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Abstract In this paper, we describe fuzzy CARIN, a knowledge representation language
combining fuzzy Description Logics with Horn rules. Fuzzy CARIN integrates the man-
agement of fuzzy logic into the non-recursive CARIN language. We introduce the decision
problems of answering to conjunctive queries, unions of conjunctive queries and the existen-
tial entailment problem and provide a sound and complete algorithm that permits reasoning
with the DL fuzzy ALCNR extended with non-recursive Horn rules. This extension is most
useful in realistic applications that handle uncertain or imprecise data such as multimedia
processing and medical applications.

Keywords Fuzzy description logics · Horn rules · Conjunctive queries · Fuzzy CARIN ·
Existential entailment

1 Introduction

Over the last two decades, decidable fragments of first order logic, like Description Logics
(DLs) [3], have been brought into focus by the Artificial Intelligence community. A Descrip-
tion Logic (DL) allows us to define sets of objects referred as concepts (corresponding to unary
relations), and relationships between objects called roles (corresponding to binary relations).
Complex concept descriptions are built from simple concepts by the use of various construc-
tors such as �,�, ∃, i.e. the complex concept description Man � ∃hasChild.Girl describes
all men with a female child. DLs’ well-founded semantics, great expressiveness along with
their sound, complete, and empirically tractable reasoning services have enforced their uti-
lization in numerous domains such as multimedia [11,26,31] and medical [12] applications.
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Furthermore, DLs provide the formal foundation for the standard web ontology language
OWL [16] which is a milestone for the Semantic Web [15]. In particular, the languages
OWL-DL and OWL-Lite are syntactic variants of the DLs SHIF(D+) and SHOIN (D+),
respectively [19].

DLs main feature, their class-based knowledge representation formalism, sets a limit to
their expressive power as they are incapable of providing complex descriptions about role
predicates. Even expressive DLs such as SHOIQ lack the ability of expressing so much as
a simple composition between roles1. Therefore, as a next step in the development of the
Semantic Web, the need for systems providing reasoning services for languages integrating
DLs with rules occurred. A natural choice for such an integration would be classes of rule
languages originating from logic programming and non-monotonic reasoning [1]. In [1], the
“cream” of languages combining rules and DLs is presented. Languages such as DLP [14],
SWRL [18], AL-log [8], F-logic [21] and CARIN [24] consist of different approaches for
integrating DLs with rules. These languages are divided into hybrid that distinct between the
predicates in the rules and the DL part, and homogeneous that have no such distinction.

CARIN is such an hybrid language that combines the DL ALCNR with Horn rules (two
orthogonal subsets of first order logic). Horn rules are a natural representation language used
in many application domains. Their main advantage is that they are a tractable subset of first-
order logic for which several practical efficient inference procedures have been developed.
By combining the expressive power of both formalisms and using its existential entailment
algorithm the CARIN language: (i) offers a sound and complete inference procedure for
non-recursive knowledge bases, (ii) can solve the decision problem associated to answering
(arbitrary) unions of conjunctive queries and (iii) provides an algorithm for rule and query
subsumption over ALCNR.

Though CARIN offers great expressive power in order to represent a fragment of our
universe, it is incapable of encoding inherently imprecise or vague information. Imprecision
emerges from our lack of knowledge about a certain fact, e.g. we assume that the blurred
region in the background of a picture is a lion, while vagueness refers to the intrinsic inabil-
ity to strictly classify a fact or a state of an object, e.g. a half-empty glass of water can
neither be characterized as full, nor as empty. In order to represent vague (fuzzy) information
several formalisms, such as fK D-ALC [35], fK D-SI [31,32], fK D-SHIN [33], combining
DLs with fuzzy set theory and logic have been proposed. The main difference between these
fuzzy DL languages and their crisp counterparts is that concepts (and roles) correspond to
fuzzy unary (binary) relations. For example if the crisp concept tall characterizes a person
in our universe as tall, its fuzzy counterpart characterizes this person as tall to a certain
degree.

Based on these DLs, we propose fuzzy CARIN. An extension of non-recursive CARIN
that allows to represent and perform reasoning with vague information. The need for fuzzy
extensions in systems combining DLs with rules is evident: in multimedia and information
retrieval applications [9,13] to provide ranking degrees, in geospatial applications [27] to
cope with vague concepts like “near”, “far”, as well as in World Wide Web applications such
as business databases [41] and many more.

Example 1.1 Suppose that we have a rather “optimistic” application for object recognition.
This application consists of an image processing module that extracts some information about
the regions of an image and a DL extended with rules module that combines this information

1 Recent languages such as EL++ [2], SROIQ [17] move toward this direction.
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for the extraction of implicit knowledge:

(GreenColored � Y ellowColored) � RegularT extured � Lea f s
T runk(x) ∧ isConnected(x, y) ∧ Lea f s(y) ⇒ T ree(x, y)

In this case, a DL axiom implies that an object of either green or yellow color and regular
texture is a leafs object whereas a rule implies that a tree is an object consisting of leafs and
a trunk. Obviously, an object described by another shade of green would have never been
characterized leafs by a crisp system. That’s where fuzzy logic fits in, allowing assertions of
the form (object : green) ≥ 0.7 that imply an object being green to a certain degree. As
it will be demonstrated this degree plays an important role throughout the whole reasoning
procedure.

To the best of our knowledge, though there exists a great amount of work involving the
integration of fuzzy logic into DLs, little work has been done toward the extension of fuzzy
DLs with fuzzy Logic Programs(LPs). As stated in [10] the systems integrating DLs with
LPs are based on three different approaches: the so-called axiom-based approach, the DL-log
approach, and the autoepistemic approach. The fuzzy CARIN language corresponds to the
first category of axiom-based systems. Other systems belonging to this category have been
presented in [39] and [43]. A language extending the DL-log approach with fuzziness has
been presented in [38], while [25] presents a fuzzy extension of the autoepistemic approach.

The main contribution of this paper can be briefly summarized as follows:

– We provide the syntax and semantics of a fuzzy CARIN knowledge base. A fuzzy
CARIN knowledge base is constituted of an ABox, a TBox, and a Horn rules com-
ponents. The semantics of the ABox and TBox components are in accordance with the
semantics presented in [33] for the fK D-SHIN language.

– We introduce the problems of conjunctive queries (CQ), unions of conjunctive queries
(UCQ), and existential entailment. For these three problems, we provide the appropri-
ate semantics based on fuzzy interpretations. Although there has been quite a few work
on fuzzy SQL, such as [6], as well as on querying fuzzy DLs [29], as far as we know
no such definition of conjunctive queries, unions of conjunctive queries, and existential
entailment exists in fuzzy DLs and fuzzy relational databases.

– We provide an algorithm for answering the problems of conjunctive queries and unions
of conjunctive queries for knowledge bases with an empty Horn rule component. This
algorithm is proved to be sound, complete and terminating. More than this, we introduce
a procedure for reducing the existential entailment problem to the union of conjunctive
queries answering problem.

– Finally, we introduce a sound and complete algorithm for reducing the problem of answer-
ing to unions of conjunctive queries with respect to (w.r.t.) a knowledge base with a non-
empty Horn rule component, to that of answering to unions of conjunctive queries w.r.t.
a knowledge base with an empty Horn rules component.

The rest of the paper is organized as follows. Section 2.1 provides a preliminary report on
the initial CARIN language presented by Alon Y. Levy and Marie-Christine Rousset in [24].
A short introduction on fuzzy DLs along with the most important fuzzy operators is presented
in Sect. 2.2. In Sect. 3.1, we present the syntax of the fuzzy CARIN language, i.e. its con-
structive elements and the formalism that can be used. The meaning of these formalisms and
their constructive elements is investigated through Sect. 3.2 that describes its semantics via
fuzzy interpretations. In Sect. 3.3, we introduce the conjunctive query, the union of conjunc-
tive queries and the existential entailment problems and present their extensions for fuzzy
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DLs. A consistency checking algorithm over an ALCNR knowledge base is presented in
Sect. 4, which is the milestone for the union of conjunctive queries and existential entailment
algorithms, presented in Sect. 4.3.

