13], virtual tourism as in Snavely et al. [41],
and landmark recognition as in Zheng et al. [46]. Such applications are becoming
part of larger geographical systems, creating a new experience. For instance, Flickr2

and Panoramio3 photos can already be seen directly overlaid in panoramas of Bing
Maps Streetside Photos4 and Google Street View,5 respectively. While matching
and alignment can be done automatically with certain accuracy, photos have to be
already geo-tagged. History Pin6 goes further to collect a user-generated archive of
the world’s historical images and stories. The process here is manual and users need
to “pin” photos on Street View by themselves.

GPS-enabled devices can provide geo-tags automatically, but most photos are still
uploaded without geo-tags, let alone historical material. Automating the geo-tagging
process would be a leap for such applications. Unlike [13], which only estimates
a geolocation probability map, we are interested in location recognition, that is,
accurate matching to images of the same scene. This is typically possible in urban
scenes, due to their unique structural details. Along with triangulation, it may also
lead to exact localization as in Zhang and Kosecka [45]. Unfortunately, current
approaches to location recognition either do not scale well, or focus on popular
locations like landmarks.

In our recent work (Avrithis et al. [2]) we have shown how large image clusters
of popular places may help in boosting the efficiency of retrieval, while a distortion

1http://www.wikipedia.org
2http://www.flickr.com
3http://www.panoramio.com
4http://www.bing.com/toolbox/blogs/maps/archive/2010/02/11/new-bing-maps-application-streetside-
photos.aspx
5http://google-latlong.blogspot.com/2010/06/seeing-new-sights-with-photo-overlays.html
6http://www.historypin.com/

http://www.wikipedia.org
http://www.flickr.com
http://www.panoramio.com
http://www.bing.com/toolbox/blogs/maps/archive/2010/02/11/new-bing-maps-application-streetside-photos.aspx
http://www.bing.com/toolbox/blogs/maps/archive/2010/02/11/new-bing-maps-application-streetside-photos.aspx
http://google-latlong.blogspot.com/2010/06/seeing-new-sights-with-photo-overlays.html
http://www.historypin.com/
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bound can guarantee that isolated images are still retrieved as in a generic retrieval
engine. This has opened the way to a scalable solution that is still able to retrieve
non-landmark photos. In this work we present our retrieval framework, we use it to
localize a new landmark or non-landmark photo, and recognize landmarks or points
of interest when they do appear. We also present our online application VIRaL7—
Visual Image Retrieval and Localization—that provides public access to all services
via an integrated interface.

Given a large set of geo-tagged images, we group them by location first, construct-
ing geographical clusters. The objective here is to identify images that potentially
depict views of the same scene. E.g., two images taken 2 km apart are unlikely to
depict the same building. We then use sub-linear indexing to compute pairwise visual
(dis)similarities efficiently within geographical clusters and group images depicting
the same scene into visual clusters. Given a visual cluster, we align all images to
a reference image by homography estimation and construct a 2D scene map by
grouping together similar local features of all images of the visual cluster. We extend
the entire indexing, retrieval, and spatial matching scheme to operate on scene maps
rather than images. This not only provides memory savings, but also increases recall
significantly.

We experiment on a challenging one million urban image dataset containing
images from 22 European cities. The clustering and mining process is very efficient
and entirely automatic. It took about two days on a 8-core CPU, while the baseline
visual index was already available. At query time, filtering relevant scene maps takes
place in the order of milliseconds, whereas verification and re-ranking according
to geometry takes a couple of seconds. Given even a single verified match in the
dataset, the location of the query image is inferred and displayed on the map along
with all similar images found. Finally, locations and text (title, tags) of similar and
nearby images are cross-validated with relevant information in Geonames8 entries
and geo-referenced Wikipedia articles. Whenever a known landmark or point of
interest appears in the photo, the relevant article is automatically linked to the photo.

2 Related work

2.1 Location recognition

In one of the earliest works on multiview matching in urban scenes, Johansson and
Cipolla [17] estimate homographies between pairs of images and provide automatic
pose estimation. Using edges and corners as image features, this approach and the
later one by Robertson and Cipolla [35] are limited to simple geometric structures
like those in building facades. Using SIFT features [26], Zhang and Kosecka [45]
search directly in the descriptor space for the closest reference view in a small image
database, thereby providing coarse location recognition in urban environments. Pose
estimation follows by RANSAC using either a homography or a fundamental matrix
model, whereas exact localization in 3D relies on triangulation using the query and
two reference views.

7http://viral.image.ntua.gr
8http://www.geonames.org

http://viral.image.ntua.gr
http://www.geonames.org
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Using MSER regions [27] and fast nearest neighbor search, Steinhoff et al. [43]
build on the previous model to achieve pose estimation that is fast enough for real-
time, continuous positioning on a mobile device, with accuracy comparable to GPS.
Here the dataset scales to 600 reference images of an urban environment covering
an area of a few city blocks. Schindler et al. [37] are among the first to use inverted
file indexing by means of a vocabulary tree [30] for city-scale location recognition,
scaling up to 30,000 images covering 20 km of streetside views.

Hayes and Efros [13] advance to world-scale geographic estimation by searching
into a database of six million geo-tagged images downloaded from Flickr. The
price to pay is that images are now represented by global features like color/texton
histograms, GIST descriptors [31], etc. Matching accuracy is not even comparable to
that of local features and the output is a geolocation probability map. Kalogerakis
et al. [18] build on the previous result by exploiting the time each photo is taken,
much like [10]. The output remains a probability map and anyhow this only works
for image sequences rather than a single image query. More recently, precise location
recognition approaches have emerged that can work at world scale, but all are
restricted to landmarks. Some of them are examined in the following subsections.

2.2 Landmark recognition

Kennedy et al. [19] are probably among the first to mine popular locations and
landmarks from a large scale (107) Flickr dataset including metadata like tags, geo-
tags and photographers. While clustering photo locations and frequent tags helps
construct tag maps for arbitrary areas in the world, subsequent visual clustering
performs rather poorly due to the global features employed. Likewise, Crandall
et al. [10], detect geographical regions of high density corresponding to popular
locations and automatically mine landmark names from tags. Relevant photos are
then seen as a ground truth dataset for a learning problem. This dataset turns out
quite noisy; visual features alone underperform text and in some cases are only
comparable to chance. Li et al. [24] slightly improve performance using a multi-class
SVM classifier. Seen as an object recognition task, this is a difficult problem with
30 million images, of which 2 million are labelled in one of 500 categories. Clearly,
indexing approaches outperform this learning alternative.

On the other hand, Simon et al. [39] focus more on visual clustering without
location data, but follow a more principled optimization approach to select a number
of canonical views and construct a scene summary for browsing. Clearly, this cannot
scale easily to more than 104 images. Image webs is a related idea by Heath et al.
[14]. Parallelism is again the key in the high computational cost involved. Chum and
Matas [6], extend to web-scale visual clustering without using location data as well,
relying on hashing to detect near-duplicates. This leads to a dramatic increase in
performance, under the assumption that a popular location with a large number of
associated photos is likely to be discovered.