2 Preliminaries

2.1 Carin

The CARIN language combines the DL ALCNR with Horn rules. CARIN’s structural ele-
ments are concept names, role names, individuals and ordinary predicates (predicates of any
arity). Individuals reflect the objects of our universe, while concepts and roles correspond to
unary and binary predicates reflecting sets or binary relations over the objects of our universe.
Ordinary predicates refer to predicates of any arity that are found only in the ABox and in the
Horn rule component. CARIN enables us to create concept descriptions using the following
constructors:

C, D → A | 
 | ⊥ | C � D | C � D | ¬C | ∀R.C | ∃R.C |≥ n R |≤ n R

where A is a concept name (primitive concept), R is a role name, n ∈ N and C, D denote
concept descriptions.

A CARIN knowledge base K consists of an ABox, TBox and a Horn rule component.
The ABox consists of a set of concept, role and ordinary predicate assertions of the form:
C(a), R(a, b) and q(a1, . . . , ak) where q is an ordinary predicate and a, b, a1, . . . , ak are
individuals in K . The TBox is a set of concept inclusions or definitions of the form C �
D,C ≡ D where C, D are concept descriptions. Finally, the Horn rules component consists
of a set of Horn rules of the form p1(X1) ∧ · · · ∧ pk(Xk) ⇒ q(Y ) where p1, . . . , pk are
either concept descriptions, roles or ordinary predicates of the appropriate arity.

The semantics of CARIN are given via interpretations. An interpretation, I, consists of
a domain and an interpretation function

〈
�I , ·I 〉

, where the domain is a non-empty set of
objects and the interpretation function maps: each individual name a to an object aI ∈ �I ,
each concept name C to a subset of �I , CI ⊆ �I , each role name R to a binary relation
RI ⊆ �I × �I , and each ordinary predicate q to a n-ary relation qI ⊆ �I × · · · × �I .
An interpretation, I, satisfies C(a), R(a, b) and q(a1, . . . , ak) if aI ∈ CI , 〈aI , bI〉 ∈ RI
and 〈aI

1 , . . . , aI
k 〉 ∈ qI . An interpretation, I, satisfies the TBox axioms C � D,C ≡ D iff

CI ⊆ DI and CI ≡ DI . Finally, Horn rules of the form p1(X1) ∧ · · · ∧ pk(Xk) ⇒ q(Y )
imply that for any mapping ψ : varsIndivs(X1 ∪ · · · ∪ Xk) → �I , if ψ(Xi ) ∈ pI

i , then
ψ(Y ) ∈ qI .

2.2 Fuzzy sets

Fuzzy set theory and fuzzy logic enables to represent uncertain and imprecise knowledge
[22]. In classical set theory, an element x which belongs to the universe �, x ∈ �, may or
may not belong to a subset A of �. This can be represented by a mapping χA : � → {0, 1},
if χA(x) = 1 then x ∈ A else if χA(x) = 0 then x �∈ A. In fuzzy set theory, a fuzzy subset
A of � has a mapping μA : � → [0, 1] which means that instead of saying that x ∈ A we
can claim that x belongs to A to a certain degree. Additionally, a binary fuzzy relation over
two crisp sets�1,�2 is a mapping R : �1 ×�2 → [0, 1] and a n-ary relation q over n crisp
sets �1, . . . , �n is a mapping q : �1 × · · · ×�n → [0, 1].
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The classical set theoretical operations of complement, union intersection and implication
are also extended in fuzzy set theory by using fuzzy set operations [22]. Because of the dif-
ficulty of extending DLs with arbitrary fuzzy set operations, our system uses some standard
norm operations like several approaches to fuzzy DLs [35]. These norms are the Lukasiewicz
negation c(a) = 1 − a, the Gödel t-norm for conjunction, t (a, b) = min(a, b), the Gödel
t-conorm for disjunction u(a, b) = max(a, b) and the Kleene-Dienes fuzzy implication,
J (a, b) = max(1 − a, b).

3 The language of fuzzy carin

As stated, non-recursive fuzzy CARIN is a language which combines the DL fuzzy ALCNR
with non- recursive Horn rules. A fuzzy CARIN knowledge base K is composed of three
components K = 〈T ,H,A〉: a DL terminology component T also called a TBox, a Horn
rules component H, and a ground facts component A also called an ABox. In the syntax
and semantics that we propose fuzziness exists only in the ground facts component. For
example, we can assert that the weather is cloudy with a degree greater or equal than 0.6,
(weather : cloudy) ≥ 0.6.

3.1 Syntax

Fuzzy CARIN’s primitive elements are a set of individuals I, an alphabet of concept names
C, an alphabet of role names R, and an alphabet of ordinary predicate names Q. Elements of
I represent the objects in our universe, while C and R correspond to unary and binary fuzzy
relationships between individuals in I. Finally, elements of Q correspond to relationships,
between individuals, of any arity.

Terminological component in fuzzy CARIN:

The fuzzy CARIN terminological component T has the same syntax as the crisp one. Complex
concept and role descriptions are built from concept and role names using the constructors
of ALCNR as described in the following inductive definition:

C, D −→ A | 
 | ⊥ | C � D | C � D | ¬C | ∀R.C | ∃R.C |≥ m R |≤ m R

R −→ P | P1 � · · · � Pk

where C and D are concept descriptions, A is a concept name, R is a role description (con-
junction), P, P1, . . . , Pk are role names in R and m is a natural number.

The sentences in the terminological component of fuzzy CARIN are concept inclusions.
A concept inclusion of the form C � D indicates that the degree of membership of each
object in C is less or equal to its degree of membership in D.

Horn rules in fuzzy CARIN:

The Horn rule component H of a fuzzy CARIN knowledge base K contains a set of Horn
rules that are logical sentences of the form:

p1(X1) ∧ · · · ∧ pk(Xk) ⇒ q(Y )

123



T. Mailis et al.

where X1, . . . , Xk, Y are tuples of variables and individuals, p1, . . . , pk are either concept
descriptions, or role names, or ordinary predicates, and q is always an ordinary predicate.
The antecedent of a Horn rule is called its body and the consequent is called its head.

In order to ensure a sound, complete, and terminating algorithm, we must impose some
restrictions on the expressive power of Horn rules. First of all, fuzzy as well as the classic
CARIN must be hybrid languages, which means that there is a clear distinction between their
DL and Horn rule part. For this reason, ordinary predicates are defined as predicates of any
arity that are allowed only in H and A, and cannot be part of a concept description, even if
they are unary or binary predicates. Additionally, variables located in Y must also be located
in one of the Xi ’s and only non-recursive Horn rules are adopted. A set of rules is said to
be recursive if there is a cycle in the dependency relation among ordinary predicates, i.e. an
ordinary predicate q depends on a predicate p when p appears in the body of a rule whose
head is q and dependency is a transitive relation. In [24] it is proved that an extension of
ALCNR with Horn rules that do not satisfy these restrictions is undecidable. Since fuzzy
DLs are generalizations of crisp DLs, it is safe to conclude that these undecidability results
will also hold for the fuzzy case.

Ground fact component in fuzzy CARIN:

The ground fact component A of a fuzzy CARIN knowledge base contains a set of fuzzy
assertions of the form:

(a : C) �� n

(〈a, b〉 : P) � n

(a : p) � n

where C is a concept description, P a role name, p an ordinary predicate, � ∈ {≥,>}, ��∈
{≥,>,≤,<}, n ∈ [0, 1], a, b ∈ I, and a ∈ Iκ where κ is the arity of the p predicate.

Intuitively a fuzzy assertion of the form (weather : cloudy) ≥ 0.5 means that the weather
is cloudy with a degree at least equal to 0.5. We call assertions defined by ≥,> positive asser-
tions, denoted with �, while those defined by ≤,< negative assertions, denoted with � . ��
stands for any type of inequality. For ordinary predicates, we use only positive assertions
since negation cannot be expressed in simple Horn rules.

Example 3.1 Extending the knowledge presented in Example 1.1 with a fuzzy ABox A,
referring to the regions of an image, we get the knowledge base K = 〈T ,H,A〉:

T = {(GreenColored � Y ellowColored) � RegularT extured � Lea f s,
BrownColored � ∃isConnected.Lea f s � T runk}

H = {T runk(x) ∧ isConnected(x, y) ∧ Lea f s(y) ⇒ T ree(x, y)}
A = {(region1 : GreenColored) ≥ 0.3, (region1 : RegularT extured) ≥ 0.3,

(region2 : BrownColored) ≥ 0.3, isConnected (region2, region1) ≥ 1}

where we have a region in our image that is characterized as GreenColored and
RegularT extured with a degree at least 0.3, a region that is characterized as BrownColored
with a degree at least 0.3 and the two regions are connected together.
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Table 1 Semantics of fuzzy concept and role descriptions

Constructor Syntax Semantics

Top 
 
I (a) = 1

Bottom ⊥ ⊥I (a) = 0

General negation ¬C (¬CI )(a) = 1 − CI (a)
Conjunction C � D (C � DI (a)) = min(CI (a), DI (a))
Disjunction C � D (C � D)I (a) = max(CI (a), DI (a))
Value restriction ∀R.C (∀R,CI (a)) = infbε�

Imax(1 − RI (a.b),CI (b))
Exists restriction ∃R.C (∃R.CI (a)) = supbε�

Imin(RI (a.b),CI (b))
At-most ≥m R (≥ m R)I (a) = sub

b1,...,bmε�I
minm

i=1{RI (a, bi )}
At-least ≤m R (≤m R)I (a) = inf

b1,...,bm+1ε�I
maxm+1

i=1 {1 − RI (a, bi )}
Role conjunction p1 � · · · � pk (p1 � · · · � pk )

I (a, b) = min(pz
1(a, b), . . . , pI

k (a, b))

3.2 Semantics

The semantics of the terminological component are given via fuzzy interpretations that use
membership functions ranging over the interval [0, 1]. A fuzzy interpretation is a pair I =
〈�I

, ·I〉 where the domain �I is a non-empty set of objects and ·I is a fuzzy interpretation
function which maps:

– An individual name a ∈ I to an element aI ∈ �I .
– A concept name A ∈ C to a membership function AI : �I → [0, 1].
– A role name P ∈ R to a membership function PI : �I ×�I → [0, 1].
– An ordinary predicate q ∈ Q of κ-arity to a membership function qI : (

�I)κ → [0, 1].
– And satisfies the unique names assumption, i.e. for each tuple of different elements

a, b ∈ I, aI � .= bI holds.

The semantics of concept and role descriptions are given by the equations in Table 1 where
a, b ∈ �I ,C, D are concept descriptions, A is a concept name, R is a role conjunction of
the form P1 � · · · � Pk and P1, . . . , Pk are role names in R.

Terminological component satisfiability:

An interpretation, I, satisfies the terminological component T iff for every element a ∈ �I
and concept inclusion axiom C � D in T it applies that

CI(a) ≤ DI(a)

Horn rule satisfiability:

An interpretation, I, satisfies a Horn rule p1
(
X1

) ∧ · · · ∧ pk
(
Xk

) ⇒ q
(
Y

)

iff for every mapping ψ from the variables and individuals of X1, . . . , Xk, Y to the
elements of �I , where each individual a is mapped to aI ,

min
(

pI
1

(
ψ

(
X1

))
, . . . , pI

k

(
ψ

(
Xk

))) ≤ q
(
ψ

(
Y

))

holds. The Horn rule component is satisfied iff all rules in it are satisfied.
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Ground fact component satisfiability:

A fuzzy interpretation satisfies the ground fact component A iff it satisfies every fuzzy asser-
tion in A. In this case, we say I is a model of A, denoted as I |� A. If A has a model we
then say that A is consistent. Given a fuzzy interpretation I we say that

– I satisfies (a : C) �� n iff CI (
aI) �� n,

– I satisfies (〈a, b〉 : P) � n iff PI (
aI , bI)

� n,
– I satisfies (〈a1, . . . , ak〉 : q) � n iff qI (

aI
1 , . . . , aI

k

)
� n.

Knowledge base satisfiability:

An fuzzy ABox A is consistent w.r.t. a TBox T and a Horn rules component H if it has a
model I |� A that satisfies every concept and role inclusion in T , as well as each Horn rule
in H. A fuzzy knowledge base K = 〈A, T ,H〉 is satisfiable when there exists such a model
I which is called a model of the knowledge base K and denoted as I |� K .

Positive inequality normal, negation normal, normalized form:

Before applying a fuzzy CARIN reasoning algorithm, we consider that each concept assertion
is in its positive inequality normal, negation normal, normalized form. Specifically, only role
assertions of the form (〈a, b〉 : P) ≥ n, ordinary predicate assertions of the form (a : p) ≥ n,
and concept assertions of the form (a : C) ≥ n are allowed where C is in its negation normal
form. A fuzzy CARIN ABox A can be transformed to this form in the following steps:

Step 1: Negative assertions are transformed into their Positive Inequality Normal Form
(PINF) by applying the fuzzy complement in both sides of the inequality as de-
scribed in [36]. For example (a : C) ≤ n and (a : C) < n are being transformed
into (a : ¬C) ≥ 1 − n and (a : ¬C) > 1 − n.

Step 2: Concepts are transformed into their Negation Normal Form. A concept can be trans-
formed into its NNF by pushing negations inwards making use of the following
concept equivalences [33,35]:

¬(C � D) ≡ (¬C � ¬D) ¬(C � D) ≡ (¬C � ¬D)
¬∃R.C ≡ ∀R.(¬C) ¬∀R.C ≡ ∃R.(¬C)

¬ ≥ m1 R ≡ ≤ (m1 − 1)R ¬ ≤ m2 R ≡ ≥ (m2 + 1)R
¬¬C ≡ C

where m1 ∈ N
∗ and m2 ∈ N in the above equations.

Step 3: Normalized assertions are assertions where > is eliminated with ≥. This can be
achieved by introducing a positive, infinitely small value ε which, from an anal-
ysis point of view, would be equal to 0+. Following [34] each concept assertion
(a : C) > n is normalized to (a : C) ≥ n + ε. The same kind of normalization
holds for role and ordinary predicate assertions. It has been proved in [34] that each
model I of K is also a model of K ’s normalized form and vice-versa.

Finally, following [33] we introduce a conjugated pair of fuzzy assertions. A conjugated
pair of fuzzy assertions is a pair of assertions whose semantics are contradicted. If φ repre-
sents a crisp concept assertion and ¬φ its negation (e.g. if φ ≡ a : C then ¬φ ≡ a : ¬C ),
a pair of fuzzy assertions in their transformed PINF, negation normal, normalized form is
conjugated if it is of the form φ ≥ n,¬φ ≥ m where n + m > 1. An ABox A with a
conjugated pair of fuzzy assertions has no model I.
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3.3 Conjunctive queries over fuzzy dLs

The most common inference problems addressed by previous fuzzy DL systems are the satis-
fiability, n-satisfiability, subsumption and the entailment problem [35]. It has been proved in
[33,35] that each one of the previous problems can be reduced to the problem of a knowledge
base satisfiability.

Another interest family of inference problems, interwoven with relational databases, is
constituted of the conjunctive query, the union of conjunctive queries, and the existential
entailment problems. Although there has been quite a few work on fuzzy SQL [6] and query-
ing fuzzy DLs [29,38], as far as we know, no such definition of conjunctive queries or unions
of conjunctive queries exists for fuzzy DL knowledge bases. Following [28], we present the
definition of the conjunctive query problem and extend it accordingly in order to provide a
proper definition for fuzzy DLs.

Definition 3.1 (Conjunctive Query) A conjunctive query (C Q) over a knowledge base K is
a set of atoms of the form

C Q = p1(Y 1) � n1 ∧ · · · ∧ pk(Y k) � nk

where p1, . . . , pk are either concept descriptions, or role names in R, or ordinary predicates
in Q, and Y 1, . . . , Y k are tuples of variables and individuals in I matching each pi ’s arity.

Similarly to assertions, conjunctive queries are also transformed to their normalized form by
substituting each pi (Y i ) > ni in C Q with pi (Y i ) ≥ ni + ε.

Definition 3.2 (Union of Conjunctive Queries) A union of conjunctive queries (UC Q) over
a knowledge base K is a set of conjunctive queries:

UC Q = {C Q1, . . . ,C Qκ }
where each C Qi , for 1 ≤ i ≤ κ , is a conjunctive query.