Quack et al. [34] divide the geographic areas of interest into overlapping square
tiles; similarly to [19] and contrary to [39] and [6], they perform visual clustering
inside each tile only, making the problem more tractable. On the other hand,
they perform exhaustive pairwise homography estimation, probably loosing the
computational advantage. Even though landmarks, objects or events are mined in
an offline process, location recognition of a new image is severely limited, due to
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exhaustive linear search. Gammeter et al. [11] improve this by inverted file indexing,
but the mining process is still quadratic in the number of images in each geo-cluster.
There is now an inverse search by Wikipedia articles, while objects of interest are
automatically detected and labelled in photos. Finally, Zheng et al. [46] perform a
similar combination of geographic and visual clustering, as well as an inverse search
by travel guide articles containing landmark names. Again there is no indexing during
mining and the huge computational cost is simply handled by parallel computing.

2.3 Reconstructing 3D scenes

Another interesting application is vision-based reconstruction and navigation of a 3D
scene from a collection of widely separated views. Targeting small unordered sets
of personal photo collections, Schaffalitzky and Zisserman [36] provide one of the
earliest approaches. Here local features are connected in tracks and pairwise image
matches are connected into a global view of the dataset. Such structure from motion
is enhanced by Snavely et al. [41] to scale to datasets of 103 images acquired by text
queries from Flickr. On top of that, scene rendering and object-based navigation are
now targeting virtual tourism applications.

While working on datasets of similar scale, Li et al. [23] attempt to speed up the
reconstruction process by a hierarchical approach, eventually constructing an iconic
scene graph. Because of the use of global descriptors, the increased speed comes at a
loss of accuracy. On the other hand, Snavely et al. [42] employ the idea of a skeletal
graph to speed up by summarizing data. An extreme application is reconstruction
of city-scale models by Agarwal et al. [1] from Flickr datasets in the order of 105

photos. Here, a massively parallel architecture is designed to take advantage of cloud
computing.

What is interesting is that while the above applications are probably the most
computationally intensive, none actually uses existing geo-tags to guide the clustering
process. This is a waste not only because each clustering sub-problem would then be
smaller, but also because geo-tagged photos typically depict outdoor scenes more
often, compared e.g., to a text query for the term “rome”. Futhermore, despite
the effort spent in constructing a model, the output is not used in any way to help
retrieval or location recognition of a new photo.

2.4 Sub-linear indexing

It is evident that local feature matching may provide accurate location recognition,
so scaling up largely depends on the efficiency of the employed image indexing and
retrieval scheme. Using a bag of words representation, Sivic and Zisserman [40] show
how text retrieval techniques like codebooks, inverted file indexing, and TF-IDF
weighting can apply to visual search. Nister and Stewenius [30] extend to hierarchical
codebooks and construct a vocabulary tree that is also used to assign features to
visual words. Philbin et al. [33] show that, being more flexible, flat k-means in fact
outperforms the vocabulary tree. To construct a large (1M) codebook they employ
the randomized kd-tree of Silpa-Anan and Hartley [38] to assign points to cluster
centers at each iteration of k-means. Moreover, they exploit local feature shape to
speed up spatial re-ranking.
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Chum et al. [9] go a step further to exploit image similarities in the dataset and
boost recall by employing a number of strategies for query expansion. Also employed
in [1], this is a form of query-time clustering. It assumes multiple different views of
the same scene in the dataset, which is typical in geo-tagged datasets from Flickr.
More recent advances in image indexing include the work of Jegou et al. [15, 16]
and Perdoch et al. [32], focusing on different aspects of geometric consistency, visual
codebooks and memory usage respectively. Furthermore, Chum et al. [8] focus on
small object retrieval, while Avrithis et al. [3] achieve sub-linear indexing of global
geometry. In general, while all recent methods are very fast, there is a trade-off
between indexing accuracy and memory requirements. Our choices are discussed in
Section 5.

3 View clustering

As it is common in a number of recent approaches, we follow a two-layer clustering
scheme according to location (latitude, longitude) and visual similarity (number
of inliers arising from spatial matching). The two layers are termed geo-clustering
and visual clustering, respectively. The objective of the latter is to identify photos
depicting views of the same scene. The final outcome is therefore a set of view clusters
and the overall process is termed view clustering. The idea of the two layers is that
views of the same scene are not expected in photos taken too far apart, so geo-
clustering helps reduce the computational cost of visual clustering. We use the kernel
vector quantization (KVQ) approach of Tipping and Schölkopf [44] for clustering.
We first summarize some properties of KVQ below. We then discuss our specific
two-layer clustering scheme and give examples of geo-clusters and visual clusters
mined from our urban photo dataset. Finally, we discuss our choices in comparison
to other solutions.

3.1 Kernel vector quantization

Seeing KVQ as an encoding process, the maximal intra-cluster distance is the maxi-
mum level of distortion. KVQ guarantees an upper bound on distortion and adjusts
the number of clusters accordingly. Given a metric space (X, d) and a finite dataset
D ⊆ X, the objective is to select a subset Q(D) that is as small as possible, under
the constraint that all points in D are not too far away from some point in Q. “Too
far” is measured by metric d and the maximal distance is specified by a given scale
parameter r > 0. An optimal solution would require combinatorial optimization;
in practice, we can obtain a sufficiently sparse solution by simply solving a linear
programming problem and applying a subsequent pruning step. Details are given in
[44] and [2].

Given a point x ∈ X, define cluster C(x) = {y ∈ D : d(x, y) < r} as the set of all
points y ∈ D that lie within distance r from x. The codebook Q(D) obtained by
KVQ has the following properties. (i) Q(D) ⊆ D, that is, codebook vectors are
points of the original dataset. Alternatively, we shall refer to such points as cluster
centers. (ii) By construction, the maximal distortion is upper bounded by r, that is,
maxy∈C(x) d(x, y) < r for all x ∈ Q(D). (iii) The cluster collection C(D) = {C(x) : x ∈
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Q(D)} is a cover for D, that is, D = ⋃
x∈Q(D) C(x). However, it is not a partition as

C(x) ∩ C(y) �= ∅ in general for x, y ∈ D. That is, clusters are overlapping.
The latter property is particularly useful for geo-clustering where it is not desirable

to spatially separate views of the same scene. For visual clustering, it is useful in
case of gradual transitions of views that would otherwise be arbitrarily separated.
Contrary e.g., to k-means, the number of clusters is automatically adjusted to the
maximal distortion r. KVQ requires pairwise distances between all points in D; their
computation is quadratic in the dataset size |D|.

3.2 Geo-clustering

Given a set of photos,9 we represent each photo p ∈ P by tuple (�p, Fp), where �p

is the capture location of the photo (latitude and longitude) and Fp its set of local
visual features. The latter includes feature position and shape, along with visual word
labels, as detailed in Section 5.1. We perform geo-clustering by applying KVQ to P in
metric space (P, dg) with scale parameter rg, where P is the set of all possible photos
and metric dg is the great circle distance [2]. Given a photo p ∈ P, define a geo-cluster
as Cg(p) = {q ∈ P : dg(p, q) < rg}. That is, the set of all photos q ∈ P that lie within
geographic distance rg from p. Similarly, given the resulting codebook Qg(P), define
the geo-cluster collection Cg(P) = {Cg(p) : p ∈ Qg(P)}.