To say that Q is either a C Q or a UC Q we simply say that Q is a query. We denote
by varsIndivs(Q) the set of variables and individuals in a query Q, by vars(Q) the set of
variables in Q, and by indivs(Q) the set of individuals in Q. We may use the expression
vars (Q1, . . . , Ql) as an abbreviation for vars(Q1) ∪ · · · ∪ vars(Ql) (the same applies for
varsIndivs, indivs). In a similar way we define the sets vars

(
Y

)
, varsIndivs

(
Y

)
, indivs

(
Y

)

for a tuple of variables and individuals Y .
Queries are interpreted in the standard way. For a C Q, we say that I satisfies C Q, written

I |� C Q, iff there exists a mapping σ : varsIndivs(C Q) → �I such that:

σ(a) = aI for each a ∈ indivs(C Q)
pI

i (σ (Yi )) ≥ n for each p(Yi ) ≥ n in C Q
(1)

For a union of conjunctive queries UC Q = {C Q1, . . . ,C Ql} , I |� UC Q iff I |� C Qi

for some C Qi ∈ UC Q. For a knowledge base K and a query Q we say that K entails Q,
denoted K |� Q, iff I |� Q for each model I of K .

Definition 3.3 (Query Entailment) Let K be a knowledge base and Q a query. The query
entailment problem is to decide whether K |� Q.

Example 3.2 For the knowledge base presented in Example 3.1 and the union of conjunctive
queries:

UC Q = {T ree(x, y) ≥ 0.3,Mountain(x) ≥ 0.4}
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we want to know if K B |� UC Q i.e. if our knowledge always implies that there exists a
tree or a mountain in our image, with a degree of certainty at least 0.3, 0.4 respectively.

It is important to notice that the query entailment problem, contrary to the entailment prob-
lem, cannot be reduced to consistency checking since the negation of a query cannot be
expressed as part of a knowledge base. For this reason, consistency checking does not suffice
for answering to conjunctive queries. Next we are going to present a definition for the exis-
tential entailment problem for fuzzy DLs. This definition is an adaptation of the existential
entailment problem presented in [24].

Definition 3.4 (Existential Entailment) Let T be a TBox in the DL fuzzy ALCNR and let
β, Q1, . . . , Qm be sentences of the form

(∃Y
)

p1
(
Y 1

) ≥ n1 ∧ · · · ∧ pk
(
Y k

) ≥ nk

where p1, . . . , pk are either roles names in R, or concept descriptions and Y , Y 1, . . . , Y k

are tuples of variables and individuals in I such that vars
(
Y

) ⊆ vars
(
Y 1, . . . , Y k

)
.

The variables that do not appear existentially quantified in Q or β are considered univer-
sally quantified. Any universally quantified variable that appears in one of the Qi ’s must also
appear in β. The existential entailment problem is to decide whether:

〈β, T 〉 |� {Q1, . . . , Qm}
In order to give semantics for the existential entailment problem, we must first define a model
I for β. A fuzzy interpretation for β is a pair I = 〈�I

, ·I〉, where the domain �I is a non-
empty set of objects and ·I is a fuzzy interpretation function which maps: each individual
name a ∈ indivs(β) to an element aI ∈ �I , each variable name x ∈ vars(β) to an element
xI ∈ �I , each concept name A ∈ C to a membership function AI : �I → [0, 1], each
role name P ∈ R to a membership function PI : �I × �I → [0, 1]. The interpretation
I must satisfy the unique name assumption for individuals but not necessarily for variables
i.e. for each tuple of elements a, b ∈ indivs(β)aI � .= bI holds. We say that I is a model
of β if it holds that: CI(υI) ≥ n for each conjunct C(υ) ≥ n in β and PI(υI , ωI) ≥ n
for each conjunct P(υ, ω) ≥ n in β where C is a concept name, P is a role name, and
υ, ω ∈ varsIndivs(β). We see that β has semantics similar to that of an ABox A, presented
in Sect. 3.2, with the main difference that the unique name assumption does not apply for
variables. I is a model of β w.r.t T , i.e. I |� 〈β, T 〉 iff it is a model of β and satisfies each
concept inclusion in T .

An existential entailment of the form 〈β, T 〉 |� {C Q1, . . . ,C Qm} holds iff for every
interpretation I that satisfies β w.r.t. T there exists a mapping from the variables and indi-
viduals of some Qi ∈ {C Q1, . . . ,C Qm} (C Qi has the form of a sentence as described in
Definition 3.4) to the elements of our domain of interpretation τ : varsIndivs(Qi ) → �I
such that it holds:

τ(a) = aI for every individual a ∈ indivs(β)
τ(x) = xI for every universally quantified variable x ∈ vars(β)
pI

i

(
τ

(
Yi

)) ≥ ni for each i ∈ 1, . . . , k
(2)

It can be checked that the problem of answering to union of conjunctive queries free of
ordinary predicates is a special case of the existential entailment problem where A corre-
sponds to a β sentence with no variables. This fact indicates that the variables in each of the
C Qi s are all existentially quantified.

The existential entailment problem can be used as a sound and complete algorithm for
query containment over ALCNR and therefore for query simplification over a complex union
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of conjunctive queries. Detecting and dealing with redundancy is an ubiquitous problem in
query optimization and a hot research topic for different research areas such as Relational
Databases [5] and OWL-DL inference engines [20]. Suppose that we have a knowledge
base K = 〈T ,A〉 and we want to answer to the union of conjunctive queries UC Q =
{C Q1, . . . ,C Qm}. If it holds that 〈C Q1, T 〉 |� C Q2 we can reduce the problem to that of
answering to the union of conjunctive queries UC Q \ C Q2.

4 Reasoning in fuzzy carin

Our main goal is to provide a sound and complete algorithm for answering to the UCQ and
the existential entailment problem. The algorithm presented in [24] for the crisp CARIN is
based on constraint systems. A constraint system is a non-empty set of constraints of the
form s : C, s Pt,∀x .x : C , and s � .= t . We follow a different approach providing an algo-
rithm based on completion forests. A completion forest and a constraint system are both
abstractions of an interpretation I and they are used to prove the existence of a model of a
knowledge base K . It is easy to prove that there is an equivalence between algorithms based
on constraint systems and completion forests. Nevertheless, we chose an algorithm based on
completion forests in order to exploit the rich bibliography [32,35] of sound and complete
inference procedures for fuzzy DL problems based on completion forests.

To say that a knowledge base implies a query, K |� Q, it has to hold that I |� Q for each
model I of K . Instead of checking an infinite number of interpretations I satisfying K , our
algorithm checks a finite number of completion forests. Our algorithm for answering to the
UCQ problem is performed in three steps.

– In the first step we build a set of completion forests ccf(Fq
K ) according to the rules pre-

sented in Table 2 for a knowledge base K = 〈T ,A〉, and by applying the q-blocking
condition (see Definition 4.7) for the query UC Q. According to Theorem 4.1 each clash
free completion forest implies the existence of a model of our knowledge and the existence
of a model of K implies the existence of a clash free completion forest.

– In the second step, we are called to answer if each model I of K = 〈T ,A〉 satisfies
the UC Q. We prove that this is the case iff for each completion forest F ∈ ccf(Fq

K )

there exists a mapping from the variables and individuals of at least one C Q ∈ UC Q
to the nodes of F such that each role and concept restriction in C Q is satisfied in F .
The existential entailment problem can be easily reduced to the problem of answering to
UC Q.

– In the two previous cases, we considered knowledge bases containing no Horn rule com-
ponent and therefore UC Q containing no ordinary predicates. If our UC Q contains
ordinary predicates, a prepossessing step is applied in order to reduce the problem of
answering to a UC Q containing ordinary predicates to the problem of answering to a
UC Q with no ordinary predicates.

In Sect. 4.1, we present a fuzzy tableau for fuzzy ALCNR which is an intermediate form
of representation between a fuzzy interpretation I and a completion forest F . In Sect. 4.2,
we present an algorithm for consistency checking in ALCNR based on completion forests.
On these foundations an algorithm for the inference problems defined in Sect. 3.3 will be
presented in Sect. 4.3.
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Table 2 Tableaux expansion rules for fuzzy ALCNR

4.1 A tableau for fuzzy ALCNR

Tableaux algorithms check for consistency by trying to build a fuzzy tableau for A w.r.t. T ,
that is, an abstraction of a model of our knowledge K . In this Section we provide the tableau
for fuzzy ALCNR. Without loss of generality we consider that concept assertions are in
their positive inequality normal, negation normal, normalized form as described in Sect. 3.2.