In practice, we use spatial bucketing by quantizing coordinates on a uniform grid
and keep one sample from each bucket to perform KVQ. The grid interval is small
compared to rg so geo-clusters are largely unaffected. The computational cost is
considerably reduced however, and eventually depends on spatial grid resolution
rather than |P|. This cost is negligible compared to that of the remaining clustering
steps, e.g., it takes a few seconds to complete geo-clustering on set of photos P,
with |P| = 105 geo-tagged photos. If more speed-up is needed, one may always index
coordinates e.g., by a kd-tree and locate spatial neighbors in logarithmic time.

In Fig. 1, we illustrate a map of Athens depicting all geo-clusters at three different
zoom levels, for rg = 700 m. Observe the density of photos e.g., in the city center and
particularly in the area of the Acropolis. Overlapping helps keep such dense areas in
a single cluster for subsequent visual clustering. Photos taken even e.g., 1 km away
from a landmark may be included in the same cluster. The total number and position
of clusters is automatically inferred from the data.

3.3 Visual clustering

As in [39], we will say that any two photos p, q ∈ P are connected if at least one
rigid object is visible in both, possibly under different viewpoints. A scene is then
defined as a subset S ⊆ P of connected photos. That is, for all p, q ∈ S, we may
visually match common objects under rigid 3D geometry regardless of viewpoint.
Local visual features and descriptors are employed for this purpose, as detailed in
Section 5.1. The output of visual matching is typically the number of inliers I(p, q)

between visual feature sets Fp, Fq of photos p, q respectively.
We now apply KVQ to each geo-cluster G ∈ Cg(P) in space (P, dv) with scale

parameter rv . Since I(Fp, Fq) is a similarity measure, any decreasing function will do

9We shall use the terms photo, image and view interchangeably in the following.
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� Fig. 1 Map of Athens illustrating geo-clusters at three different zoom levels. Black dots, red markers
and red circles stand for photos, codebook vectors and cluster boundaries, respectively

as a metric, e.g., dv(p, q) = exp{−I(Fp, Fq)}. The exact formula of dv(p, q) is not im-
portant; in effect, the scale parameter specifies a threshold τ = − log rv in the number
of inliers. Let Qv(G) be the resulting codebook, and define visual cluster Cv(p) =
{q ∈ G : dv(p, q) < rv} for p ∈ G and visual cluster collection Cv(G) = {Cv(p) : p ∈
Qv(G)}, similarly to geo-clustering. Repeating over all geo-clusters, the complete
codebook Q(P) over the entire dataset is the union Q(P) = ⋃

G∈Cg(P) Qv(G). Finally,
the set of all view clusters C(P) is defined accordingly as C(P) = {Cv(p) : p ∈ Q(P)}.

The main bottleneck the clustering process above is the computation of pairwise
distances, which is typically quadratic in the size of the dataset. This is not an issue
in geo-clustering but is critical in visual clustering. Our solution here is geo-cluster
specif ic sub-linear indexing. In particular, we use an inverted file indexed by both
visual word and geo-cluster. Given a query image q ∈ G, we find all matching images
p ∈ G with I(Fp, Fq) > τ in constant time that is typically less than one second. The
entire computation is now linear in |G|.

To illustrate the effect of visual clustering on a set of photos, we give an example
from Pantheon, Rome, following the examples appearing in [39] and [34]. In partic-
ular, we select all Flickr photos geo-tagged in Rome. We then separate a seed set of
photos with tag pantheon and expand this set by adding all Rome photos that are
visually matching any other photo in the seed set. We end up with a total of 1,146
images that we consider to be a single geo-cluster. The resulting visual clusters are
258. The average visual cluster size is 30 images and an image belongs to four visual
clusters on average, due to overlapping.

Figure 2 depicts photos corresponding to cluster centers for the most populated
clusters. Comparing to [39], the objective here is neither summarization nor canon-
ical view selection, and there is no requirement for orthogonality between cluster
centers. On the other hand, the maximal distance between photos in a single visual
cluster is such that we can subsequently align all of them in a scene map. Figure 3
depicts images in a sample of visual clusters. Due to the strict matching process,
images in each visual cluster are quite similar. The last cluster at the bottom appear to
be diverse, but close observation reveals that all images are connected—that is, share

Fig. 2 Photos associated to the centers of the most populated visual clusters from Pantheon, Rome
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Fig. 3 Photos in a sample of visual clusters from Pantheon. The first image (on the left) of each
cluster corresponds to the cluster center

a common rigid image part—with the first image in the cluster, that is the cluster
center.

3.4 Discussion

Different strategies are followed for clustering in existing research works. For in-
stance, Crandall et al. [10] and Li et al. [24] use mean-shift to perform geo-clustering
alone and mine high-density locations corresponding to popular places. On the other
hand, a second layer of visual clustering follows in other approaches, using different
algorithms including k-means [19] and agglomerative clustering [11, 34, 46]. For geo-
clustering, [19] and [46] use the same algorithm as for visual clustering, whereas [34]
and [11] simply quantize locations into overlapping rectangular tiles. There are also
[23, 39] and [6] which perform visual clustering alone. Naturally, this does not scale
well.

The main drawback of k-means and agglomerative clustering is that there is no
control over the maximal intra-cluster distance. This is crucial because it may lead
to geo-clusters with photos taken too far apart, or visual clusters with photos that
have too few inliers. Note that k-means requires a vector space anyway, so it cannot
use the number of inliers as a similarity measure. On the contrary, KVQ controls
distortion and works in arbitrary metric spaces.

Mean-shift [5], used in [10] and [24], has a similar property of controlling distor-
tion: in this case the upper bound is the bandwidth parameter of the kernel function,
or the scale of observation. However, mean-shift needs seeding and e.g., [10] uses
spatial bucketing and samples one photo from each bucket as a seed. There is no
such need in KVQ and this is fortunate because bucketing also assumes a vector
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space and would not apply to visual clustering. The fixed tiles of [34] also control
scale/distortion in geo-clustering, but KVQ has the advantage of adjusting to data.

A similar use of KVQ in retrieval may be found in Lampert [20]. As a branch-
and-bound method, [20] relies on visual similarities within the dataset and would
reduce to linear search without visual clustering. With our inverted file index on the
other hand, we can still work with isolated images in sub-linear time and yet have the
advantage of clustering wherever similarities permit.

Finally, the bottleneck of pairwise distance computation in the visual clustering
process is typical in most related work. The same problem appears in Quack et al.
[34] who use quite small spatial tiles of 200 m because they need to perform
exhaustive pairwise homography estimation within each geographic tile. This will
fail to capture scenes that extend spatially to more than 200 m, which is quite often.
The same quadratic cost appears e.g., in [11, 39, 46], while for [19] this is a reason
for not using local features. We use larger geo-clusters with rg = 700 m, yet achieve
a very fast implementation. This implementation is not as fast as the on of Chum [6],
but we do have the advantage of geo-clustering. This lowers the cost and allows one
query per image in each geo-cluster. On the other hand, [6] employs hashing with
low recall, and is thus limited to popular locations—isolated photos are unlikely to
be discovered.

4 Scene maps

So far, we know that the image associated to the center of a view cluster shares
at least one rigid object with all other images in the cluster. We treat it as a
reference image for the cluster and align to it all other images by computing a relative
homography transformation, as detailed in Section 5. We collect all aligned visual
features and construct a compact representation that we call a scene map, because it is
a 2D spatial map of features associated to different views of the same scene. It is now
possible to match a query image to an entire scene map under the same geometry. We
thus use scene maps directly for retrieval, instead of images. This saves on memory
and computations at query time, makes matching more robust by increasing inliers
and also increases recall, because for each matched scene map we return all its views.
We present scene map construction here, and then discuss our model in relation to
existing work.

4.1 Scene map construction

For each reference image p ∈ Q(P) and corresponding view cluster Cv(p) we
construct a feature collection F(p) as the union of features over all images q ∈ Cv(p),
after aligning with the reference. In particular, let Hqp be the estimated homography
from q to p and assume each visual feature is represented by a tuple (x, w) with x
being the position and w the visual word label. Then this collection is constructed as

F(p) =
⋃

q∈Cv(p)

{(Hqpx, w) : (x, w) ∈ Fq}. (1)

Here, x is assumed a 3-vector with the homogeneous coordinates of feature position.
The scene map S(p) is a sparse representation of F(p) such that a query will (ideally)
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Fig. 4 Scene map construction
from ten photos of Palau
Nacional, Montjuic, Barcelona

match a scene map whenever it would match any single image in the map. This gives
rise to vector quantization once more. As detailed in our previous work [2], it turns
out that we can break this up into a number of smaller subproblems. In particular, we
partition F(p) into a number of disjoint sets Fw(p) = {(x, u) ∈ F(p) : u = w}, one for
each a visual word w, and apply KVQ separately to each Fw(p) in (R2, d2) with scale
parameter rx. Here feature positions are in 2D Euclidean coordinates and d2 is the
Euclidean metric. Finally, we join the resulting codebooks Qx(Fw(p)) into a single
scene map, S(p) = ⋃

w∈W Qx(Fw(p)). We set scale parameter to rx = θ , where θ is
the error threshold used in spatial matching. Hence, a feature f will be in the spatial
cluster Cx( f ′) of another feature f ′ whenever f, f ′ are inliers in spatial matching.

In order to provide an example of scene map construction, we use a visual cluster
containing 30 images of Palau Nacional, Montjuic, Barcelona, ten of which are
overlaid in Fig. 4, after alignment. Out of 11,623 features in total, 9,924 are retained
in the scene map after quantization, giving a compression rate of 15%. In terms of
inverted file entries (unique visual words), the figures are 11,165, 8,616, and 23%,
respectively. Detail of this scene map’s point cloud is shown in Fig. 5. It is evident
that features are sparser after vector quantization.

4.2 Discussion

The above formulation bears similarities with several models in different contexts.
To name a few, Lowe [25] performs local feature view clustering by linking similar
features that are matched in adjacent views of an object, applying this representation
to 3D object recognition. Simon et al. [39] organize matching features of multiple
images into tracks, where a track corresponds to a single 3D point of a scene. They
use this representation to produce a visual summary of the scene by means of a
set of canonical views. Gammeter et al. [11] perform a similar alignment in visual
clusters with the objective of isolating bounding boxes of depicted landmarks. In
image retrieval, Chum et al. [9] collect the verified images from a query and build a
latent model of the scene by averaging term frequency vectors. This model is used on
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Fig. 5 Detail of point cloud in
Montjuic scene map corre-
sponding to the highlighted
region of Fig. 4, a before and
b after vector quantization.
Colors represent different
visual words, modulo 9

(a)

(b)

the query side to perform query expansion. Leibe et al. [21] construct a set of spatial
occurrence distributions in an implicit shape model for object detection.

Comparing our model to [9], the latter does not encode feature position and
is constructed dynamically on the query side, whereas scene maps reside on the
database side and are static. Unlike the object-based approach of [11] we want to
keep information from all image regions. Matching features are linked into connected
components in [25, 39], and we need a similar compact representation, that is, more
compact than storing features of individual views. However, we also need to control
the size of such components, so that components in a scene map behave like features
in a single image. One way is to keep a minimal subset S(p) ⊆ F(p) such that no
feature in F(p) is too distant from its nearest neighbor in S(p). This justifies our use
of KVQ in this case as well.

5 Visual matching and indexing

All processes used to match, align and index images or scene maps are described in
this section. These include: (i) the baseline visual representation, similarity, indexing
and spatial matching process. This is also a stand-alone retrieval solution that can
be used for location recognition as well. It forms the baseline for comparisons in
our experiments in Section 8 and in fact, it is the underlying process of the current
implementation of VIRaL application. (ii) The geo-cluster specif ic indexing process,
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used for distance computations during visual clustering (Section 3.3). (iii) The visual
alignment process that is employed during scene map construction (Section 4). (iv)
The scene map similarity, indexing and spatial matching process. This is an extension
of the baseline, and can handle matching between images or scene maps.

5.1 Baseline

In the baseline process all images are treated individually. Images are represented
by local visual features and descriptors, which are quantized up to visual word
against a visual codebook. More details on features and visual codebook are given
in Section 8. We construct a bag of words representation and measure similarity by
histogram intersection and TF-IDF weighting. We then index images in an inverted
file structure, so query time is sub-linear in the number of images in the dataset.
Ranking is based on appearance only, not taking into account the spatial layout of
local features.

A top-ranking shortlist of images is subsequently checked for geometric consis-
tency with the query image to verify there is common rigid object, or two views of
the same scene. We use a variant of fast spatial matching [33] over a 4-DOF similarity
model. This model makes a single correspondence assumption. In particular, tentative
correspondences between features of the query and an image in the list are generated
by matching visual words. Given a single correspondence, we use the position, scale
and orientation of the two features to compute similarity transformations T1, T2 that
map the features to a unit circle centered at the origin. Under no gravity-vector
assumption, an initial transformation hypothesis is T−1

2 T1. We count inliers over the
tentative correspondences and iterate over hypotheses. Whenever a new maximum
is found, we compute a least squares estimate of an affine transform from the given
inliers and store the best model so far—this corresponds to the “simple” method of
Locally Optimized RANSAC (LO-RANSAC) [7]. We have found that images with
at least τ = 10 inliers with the query typically depict the same object or scene.

Geo-cluster specif ic indexing. This is a simple variation of the baseline process,
where the inverted file is indexed by both visual word and geo-cluster. It is used
during visual clustering where, making a query for each image in a geo-cluster,
we collect all verified images giving I(p, q) > τ inliers. Because a geo-cluster is
quite small compared to the entire dataset, querying the index is significantly
faster. Irrelevant images are fewer so the top-ranking list can be shorter and spatial
matching is faster as well. Typically the query time is constant and on average an
order of magnitude faster than the baseline. It is also independent of the size of
dataset.

5.2 Alignment

In order to construct a scene map from the images in a view cluster, we need to
align their corresponding features first. We do this by estimating homography models
between matching images. Alignment is performed between a single reference image
and all other images in a view cluster; that is, it is linear in the size of the cluster.
Initial estimates are readily available from the responses of each query: for each pair
of matching images (p, q) in a geo-cluster, we store the best affine model Aqp that
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transforms q to p. Therefore, when view clustering is complete, we only need a final
step of local optimization to estimate the homography.