Definition 4.1 If A is a fuzzy ALCNR ABox, R is the set of role names occurring in K , I
is the set of individuals in K and T is a TBox, a fuzzy tableau T for A w.r.t. T is defined to
be a quadruple (S,L, E,V) such that: S is a set of elements, L : S × sub(K ) → [0, 1] maps
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each pair of an element and a concept in sub(K ) to the membership degree of that element
to the concept, E : R × S × S → [0, 1] maps each role in R and pair of elements to the
membership degree of the pair to the role, and V : I → S maps individuals occurring in A
to elements of S.

For all s, t ∈ S, C, E ∈ sub(K ), n ∈ [0, 1], P, P1, . . . , Pk ∈ R and R a role conjunction
of the form P1 � · · · � Pk, T satisfies:

1. L(s,⊥) = 0 and L(s,
) = 1 for all s ∈ S,
2. If L(s,¬A) ≥ n, then L(s, A) ≤ 1 − n,
3. If L(s,C � E) ≥ n, then L(s,C) ≥ n and L(s, E) ≥ n,
4. If L(s,C � E) ≥ n, then L(s,C) ≥ n or L(s, E) ≥ n,
5. If L(s,∀R.C) ≥ n then for all t ∈ S it holds either that E (Pi , 〈s, t〉) ≤ 1 − n for some

i ∈ {1, . . . , k}, or L(t,C) ≥ n,
6. If L(s, ∃R.C) ≥ n, then there exists some t ∈ S such that E (Pi , 〈s, t〉) ≥ n for all

i ∈ {1, . . . , k} and L(t,C) ≥ n,
7. If L(s,≥ p R) ≥ n, then �RT (s,≥, n) ≥ p,
8. If L(s,≤ p R) ≥ n, then �RT (s,≥, 1 − n + ε) ≤ p,
9. If C � D ∈ T , then either L(s,¬C) ≥ 1 − n + ε, or L(s, D) ≥ n for all s ∈ S and

n ∈ NA,
10. If (a : C) ≥ n ∈ A, then L(V(a),C) ≥ n,
11. If (〈a, b〉 : P) ≥ n ∈ A, then E (P, 〈V(a),V(b)〉) ≥ n,
12. For each a, b ∈ I, V(a) �= V(b) holds,

Where � denotes the cardinality of a set. For a role description R → P1 � · · · � Pk, RT

(s,≥, n) = {t ∈ S | E(P1, 〈s, t〉) ≥ n, . . . , E(Pk, 〈s, t〉)≥n} is the subset of S containing
all the elements connected from s through all Pi s with a degree greater or equal than n.
Moreover sub(C) denotes the set of sub-concepts of a concept C and sub(K ) denotes the set
of sub-concepts that appear in a knowledge base K . Accordingly sub(Q) denotes the set of
sub-concepts appearing in a query Q. Finally NA is the set of degrees appearing in A.

Lemma 4.1 A fuzzy ALCNR ABox A is consistent w.r.t. T iff there exists a fuzzy tableau
for A w.r.t. T .

4.2 ALCNR completion forests

The completion forest introduced is based on the completion forest presented in [24]. As in
[24] the application of the expansion rules for the completion forest could lead to an arbitrary
number of nodes due to the existence of cyclic concept inclusions. In order to ensure the
termination of the expansion rules, a blocking condition should be adopted. Contrary to the
simple blocking condition embraced by ALCNR [4] our algorithm adopts the q-blocking
condition, introduced in [24], in order to cope with union of conjunctive queries. In the next
paragraphs the notions of completion forest, q-blocking and the expansion rules are explained
in detail.

Definition 4.2 (Completion Tree) A completion tree for fuzzy ALCNR is a tree all nodes
of which are variable nodes, except from the root node which corresponds to an individual.
Each node x is labeled with a set of triples:

L(x) = {〈C,≥, n〉 | C ∈ sub(K ), n ∈ [0, 1]}
Each edge is labeled with a set of triples:

L(x, y) = {〈P,≥, n〉 | P ∈ R, n ∈ [0, 1]}
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Fig. 1 A fuzzy ALCNR completion forest

Definition 4.3 (Completion Forest) A completion forest F is a collection of trees whose
roots, corresponding to individuals, are arbitrarily connected by arcs. As before, edges
between root nodes are labeled with the set

L(x, y) = {〈P,≥, n〉 | P ∈ R, n ∈ [0, 1]}
Intuitively each triple 〈C,≥, n〉 (or 〈P,≥, n〉), called membership triple, represents the mem-
bership degree and the type of assertion of each node (or pair of nodes) to a concept C ∈
sub(K ) (or role P ∈ R).

Example 4.1 In Fig. 1 we see a completion forest for fuzzy ALCNR where r1, r2 corre-
spond to root nodes while o1, . . . , o8 are variable nodes created by node generating rules.
Each node must be labeled with a set of concepts with degrees and each edge must be labeled
with a set of roles with degrees. In this example only nodes r1, o1 and edges 〈r1, o1〉, 〈r1, r2〉
are labeled due to space limitations.

Definition 4.4 (nodes, vars, R≥n-successor,successor,descendant) For a completion forest
F : (i) nodes(F) denotes the set of nodes in F , (ii) vars(F) denotes the set of variable nodes
in F , (iii) for the role conjunction R → P1 � · · · � Pk, w is an R≥n-successor of υ when
nodes υ and w are connected by an edge 〈υ,w〉 such that 〈Pi ,≥, ni 〉 ∈ L(x, y) with ni ≥ n
for all i ∈ {1, . . . , k}, (iv) υ is a successor ofw when υ is an R≥n-successor ofw with n > 0,
(v) descendant is the transitive closure of successor.

Note that our definition of R≥n-successor indicates that if υ is an R≥n-successor of w then
it is also an R≥n′ -successor of w for n′ < n.

Example 4.2 In Fig. 1, o1 is a R2≥0.3 successor of r1.

Definition 4.5 (q-tree equivalence) The q-tree of a variable υ is the tree that includes the
node υ and its successors whose distance from υ is at most q direct-successors arcs. We
denote the set of nodes in the q-tree of υ by Vq(υ). Two nodes υ,w ∈ F are said to
be q-tree equivalent in F if there exists an isomorphism ψ : Vq(υ) → Vq(w) such that (i)
ψ(υ) = w, (ii) for every s ∈ Vq(υ), 〈C,≥, n〉 ∈ L(s) iff 〈C,≥, n〉 ∈ L(ψ(s)) (iii) for
every s, t ∈ Vq(υ), 〈P,≥, n〉 ∈ L(〈s, t〉) iff 〈P,≥, n〉 ∈ L(〈ψ(s), ψ(t)〉). Intuitively, two
variables are q-tree equivalent if the trees of depth q of which they are roots are isomorphic.

Definition 4.6 (q-Witness) A node υ is the q-witness of a node w when (i) υ is an ancestor
of w, (ii) υ and w are q-tree equivalent, (iii) w �∈ Vq(υ).
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Fig. 2 Blocking example

Definition 4.7 (q-blocking) A node x is q-blocked either when it is the leaf of a q-tree in F
whose root w has a q-witness υ and w ∈ vars(F), or when L(x) = ∅. From now on when
referring to blocking we indicate q-blocking.

Example 4.3 In Fig. 2 o1 is a 1-witness of o4 since the 1-tree of o1 is equivalent to the
1-tree of o4 because L(o1) = L(o4),L(o2) = L(o5),L(o3) = L(o6) and L(o1, o2) =
L(o4, o5),L(o1, o3) = L(o4, o6). For this reason o5 is blocked by o2 and o3 is blocked by
o6.

Definition 4.8 (Clash free completion forest) For a node x,L(x) contains a clash if it con-
tains: (i) A conjugated pair of triples (a conjugated pair of triples can be defined straightfor-
wardly by the definition of a conjugated pair of fuzzy assertions described in Sect. 3.2), (ii)
one of the triples 〈⊥,≥, n〉 with n > 0, 〈C,≥, n〉 with n > 1, (iii) some triple 〈≤ pR,≥, n〉
and x has p + 1R≥n-successors y0, . . . , yp such that yi �= y j for all 0 ≤ i < j ≤ p.
A completion forest F is clash free if none of its nodes contains a clash.