More specifically, given a reference image p in view cluster Cv(p), we align p to
each image q ∈ Cv(p). We start from the stored affine model Aqp and perform a
single step of the “iterative” method of LO-RANSAC. The complete set of all points
with error smaller than threshold Kθ are used to estimate a homography with the
Direct Linear Transformation (DLT) algorithm [12]. We reduce the threshold and
iterate until it is equal to θ . We have found a maximum of three iterations to be
enough for our experiments. The final homography that aligns q to p is stored as
Hqp.

5.3 Scene map indexing

Once all scene maps have been computed, we build a separate index for them.
Even if a scene map is typically larger than a single image, it has exactly the same
representation, that is, a set of features. We therefore treat scene maps as images for
indexing and retrieval. By construction, we have already subsets Qx(Fw(p) of scene
map S(p) corresponding to each visual word w. The cardinalities of these subsets
give directly a term frequency vector for S(p). We then index all scene maps by
visual word in an inverted file. At query time, we compute a similar vector for the
query image, and retrieve relevant scene maps by histogram intersection and TDF-IF
weighting.

A shortlist of top-ranking scene maps is again verified using the single corre-
spondence assumption, as in the baseline process. Even if the initial estimate is a
similarity transformation originating from the position, scale and orientation of local
features, we can still recover a correct affine transform by least squares fitting given
at least three inliers. To speed up the re-ranking process, we terminate and consider
the scene map verified if at least τh inliers have been found. On the other hand,
we discard an image if no more than τ� inliers have been found for a predefined
percentage of all hypotheses. Moreover, we discard a hypothesis if the the inliers
found for a predefined percentage of correspondences are fewer than τ�.

Whenever a scene map S(p) is found relevant, all images q ∈ Cv(p) are considered
relevant as well. This is exactly how recall is increased. To avoid the additional cost
of individual matching with each image, we consider all of them at the same rank,
which slightly affects precision.

5.4 Discussion

Our baseline visual indexing scheme is closest to [33], because it strikes a very good
balance between recall performance and memory footprint. On the other hand, our
scene map indexing is is beneficial in terms of both. It is analogous to the latent
model for query expansion of [9], but executing offline on the database side. To draw
an analogy, recall that scene maps are statically computed in the off-line indexing
process and constrained within geo-clusters. On the other hand, a model is built
dynamically at query time in [9], increasing the computational cost. Without any
constraint it is prone to drift, especially when iterative. Most importantly, query
expansion cannot help at all when relevant images are too few (or just one) and
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initial query fails. We compare our approach against two query expansion schemes
in Section 8.

6 Location and landmark recognition

Since retrieved images are likely to depict the same scene with the query photo, they
are also likely to be taken at a nearby location. Also, whenever any of the retrieved
images is associated to a known landmark or point of interest, we may infer a similar
association for the query photo as well. We explore these ideas below to provide
automated location and landmark recognition, respectively. We then discuss our
choices in relation to existing solutions.

6.1 Location recognition

Once a list of verified images or scene maps is retrieved, we exploit their geo-tags
to recognize the location where the query photo is taken. Of course, geo-tags of the
images in the dataset have different levels of accuracy, and some may be completely
wrong. We make here the assumption that even in the presence of outliers, there is
a subset of photos that are correctly geo-tagged, and these geo-tags are not too far
apart. Hence, we apply agglomerative clustering to the retrieved image locations and
terminate when the minimum inter-cluster distance is above a certain threshold. If
there is at least one cluster that contains more locations (photos) than all the others,
then the centroid of these locations is provided as the estimate of the query photo
location. Otherwise, one cluster is chosen at random.

We employ the reciprocal nearest neighbor (RNN) [21] algorithm for clustering,
using the group average criterion and Euclidean distance—more precise geograph-
ical distance is not necessary here because locations are assumed nearby. Typically,
we set the termination threshold to 200 m to represent the area around a building,
landmark, or depicted scene in general. The choice of an agglomerative approach is
appropriate here because it allows the extent of clusters to adjust to how retrieved
locations are spread around depicted scenes, yet it does not allow two clusters to
merge if they are too distant. The number of clusters is inferred from the data, while
computation is fast enough to apply at query time. Choosing the most populated
cluster makes our estimate robust. Outliers, either due to wrong geo-tags or errors in
visual matching, are discarded and do not affect location recognition.

6.2 Frequent tags

Recognition of landmarks or points of interest relies on existing user tags and photo
titles.10 Titles are typically more reliable, but tags can also be helpful, despite being

10Photo titles and user tags are the ones provided by users at the Flickr website.
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rather noisy. To provide for robustness and efficiency, we represent terms using a
codebook and extract a set of frequent tags using this representation. We first filter
all tags of the entire dataset through a manually created stoplist containing terms that
are too generic (e.g., paris, france, holidays), describe the conditions of the
photo-shoot (e.g., night shot, black and white), or are typically irrelevant to
the content of the photos (e.g., nikon, geo-tagged).

We then construct the codebook in an offline clustering process that is initialized
using data from the Wikipedia Search11 web service of Geonames. For each city in
the dataset, we have collected all entries in the geographical bounding box of the
city center, as specified in Section 8.1. Each entry corresponds to one landmark or
point of interest, so we create one cluster for each. To deal with typos or language
diversity, we compare strings using the Levenshtein distance [22]. Starting with a list
of all tags in the dataset, we iteratively pick one tag at random, remove it from the
list, and compare it to the current set of clusters. If it is within a specific distance T
from some cluster, we insert it in that cluster (choosing one cluster at random in case
of multiple candidates); otherwise, we create a new cluster represented by this tag.
We repeat until the list is empty.

This process is similar to canopy clustering [28]; however, we use a single threshold
and a specific initial set of clusters. Custom initialization is the reason we do not use
KVQ, which would otherwise fit to this problem as well. All tags are assigned to a
unique cluster at maximum distance T, while tags associated with known landmarks
are represented by their Geonames form, which is considered canonical. Now, given
the codebook, we assign each tag to a single codeword. As an offline process, we
associate each photo to the codewords of its tags. Then, at query time, we collect
all codewords of retrieved photos and keep the ones having at least two occurrences
into a set of frequent tags. No string comparison is required for this process.

6.3 Landmark recognition

We consider a landmark or point of interest to be any item associated to a Wikipedia
article that is geo-referenced within the geographical bounding boxes of the dataset
cities. To construct a list of such items, we use the Geonames source mentioned
above, as well as the corresponding Wikipedia web service.12 The two services are
quite similar and typically 90% of entries are identical in the sense that they share
the same Wikipedia article URL. There are differences however, so we have merged
them into a single, combined list. For each item, we have stored the article name, url
and geographical coordinates.

Now, given a query photo and its estimated location we select a list of articles
located within specific distance from the photo location—typically 200 m, as in
location recognition. Each article title is matched against all frequent tags, as well
as all titles of retrieved photos. The Levenshtein distance is used once more, and

11http://www.geonames.org/export/wikipedia-webservice.html#wikipediaSearch
12http://de.wikipedia.org/wiki/Wikipedia:WikiProjekt_Georeferenzierung/Wikipedia-World/en

http://www.geonames.org/export/wikipedia-webservice.html#wikipediaSearch
http://de.wikipedia.org/wiki/Wikipedia:WikiProjekt_Georeferenzierung/Wikipedia-World/en
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each article is assigned the minimum distance found. We rank articles by ascending
distance and select the top ranking ones below distance T as the set of suggested
tags. These tags identify the landmarks found and the associated Wikipedia articles
are automatically linked in the VIRaL result page. We could of course follow a
similar codebook approach to avoid string matching for titles but in practice the
computational cost is negligible compared to visual search.

6.4 Discussion

Different approaches are followed in related work for tag processing and landmark
recognition. A learning framework is followed in [10, 24], where geo-clustering is
only used to construct a ground truth set. A classifier is trained on this set using text,
visual features, or both. This approach is mostly limited by the dataset being too
noisy, and recognition has scaled up to 500 landmarks, while no location recognition
is supported. By contrast, our solution supports approximately 8,500 landmarks or
points of interest in the current dataset of 23 cities. It is also interesting that [10, 24]
only use tags while we have observed that photo titles are typically more reliable.

Quack et al. [34] follow a quite exhaustive offline process: for each visual cluster
they extract tags, query Google for related Wikipedia articles, download photos from
several such articles, and then match the two photo sets to verify. However, photos
within articles are not quite reliable and the mining process is too slow. By using
article location and matching to estimated query location, we can narrow down text
search so that verification is now achieved at query time. Article location is used
during crawling in [11], which is quite similar to our approach in this sense, although
assignment of articles to visual clusters is again offline.

Zheng et al. [46] also assign visual clusters to landmarks in an offline process, and
support approximately 5,500 landmarks from 1,300 cities in 144 different countries.
They search into a small subset of representative images in each cluster. By contrast,
we use scene maps to search efficiently into the entire dataset, can recognize any
point of interest within the supported areas and localize any photo, landmark or not.

7 Application: VIRaL

The proposed methods may be accessed through our online application, VIRaL. We
use a dataset of 1.1M Flickr images depicting content from 23 European cities, along
with their metadata (i.e., geographic location, user tags, image title and description).
We have crawled this dataset from Flickr by requesting only geo-tagged photos and
constraining the search with a bounding box around each city’s center. A subset of
this dataset is used for our experiments as described in detail in Section 8.1.

The response to a visual query is a ranked list of visually similar images. The
integrated process for visual retrieval follows the baseline approach described in
subSection 5.1. A visualization of the detailed matching between query and each
similar image is also possible. The query image gets localized on the map and
associated with a set of frequent tags and a set of suggested tags as well (see
Section 6). Suggested tags come along with direct links to Wikipedia articles.
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7.1 Walkthrough

The welcome screen of the online application (Fig. 6) presents a random set of
dataset images. There are two ways to browse the image dataset: through the
welcome screen and through the Cities page. The latter presents random images from
each city. After choosing a city name, VIRaL will only fetch random images from the
selected city. Clicking on any of the images will trigger a new visual query.

Figure 7 presents a result page. In this case, the query is the second image in the
second row of the welcome screen example of Fig. 6. On the top left corner of the
result page, we can see a map that contains a blue marker for each similar image
and a red marker for the estimated location of the query image. The gray marker at
the rightmost part of the map corresponds to a visually similar but incorrectly geo-
tagged image, which does not participate in the location estimation and is thus treated
as an outlier. On the top right of the result page we can see the query image along
with the sets of frequent and suggested tags. At the bottom rows, VIRaL presents
the retrieved images, ranked by decreasing similarity. The similarity value shown
is the number of inliers, normalized in [0, 1] with the use of a sigmoid function.
Still referring to the example of Fig. 7, the frequent tags are terreiro do paço,
praça do municipio, monument, stevie0020, arch. The final set of sug-
gested tags is Praça do Comércio and Lisboa. Both are automatically linked to
Wikipedia and are valid suggestions as shown in Fig. 8.

Fig. 6 VIRaL home page. Images shown are randomly selected from the entire dataset
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Fig. 7 Results of successful visual matching, location and landmark recognition. Top left Map
depicting actual locations of the similar images (blue markers) and the estimated location of the
query image (red marker). Top right Query image along with the sets of frequent and suggested tags.
Bottom Visually similar images

An uploaded image or image URL can also be used as a visual query. Of course,
in order to get proper results, the query image must have been taken at one of the
cities included in the VIRaL dataset. We have tuned the VIRaL application for high
precision, in order to eliminate as many false positives as possible.

To boost recall also, we have integrated a query expansion method, which is
referred to as QE1 in Section 8, and it produces the set of Similar of Similar images.
This set is constructed in negligible query time, since similar images for the complete
dataset have been computed off-line. Figure 9 depicts this set for the example query
of Fig. 7.
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Fig. 8 Wikipedia article suggested for the query image

Along with the view of similar images, it is also possible to visualize the result
of spatial matching by clicking on the Details link, positioned under each retrieved
image. As depicted in Fig. 10, the matching part of the two images that contains
features in correspondence is inside bounding boxes.

Figure 11 illustrates the case of a typical scene of a building in Amsterdam
that is correctly localized based on three similar images but does not correspond

Fig. 9 Similar of similar results, for the example query of Fig. 7
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Fig. 10 Correspondences between the query image (left) and a similar image (right). Local features
identified as inliers are depicted in yellow circles with scale and rotation (green line). Correspon-
dences between inliers are drawn in red lines. The blue bounding box indicates the common region
of the two images

to any known landmark or point of interest. The two suggested tags are Sint
Antoniesbreestraat, the name of the street, and Zwanenburgwal, the name
of the canal.

Fig. 11 Localization and recognition result for an indicative non-landmark query image
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Fig. 12 Query images from the 17 groups of landmarks in the annotated dataset

8 Experiments

8.1 Dataset

We experiment on a challenging one million urban image dataset, namely European
Cities 1M.13 It consists of a total of 1,037,574 geo-tagged images from 22 European
cities, which is a subset of the dataset used in the VIRaL application. A subset of
1,081 images from Barcelona are annotated into 35 groups depicting the same scene,
building or landmark. Well known landmarks of Barcelona are depicted in the 17
groups, while the rest 18 depict scenes or buildings around the city center. Samples
of the annotated set of images are presented in Figs. 12 and 13, depicting landmarks
and non-landmarks respectively. We will therefore refer to non-landmarks as scenes.
Since only a subset of the annotated images are landmarks, annotation cannot rely
on tags; it is rather a combination of visual query expansion and manual clean-up.
We have also assigned geographic information and relative Wikipedia article(s),
whenever applicable, to each of the groups. This way the ground truth can be
further used for geo-estimation and landmark recognition evaluation. Five images
are selected as queries from each group. If the group contains less than five images,
a frequent case for non-landmark scenes, all of the group images are used as a query.
In total, we used 157 queries. Table 1 presents the names of the landmarks selected
for the evaluation and the size of the corresponding group for each of them and for
all the scenes contained in the annotated dataset.