For an ALCNR ABox A the algorithm initializes a completion forest FK to contain (i) a root
node xi

0, for each individual ai ∈ I in A, labeled with L(xi
0) such that {〈Ci ,≥, n〉} ⊆ L(xi

0)

for each assertion of the form (ai : Ci ) ≥ n ∈ A, (ii) an edge 〈xi
0, x j

0 〉, for each assertion

(〈ai , a j 〉 : P) ≥ n ∈ A labeled with L(〈xi
0, x j

0 〉) such that {〈P,≥ n〉} ⊆ L(〈xi
0, x j

0 〉), (iii)

the relation � .= as xi
0 � .= x j

0 for each two different individuals ai , a j ∈ I and the relation
.= to

be empty. FK is expanded by repeatedly applying the completion rules from Table 2.
In Table 2 rules �≥, �≥, ∃≥,∀≥ are first introduced in [35] and then modified for comple-

tion forests in [31], rules ≥≥ and ≤≥ are presented in [33], while rule � is first introduced
in [34]. The ≤r≥ presented in [33] cannot be applied since aI � .= bI holds for every pair of
individuals a, b ∈ I.

Definition 4.9 (q-complete completion forest) We denote by FK the set of completion for-
ests F obtained by applying the expansion rules in Table 2 to FK . A completion forest F is

123



T. Mailis et al.

Fig. 3 Completion forests for the knowledge base K presented in Example 3.1. The above completion forest
F1 is complete and clash free while F2 contains a clash

q-complete when none of the rules in Table 2 can be applied to it. We denote by ccf(Fq
K ) the

set of completion forests in FK that are q-complete and clash free.

Lemma 4.2 (Termination) For each fuzzy ALCNR ABox A and TBox T , the tableaux algo-
rithm terminates when started for A and T .

Lemma 4.3 (Soundness) If the expansion rules can be applied to a fuzzy ALCNR ABox A
and TBox T such that they yield a complete and clash-free completion forest, then A has a
fuzzy tableau w.r.t T .

Lemma 4.4 (Completeness) Let A be a fuzzy ALCNR ABox and T a TBox. If A has a fuzzy
tableau w.r.t. T , then the expansion rules can be applied to A and T in such a way that the
tableau algorithm yields a complete and clash-free completion forest.

According to Lemmas 4.1, 4.3 and 4.4, we have that:

Theorem 4.1 Each class free completion forest F ∈ ccf(Fq
K ) corresponds to a model I of

K and vice-versa.

Example 4.4 For the DL part of the knowledge base presented in Example 3.1 we have a
set of completion forests F

q
K after the application of the expansion rules of Table 2. Two

of them are presented in Fig. 3. As we can see F2 contains a clash since it contains two
conjugated triples (related to the GreenColored concept). Therefore only F1 ∈ ccf(Fq

K )

while F2 �∈ ccf(Fq
K ).

In Sect. 4.3 we show how the set ccf(Fq
K ) can be exploited in order to answer to unions

of conjunctive queries.

4.3 Union of conjunctive queries

In this Section we will introduce an algorithm, for answering to union of conjunctive queries
over an ALCNR knowledge base K , that examines the finite set of clash free completion
forests ccf

(
F

q
K

)
. Our algorithm is first presented for unions of conjunctive queries free of

ordinary predicates and a Horn rule component K = 〈T ,A〉 and then extended for query
answering with ordinary predicates.
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Fig. 4 Conjunctive query mapped to a graph

4.3.1 Answering to union of conjunctive queries free of ordinary predicates

Following [28], in order to have a complete algorithm for answering to conjunctive queries
we must add to our T Box the rule:

C � C (3)

for each concept name C appearing in a conjunctive query. This ensures that in each com-
pletion forest either (x : C) ≥ n or (x : C) < n2 holds and consequently it can be checked
if a node can be mapped to a variable of our conjunctive query.

Additionally we have to show why q-blocking is adopted instead of simple blocking.
A conjunctive query C Q as presented in Definition 3.1 can be mapped to a graph GC Q

whose nodes correspond to variables and individuals, each node x is labeled with a set
L(x) = {〈C,≥, n〉 | C ∈ sub(C Q), n ∈ [0, 1]} and each edge 〈x, y〉 is labeled with a set
L(x, y) = {〈P,≥, n〉 | P ∈ R, n ∈ [0, 1]}. Suppose that dxy is the length of the lengthiest
acyclic,directed path between nodes x and y, we define |C Q| to be the maximum dxy between
the set of pairs of connected nodes in C Q. Naturally we deduce that a conjunctive query C Q
cannot be mapped to a sub-tree of a completion forest F that has more than |C Q| arcs height.
The |C Q|-blocking condition ensures that a possible mapping from C Q to F wont be blocked.
In case of a union of conjunctive queries UC Q we will consider that |UC Q| coincidences
with the value of the maximum |C Q| i.e. |UC Q| = max {|C Q| | C Q ∈ UC Q}.
Example 4.5 The conjunctive query:

C Q = {P1(x1, x2) ≥ 0.3, C1(x2) ≥ 0.7,
P2(x2, x3) ≥ 0.2, P1(x1, x4) ≥ 0.6,
P3(x4, x3) ≥ 0.8}

is represented by the graph in Fig. 4 and has |CQ| = 2.

Definition 4.10 Suppose that we have a conjunctive query:

C Q = C1(x1) ≥ n1 ∧ · · · ∧ Ck(xk) ≥ nk

∧Pk+1(yk+1, zk+1) ≥ nk+1 ∧ · · · ∧ Pκ (yκ , zκ ) ≥ nκ

For a completion forest F we say that C Q ↪→ F iff there exists a mapping σ :
varsIndivs(C Q) → nodes(F) such that:

1. σ maps each individual a ∈ I to its corresponding root node,
2. 〈Ci ,≥, n′

i 〉 ∈ L(σ (xi )) for some n′
i ≥ ni , and

2 (x : ¬C) ≥ 1 − n + ε is its PINF and normalized form.
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3. σ(z j ) is an (Pj )≥n j -successor of σ(y j )

for each 1 ≤ i ≤ k and k + 1 ≤ j ≤ κ . For a union of conjunctive queries UC Q =
{C Q1, . . . ,C Ql} we say that UC Q ↪→ F iff C Qi ↪→ F for some C Qi ∈ UC Q.

Definition 4.11 Suppose we have a conjunctive query:

C Q = C1(x1) ≥ n1 ∧ · · · ∧ Ck(xk) ≥ nk∧
Pk+1(yk+1, zk+1) ≥ nk+1 ∧ · · · ∧ Pκ (yκ , zκ ) ≥ nκ

For a fuzzy tableau T = (S,L, E,V) we say that C Q ↪→ T iff there exists a mapping
σ : varsIndivs(C Q) → S such that

1. σ maps each individual a ∈ I to V(a),
2. L (σ (xi ),Ci ) ≥ ni , and
3. E

(
Pj , 〈σ(y j ), σ (z j )〉

) ≥ n j

for each 1 ≤ i ≤ k and k + 1 ≤ j ≤ κ . For a union of conjunctive queries UC Q =
{C Q1, . . . ,C Ql} we say that UC Q ↪→ T iff C Qi ↪→ T for some C Qi ∈ UC Q.

Lemma 4.5 UC Q ↪→ T for every consistent tableau T w.r.t. A and T , iff I |� UC Q for
every model I of K = 〈T ,A〉.
Lemma 4.6 If UC Q ↪→ T for every consistent tableau T w.r.t. A and T , then UC Q ↪→ F
for every completion forest F ∈ cc f (Fq

K ).

Lemma 4.7 If F ∈ cc f (Fq
K ) and Q ↪→ F , then Q ↪→ T for every tableau with respect to

A and T .

Theorem 4.2 According to Lemmas 4.5–4.7 we have that a knowledge base K entails a
union of conjunctive queries UC Q (K |� UC Q) iff UC Q ↪→ F for every F ∈ ccf(Fq

K ).

Example 4.6 For example for the conjunctive query

C Q = T runk(x) ≥ 0.3 ∧ isConnected(x, y) ≥ 0.3 ∧ Lea f s(y) ≥ 0.3.

and the completion forest F1 from Example 4.4 we have that the mapping σ , such that
σ(x) = region2 and σ(y) = region1 satisfies C Q ↪→ F1 where F1 ∈ ccf

(
F

q
K

)
. In order to

prove that K |� C Q it has to prove that C Q ↪→ F for every F ∈ ccf
(
F

q
K

)
—if we examine

all completions forest we will see that this is the case.