13We have published the dataset online at http://image.ntua.gr/iva/datasets/ec1m/.

http://image.ntua.gr/iva/datasets/ec1m/
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Fig. 13 Query images from the 18 groups of non-landmarks in the annotated dataset

Our 1M dataset contains 128,715 Barcelona images from Flickr. Since the 1,081
annotated images are a subset of these, we have removed the rest Barcelona photos,
in order to be sure that no other image in the evaluation dataset depicts the same
scene/building as the ground truth. The remaining 908,859 images are the distractors.
Most of them depict urban scenery like the ground-truth, making a challenging
distractor dataset.

Table 1 Ground truth group
size for each landmark
(17 items) and non-landmark
(18 items) of the annotated
dataset

Landmark Group size Non-landmark Group size

La Pedrera(a) 129 Scene1 5
Park Guell(a) 50 Scene2 3
Museu Nat. d’ Art 17 Scene3 22
Columbus Monument 18 Scene4 2
Carrer B.I.-El Gotic 36 Scene5 30
Port Vell 18 Scene6 5
Sagrada Familia 29 Scene7 4
Casa Batllo 16 Scene8 3
Arc de Triomf 20 Scene9 17
La Pedrera(b) 71 Scene10 14
Hotel Arts 106 Scene11 22
Hosp. de San Pau(a) 116 Scene12 7
Hosp. de San Pau(b) 73 Scene13 4
Park Guell(b) 17 Scene14 2
Torre Agbar 93 Scene15 2
Placa de Catalunya 48 Scene16 5
Cathedral (side) 70 Scene17 4

Scene18 3
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8.2 Evaluation protocol

For all experiments, we used the medium Flickr image size, which is 500 × 500 pixels
maximum. We extracted SURF features and descriptors [4] and kept a maximum of
1,000 features per image. We built a generic 75K visual codebook from features of
urban scene images, that are not a part of the evaluation dataset. Larger codebooks
did not perform well in scene map construction. To construct the vocabulary, we
used approximate k-means [33], where nearest cluster centers at each iteration have
been assigned using randomized kd-trees [38]. Specifically, we used the FLANN
library of Muja and Lowe [29] both in vocabulary creation and to assign visual words
to image features. Our bag of words implementation uses histogram intersection
similarity on L1-normalized vectors and TF-IDF weighting. Details on indexing and
spatial matching during visual clustering and scene map construction were presented
in Sections 3 and 4, respectively. We evaluate overall retrieval performance by
measuring mean Average Precision (mAP).

8.3 Results

The mining process that leads to retrieval with scene maps is entirely automated.
Geo-clustering on the European Cities 1M dataset takes less than 5 min and
generates 1,677 geo-clusters. Visual clustering creates 493,693 visual clusters. Clus-
tering takes approximately 22 min; however, all queries required to compute visual
dissimilarity matrices take approximately 52 h, clearly being the most time consuming
process. Construction of all scene maps takes another 5 h. It is noteworthy that
351,391 visual clusters are single images, hence do not need scene map construction.
Given larger datasets with more cities, the above times would increase linearly, while
of course computation can be made parallel. The inverted index of the new retrieval
engine requires 1.20 GB of memory instead of 1.61 GB for the baseline, providing
a compression of 25%. It is worth mentioning that all experiments are performed
with our own C++ implementation on a 2 GHz Quad Core processor with 8 GB of
memory. The total number of tags in the entire dataset is 7,764,264 and the codebook
contains 188,989 and 181,752 terms, before and after using a stoplist, respectively. A
total number of 2,396,926 tags corresponds to the terms removed by the stoplist.

Visual similarity evaluation To evaluate the performance of the proposed method
in terms of visual image retrieval, we compute mean average precision (mAP) on the
aforementioned European Cities 1M dataset. We compare our scene map retrieval
efficiency against a baseline bag of words and two query expansion methods. The first
(QE1) is the naive iterative approach, where we re-query using the retrieved images
and then merge the results. In our experiments, this expansion was carried out three
times iteratively for each query. For the second (QE2) we create a scene map using
the initial query’s result and re-query once more. All methods use the same spatial
re-ranking approach as described in Section 4. The mAP measurements on the 157
ground truth queries for all four methods under varying size of distractor set are
depicted in Fig. 14. Observe that our method using scene maps (SM) outperforms all
other methods in terms of mean average precision.

As shown in Table 2, our method does not differ much from the baseline method
in terms of speed, which is clearly the fastest. The proposed method offers slightly
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Fig. 14 Mean Average
Precision measurements for
the four methods on the
European Cities 1M dataset
under a varying number of
distractors
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Table 2 Average query time and mean Average Precision (mAP) of the four methods on the
European Cities 1M dataset including all distractors

Method Avg. query time (s) mAP

Baseline BoW 1.03 0.642
QE1 20.30 0.813
QE2 2.51 0.686
Scene maps 1.29 0.824

Fig. 15 Average Precision for
each query vs. size of the
corresponding ground truth
group
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Query Retrieved images

BOW

QE1

QE2

SM

Fig. 16 Sample queries and ranked geometrically verified images for a non-landmark image with the
four methods. Query image is on the left and retrieved images from the database on the right. Each
row correspond to one of the evaluated methods

faster filtering of the inverted index because there are less scene maps than images,
however it requires slightly more time to re-rank, because scene maps have more
features compared to images. In general, filtering time only depends on the number
of relevant scene maps, while re-ranking time is constant. So query time is not a
bottleneck when going to larger scale. It is noteworthy that both query expansion
methods require far more time while yielding worse results. QE2 query corresponds

Query Retrieved images

BOW

QE1

QE2

SM

Fig. 17 Sample queries and ranked geometrically verified images for a landmark image with the four
methods. Query image is on the left and retrieved images from the database on the right. Each row
correspond to one of the evaluated methods
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Table 3 Mean Average
Precision per landmark for the
four methods

For each landmark five query
images were used

Landmark Method

Baseline QE1 QE2 Scene maps

La Pedrera(a) 0.326 0.588 0.377 0.901
Park Guell(a) 0.795 0.794 0.812 0.847
Museu Nat. d’ Art 0.590 0.702 0.602 0.637
Columbus Monument 0.505 0.658 0.558 0.698
Carrer B.I.-El Gotic 0.449 0.917 0.555 0.739
Port Vell 0.332 0.746 0.380 0.480
Sagrada Familia 0.857 0.889 0.864 0.881
Casa Batllo 0.759 0.792 0.767 0.798
Arc de Triomf 0.840 0.889 0.847 0.882
La Pedrera(b) 0.651 0.921 0.939 0.903
Hotel Arts 0.560 0.773 0.573 0.633
Hosp. de San Pau(a) 0.317 0.580 0.423 0.838
Hosp. de San Pau(b) 0.421 0.776 0.502 0.709
Park Guell(b) 0.500 0.886 0.526 0.634
Torre Agbar 0.310 0.617 0.378 0.630
Placa de Catalunya 0.794 0.853 0.798 0.812
Cathedral (side) 0.487 0.864 0.546 0.972

roughly to two baseline queries and a scene map construction, and QE1 to several
baseline queries, resulting to quite impractical query times.