4.3.2 Answering to conjunctive queries with ordinary predicates

Up till now we have presented an algorithm for the query entailment problem K |� UC Q
w.r.t a knowledge base K = 〈T ,A〉 that has no Horn rule component (and subsequently
UC Q does not contain any ordinary predicates). In this section, we will describe a proce-
dure that reduces the problem of query entailment w.r.t. a knowledge base with a Horn rule
component K = 〈T ,H,A〉, to a problem of query entailment w.r.t. a knowledge base with
no Horn rule component K = 〈T ,A〉. This procedure is performed in two steps.

In the first step, we get rid of ordinary predicate assertions. For each ordinary predi-
cate q of arity m > 1 we introduce a set of pseudo roles Pq1 , . . . , Pqm−1 (for ordinary
predicates of arity 1 it suffices to introduce a pseudo concept Cq ). Then we create a
new Horn rule component H′ by adding to the original H a new Horn rule of the form
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Algorithm 1 Reduction of a UCQ containing ordinary Predicates to a UCQ free of ordinary
predicates.
procedure reduction(UC Q)

• if UC Q contains a conjunctive query CQ of the form

C Q = p1
(
Y 1

) ≥ n1 ∧ · · · ∧ q
(
Y q

) ≥ nq ∧ · · · ∧ pk
(
Y k

) ≥ nk

where q is an ordinary predicate then:

• create a new UC Q′ := UC Q \ {C Q}
• for each Horn rule of the form r1(X1) ∧ · · · ∧ rk (Xk ) ⇒ q(Y )

• create a mapping ψ such that:

• ψ
(
Y

) = Y q ,
• ψ(x) = x ′ where x ∈ vars

(
X1, . . . , Xk

) \ vars
(
Y

)
and x ′ is a new variable name not

existing in C Q,
• ψ(a) = a for each individual a ∈ I.

• create a conjunctive query C Q′ from C Q where the conjunct q
(
Y q

) ≥ nq is replaced by
r1

(
ψ

(
X1

)) ≥ nq ∧ · · · ∧ rk
(
ψ

(
Xk

)) ≥ nq .
• UC Q′ := UC Q′ ∪ {C Q′}.

• return reduction(UC Q′)

• else return UC Q

Pq1(x1, x2) ∧ · · · ∧ Pqm−1 (xm−1, xm) ⇒ q (x1, . . . , xm) where x1, . . . , xm are variable
names. The initial ABox A is substituted by a new ABox A′ where each assertion about
q is substituted by a set of assertions about Pq1 , . . . , Pqm−1 . For example an assertion about
an ordinary predicate q(a1, . . . , am) ≥ n can be substituted by a set of pseudo role asser-
tions Aq = {

Pq1(a1, a2) ≥ n, . . . , Pqm−1(am−1, am) ≥ n
}
. It can be easily checked that for

K = 〈T ,H,A〉 and K ′ = 〈
T ,H′,A′〉 it holds that K |� UC Q iff K ′ |� UC Q.

In the second step, we iteratively replace a conjunctive query that contains an ordinary
predicate q with a union of conjunctive queries where the ordinary predicate q is substituted
by concepts, roles, and ordinary predicates that appear in the body of in a Horn rule whose
head is q , according to Algorithm 1.

Example 4.7 For example the conjunctive query:

C Q = T ree(x, y) ≥ 0.3

presented in Example 3.2, according to the Horn rule component:

H = {T runk(x) ∧ isConnected(x, y) ∧ Lea f s(y) ⇒ T ree(x, y)}
presented in Example 3.1, will be reduced to the conjunctive query:

C Q = T runk(x) ≥ 0.3 ∧ isConnected(x, y) ≥ 0.3 ∧ Lea f s(y) ≥ 0.3.

and according to Example 4.6 we have that C Q ↪→ F1.

Lemma 4.8 The procedure described in Algorithm 1 terminates in a finite number of steps.

Since the Horn rule component contains only acyclic Horn rules the termination of the algo-
rithm can be easily verified.

Lemma 4.9 For each cycle of the Algorithm 1 the replacement of UC Q with UC Q′ is sound
and complete, i.e. K |� UC Q iff K |� UC Q′.
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4.3.3 Reasoning for the existential entailment problem

According to [24] an ABox A corresponds to a β sentence that does not contain any variables.
When β contains variables, β may have models in which two or more variables (or one or
more variable and an individual) are mapped to the same object in the domain. To check
entailment in this case we need to apply the algorithm to any homomorphism h on β.

The homomorphism h is a mapping h : varsIndivs(β) → P (varsIndivs(β)), where P cor-
responds to the powerset function. Obviously each variable or individual is mapped to the set
of its homomorphic variables and individuals. From the mapping h and the set varsIndivs(β)
we can define a new set of individuals I′. Intuitively, if we consider an homomorphism
between the variables x, y of β, i.e. h(x) = h(y) = {x, y} , then we define a new individual
in I′ that is identified by {x, y}. In order to be a valid homomorphism, the function h must
satisfy the following properties:

– x ∈ h(x),
– if y ∈ h(x) then it also holds that h(y) = h(x),
– for every pair of different individuals a, b ∈ I it applies that h(a) �= h(b).

Now from β and h we build an ABox A′ as follows: for each conjunct in β about a
concept C(x) ≥ n (or role R(x, y) ≥ n) we get a concept (or role) assertion in A such that
C(h(x)) ≥ n (or R(h(x), h(y)) ≥ n). Similarly each individual and universally quantified
variable x in one of the conjuncts of Qi for 1 ≤ i ≤ m is replaced by h(x) and we get a
query Q′

i that contains only existentially quantified variables.

Lemma 4.10 〈β, T 〉 |� {Q1, . . . , Qk} iff for every valid homomorphism h on the set of vari-
ables and individuals of β, it holds that K |� {

Q′
1, . . . , Q′

k

}
where K = 〈T ,A〉, A = h(β),

and Q′
i = h(Qi ) for every 1 ≤ i ≤ k.

5 Conclusions and future work

This paper presents a quite general fuzzy extension of the CARIN language. Based on CARIN
we have described a language allowing for the integration of fuzzy DLs and Horn rules; thus
offering more expressive power due to its ability to represent imprecise and vague informa-
tion. The extension we have proposed is based on a combination of the DL fuzzy ALCNR
with acyclic Horn rules. The syntax and semantics we suggest are in accordance with those of
other fuzzy DL languages such as fK D-ALC [35], fK D-SI [31,32] and fK D-SHIN [33].
Furthermore, we have introduced for fuzzy DLs the key problems of conjunctive queries,
union of conjunctive queries and existential entailment, providing proper semantics together
with a sound and complete inference procedure for each of these problems. Similar to the
classic CARIN language we restrict our expressiveness to acyclic Horn rules. In [24] it is
proved that the reasoning problem w.r.t. cyclic Horn rules is undecidable (the proof is based on
reduction from the halting problem to a CARIN decision problem). It can be proved that the
existence of a sound, complete and terminating reasoning procedure for fuzzy CARIN with
cyclic Horn rules would imply the same for the classic CARIN language3 which is absurd.
Therefore we conclude that the reasoning problem w.r.t. cyclic Horn rules is undecidable for
fuzzy CARIN.

As far as future directions are concerned, these will include the study of possible exten-
sions of the fuzzy CARIN algorithm using more expressive DLs. Toward this direction in

3 In order to prove this claim we can exploit the existing work on Reduction from fuzzy to crisp DLs [40].
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[28] a sound and complete algorithm for performing unions of conjunctive queries over the
DL SHIQ is presented and we should examine if the same problem could be addressed over
fK D-SHIQ knowledge bases. Another topic of interest is the extension of the CARIN lan-
guage with fuzzy general concept inclusions and weighted fuzzy rule systems. A great amount
of existing work involving the weighted fuzzy rule systems has been carried out (e.g. [7]),
while in [37] fuzzy general concept inclusions were introduced. Intuitively a fuzzy GCI of
the form 〈C � D, n〉 implies that if someone belongs to the set C to some degree n1 ∈ [0, 1]
then he will also belong to the set D to some other degree n2 ∈ [0, 1] where n2 increases
w.r.t. the values of n1, n. The same applies for weighted fuzzy Horn rules. Another inter-
esting extension is related to the greatest lower bound. The greatest lower bound of some
crisp concept assertion w.r.t. a fuzzy knowledge base K is defined as glb(K , (a : C)) =
sup {n | K |� (a : C) ≥ n}. For example the fact that glb(K , (John : T all)) = 0.8 indi-
cates that John is T all for every model of K with a degree greater or equal than 0.8 and
there exists at least one model where John is T all with a degree equal to 0.8. Determining
the glb is called the Best Truth Value Bound (BTVB) problem [34]. Extending the BTVB
problem for conjunctive queries and subsequently for unions of conjunctive queries, is a very
interesting problem. A BTVB conjunctive query should have the form:

C Q BT V B = p1
(
Y1

) ∧ · · · ∧ pk
(
Yk

)

where p1, . . . , pk are either concepts, roles, or ordinary predicates. Here we could say
that glb (K ,C Q BT V B) = n iff for every model I of K there exists some mapping
σ : varsIndivs

(
Yi

) → �I such that pI
i

(
σ

(
Yi

)) ≥ n for every integer 1 ≤ i ≤ k. We
believe that our algorithm needs some minor changes in order to answer to this problem. The
UC Q BT V B can be defined accordingly.