The annotated dataset used contains variable sized groups of images depicting the
same scene. Small ones usually correspond to non-landmark scenes while large ones
to well known landmarks. Achieving high recall scores is challenging when we deal
with a large group of similar images. Re-ranking is only performed on the top ranked
images and this can lead to missing quite a few images with the baseline method.
Figure 15 shows mAP values for each query, against the size of the corresponding

Table 4 Mean Average
Precision per scene for the
four methods

For each scene five query
images were used (less if the
total group size is below 5)

Scene Method

Baseline QE1 QE2 Scene maps

Scene1 0.618 0.648 0.654 0.884
Scene2 0.667 0.847 0.730 1.000
Scene3 0.399 0.458 0.451 0.880
Scene4 1.000 1.000 1.000 1.000
Scene5 1.000 1.000 1.000 1.000
Scene6 0.800 0.969 0.848 0.802
Scene7 0.876 0.979 0.940 1.000
Scene8 1.000 1.000 1.000 1.000
Scene9 0.339 0.557 0.357 0.754
Scene10 0.351 0.482 0.428 0.687
Scene11 0.557 0.843 0.575 0.633
Scene12 0.577 0.857 0.639 0.755
Scene13 0.681 0.846 0.746 1.000
Scene14 0.875 1.000 0.880 0.885
Scene15 1.000 1.000 1.000 1.000
Scene16 0.791 0.883 0.798 0.812
Scene17 1.000 1.000 1.000 1.000
Scene18 0.800 0.972 0.810 1.000
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Table 5 Percentage of
correctly localized queries
within at most 150 m from the
ground truth location

Method Distance threshold

<50 m (%) <100 m (%) <150 m (%)

Baseline BoW 82.5 91.6 94.2
QE1 86.3 93.5 96.2
QE2 86.7 93.3 96.5
Scene maps 87.8 94.2 97.1

annotated group. Observe that scene maps can yield total recall even for scenes
containing more than 100 images. For the same scenes, the otherwise powerful QE1
fails to retrieve all the scene instances, since some images were lost from the initial
query before the expansion. Furthermore, almost total recall is observed in the small
clusters for scene maps, the images of which are usually contained in a very small
number of scene maps, usually one or two.

Figures 16 and 17 show a query image, of a non-landmark and a landmark respec-
tively and top ranked retrieved and geometrically verified images. Geometrically

Fig. 18 Samples of query images and location recognition results on the map. For each pair there
is the map on the left and the initial query image on the right. Blue marker Retrieved image. Red
marker Geo-tag estimation
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verified images are more for scene maps leading to higher recall. Tables 3 and 4
contain mAP values for each group of the landmarks and non-landmarks ground
truth respectively. Remarkable is the fact that for many groups scene map achieved
perfect mAP equal to 1.0 while other methods achieved a worse ranking of the similar
images.

Location recognition evaluation All European Cities 1M dataset images are geo-
tagged. Thus, given the outcome of visual retrieval, location recognition is performed
as described in Section 6. To evaluate the proposed scheme, we compare the
resulting estimation against the hand-picked geographic location information of
each annotated group of images in our European Cities 1M. Localization accuracy
in comparison to baseline and other methods is shown in Table 5. As we see,
localization percentage is already high even for the baseline method. Still, our
method using scene maps reaches the highest percentage.

Samples of query images depicting well known landmarks and the corresponding
localization result on the map are presented in Fig. 18. The first six cases achieve
successful recognition. However in the last two cases we present two examples,
coming from the evaluation queries, of unsuccessful recognition based on the ground
truth geo-tag which is the exact location of the landmark. Final estimation is far
from the ground truth location. This is derived from the fact that geo-tags of user
images correspond to the location where the photo was taken from. Thus, these are
unsuccessful examples of localizing the landmark but successful ones of localizing the
photo.

Landmark recognition evaluation Since most photographers are taking pictures of
well known landmarks, we can safely assume that some of the annotated groups of

Table 6 Percentage of correct
Wikipedia article suggestions
for each landmark and average
percentage for the four
methods

Landmark Method

Baseline QE1 QE2 Scene
(%) (%) (%) maps

(%)

La Pedrera(a) 100 100 100 100
Park Guell(a) 100 100 100 100
Museu Nat. d’ Art 40 100 60 80
Columbus Monument 100 100 100 100
Carrer del Bisbe Irurit-El Gotic 100 100 100 100
Port Vell 80 100 80 100
Sagrada Familia(b) 100 100 100 100
Casa Batllo 100 100 100 100
Arc de Triomf 100 100 100 100
La Pedrera(b) 60 100 80 80
Hotel Arts 40 40 40 60
Hospital de Sant Pau(a) 100 100 100 100
Hospital de Sant Pau(b) 80 80 80 100
Park Guell(b) 100 100 100 100
Torre Agbar 100 100 100 100
Placa de Catalunya 100 100 100 100
Cathedral (side) 80 80 80 80
Average 87 95 90 95
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Fig. 19 Samples of query images with suggested and frequent tags. Landmarks are recognized
successfully and corresponding Wikipedia links are provided

images in our European Cities 1M dataset can be linked with Wikipedia articles.
Given that the metadata of the images in our European Cities 1M dataset contain
user tags, we can use the method proposed in Section 6 to analyze them and
effectively identify the landmark and suggest Wikipedia articles for each query.

The performance of the approach is shown in Table 6, where we see the per-
centage of correctly discovered links. Experiments are carried on 17 of the groups,
that is the dataset subset which depict landmarks and has corresponding Wikipedia
articles. We regard a query link suggestion as correct, if the ground truth article link
is one of those suggested from the landmark recognition process. As the table shows,
recognition for landmark queries is really efficient both with the use of scene maps
and query expansion. Samples of query images and the corresponding suggested and
frequent tags are presented in Fig. 19. These are examples of successful landmark
recognition.

9 Discussion

While mining from user generated content in community photo collections is be-
coming popular and new applications are emerging, several possibilities are still
unexplored. Sub-linear indexing is not typically exploited in landmark recognition
applications, while geo-tags are not typically exploited in large scale 3D reconstruc-
tion applications. We have combined both, along with a novel scene representation
that is directly encoded in our retrieval engine. The result is a considerable increase
in retrieval performance, even compared to query expansion methods, at the cost of
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a slight increase in query time. Memory requirements for the index are also consid-
erably reduced compared to a baseline system. Contrary to landmark recognition
applications, we can still retrieve any isolated image from the original database,
allowing location recognition at any region where geo-tagged photos are available.
Our mining process is even faster than other implementations that employ massive
parallelism without exploiting geo-tags. We also recognize landmarks and points of
interest by cross-validating location, photo title, frequent tags and geo-referenced
Wikipedia article titles in an efficient online process. Our VIRaL application is
publicly available online and provides the baseline visual search together with
location and landmark recognition.

In the future we would like to investigate more precise methods in measuring
dissimilarity of feature appearance during scene map construction. This will enable
much more compression of the index, hence increased scalability, as well as more
robust matching. Though our visual clustering does not target perceptual summa-
rization or browsing, it may still be the first stage of such a process, exploiting
its compact representation and maximum distortion guarantee. Another immediate
application can be exact localization i.e., pose detection. Finally, regarding our online
VIRaL application, we intend to incorporate our scene maps indexing scheme in the
interface. All evaluation results on location and landmark recognition presented in
this paper, together with a summary of the proposed approach, can be found online
in our project homepage.14

Acknowledgement This work was partially supported by the European Commission under con-
tract FP7-215453 WeKnowIt.
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