One of the main drawbacks for further extending the fuzzy CARIN language is its high
computational complexity. It has been proved, in [24], for the crisp CARIN system that the
time complexity for β ∪T �|� Q is non-deterministic doubly exponential in the size of β ∪T
and triply exponential in the size of β ∪ T ∪ Q. What remains to investigate is if such is the
case for its fuzzy extension, or if it leads to a higher worst case complexity. Therefore the use
of the fuzzy CARIN language in realistic applications presumes for a more efficient reasoning
system. One direction toward a more efficient reasoning system is to extend with Horn rules
more tractable DLs then ALCNR. The ELP language presented in [23] is one such extension
combining the polynomial time complexity language EL++ with rules. Another approach
in order to provide a more efficient algorithm is to investigate practically efficient methods
for reasoning in CARIN. One of the main sources of complexity of our algorithm is that in
order to have a sound and complete inference procedure for answering to UC Qs each node
contains either 〈¬C,≥, 1 − n + ε〉 or 〈C,≥, n〉 for all concept descriptions and all degrees
in the K B. A more conservative application of this rule, which would bound its application
only for the concept names and degrees contained in a conjunctive query, would considerably
improve the performance of our algorithm. Another source of complexity of the algorithm is
related to the q-blocking condition adopted. A possible solution in this case is to introduce
a dynamic version of q-blocking in which an initial completion forest with simple blocking
is created and only if none of the conjunctive queries in UC Q has an answer, the comple-
tion forest is further expanded. Finally one of the main sources of complexity stems from
the fact that fuzzy CARIN is constructed based on non-optimized tableau methods. In [30]
optimization techniques that can improve the performance of fuzzy-DL systems’ reasoning
are presented, while existing optimizations of tableau algorithms for classic DL reasoners
[42] can also be adopted.
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A Proofs

Proof of Lemma 4.1 For the “if” direction, if T = (S,L, E,V) is a fuzzy tableau for A w.r.t.
T , we can construct a model I = 〈

�I , ·I 〉
of A w.r.t T in the following way:

�I = S
aI = V(a), a ∈ I

I(s) = L(s,
), for all s ∈ S
⊥I(s) = L(s,⊥), for all s ∈ S
AI(s) = L(s, A), for all s ∈ S and concept names A
PI(s, t) = E(P, 〈s, t〉) for each role P ∈ R

The proof that I is a model of A is based on the proof described in [32] for the language
fK D-SI. In [32] it is shown, by induction on the structure of concepts that

L(s,C) ≥ n implies CI(s) ≥ n for any s ∈ S (4)

Since our language does not contain transitive roles, the proof for ∀ is a little bit differenti-
ated, not taking into account the part of the proof that refers to transitive roles. The proof for
number restrictions is identical to the one described in [32] for the more expressive language
fK D − SHIN . Some minor changes to the proofs must be made in order to handle role
conjunctions. We give a detailed part of the proof for existential restrictions:

– If L (s, ∃R.C) ≥ n for some role conjunction R → P1 � · · · � Pk then there exists some
t ∈ S such that E (Pi , 〈s, t〉) ≥ n for all i ∈ {1, . . . , k} and L(t,C) ≥ n holds. By
definition PI

i (s, t) ≥ n and by the semantics of role conjunction

RI(s, t) = min
(
PI

1 (s, t), . . . , PI
k (s, t)

) ≥ n

Since by induction CI(t) ≥ n holds we have that

(∃R.C)I(s) = sup
t∈�I

min
(
RI(s, t),CI(t)

) ≥ n

Property 9 in Definition 4.1 indicates that each concept inclusion C � D ∈ T is satisfied
in every model I of T (an extensive proof can be found in [34]), properties 10, 11 indi-
cate the satisfaction of each concept and role assertion in A while property 12 indicates the
satisfaction of the unique name assumption.

For the “only if” direction a model I = 〈
�I , ·I 〉

of A w.r.t. T can define a tableau
T = (S,L, E,V) for A w.r.t. T as follows:

S = �I

E(P, 〈s, t〉) = PI(s, t)

L(s,C) = CI(s)
V(a) = aI

The proofs for properties 1, 2, 3, 4, 5, 6, 10, 11 follow the proofs for fK D −SI in [32] while
the proofs for properties 7, 8 are identical to the proofs for fK D − SHIN in [32] and the
proof for property 9 is described in [34]. Property 12 holds due to the unique name assump-
tion. Some minor changes to the proofs must be made in order to handle role conjunctions
for example the proof for existential restriction is changed as follows:
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– Let L(s, ∃R.C) ≥ n for some role conjunction R → P1 � · · · � Pk . The definition
of T implies that (∃R.C)I(s) ≥ n⇒supy∈�I min

(
RI(s, y),CI(y)

) ≥ n. This means

that there exists some t ∈ �I with RI(s, t) ≥ n and CI(t) ≥ n. Since RI(s, t) ≥ n
holds, PI

i (s, t) ≥ n also holds for i ∈ {1, . . . , k}. By definition t ∈ S and T satisfies
Property 6. ��

Proof of Lemma 4.2 According to [28], in order to prove the termination of the algorithm it
suffices to prove that there exists a maximal number Tq of non-isomorphic q-trees in a com-
pletion forest for K . This condition ensures that the expansion of the completion forest won’t
keep infinitely, since each q-tree equivalence will cause blocking at some point. Suppose that
sub(K ) ∪ sub(Q) is the set of subconcepts of a conjunctive query Q on a knowledge base
K and c = |sub(K ) ∪ sub(Q)| its cardinality, r = |R| the number of role names, mmax the
maximum m occurring in a number restriction of the form ≥ m R and NA,Q the number of
degrees in ABox assertions as well as conjunctive queries (along with the degrees augmented
with ε).

There can be at most 2c·NA,Q node labels in a completion forest since each node is char-
acterized by tuples of concepts and degrees. Each successor of a node can be the root of a
tree of depth (n − 1). Considering a single role R, if a node υ has x R-successors, then there
is a maximum number of (Tn−1)

x trees of depth (n − 1) rooted at υ.
We consider that in the worst case, the ≥≥ generating rule can be contained in each con-

cept C ∈ sub(K ) ∪ sub(Q) for each number of degrees and for the highest degree mmax.
This gives a bound of c · mmax · NA,Q R-successors for each role.

The number of R-successors of a node might range from 0 to c · mmax · NA,Q , and for
each number of R-successors, we have at most (Tn−1)

(c·mmax·NA,Q ) trees of depth (n − 1).
So, each node can be the root of at most (c · mmax · NA,Q)(Tq−1)

(c·mmax·NA,Q ) trees of depth
n − 1 if we consider one single role.

Since at most the same number of trees can be generated for every role in R, there is

a bound of
((

c · mmax · NA,Q
) (

Tq−1
)(c·mmax·NA,Q)

)r
trees of depth (n − 1) rooted at each

node. The number of different roots of a n-tree is bounded by 2c. We now give an upper
bound on the number of non-isomorphic n-trees as

Tq = O
(

2c
(
(c · mmax · NA,Q)

(
Tq−1

)(c·mmax·NA,Q )
)r)

To simplify the notation, let’s consider x = 2c(c + mmax)
r and a = c · mmaxr . Then we have

Tq = O(x · (Tq−1)
a) = O(x1+a+···+an−1 · (T0)

an
) = O((x · T0)

an
)

The maximal number of trees of depth 0 is also bounded by 2c. Returning to the original
notation we get

Tq = O
(
(22·c(c · mmax · NA,Q)r )(c·mmax·NA,Q ·r)n )

��
Proof of Lemma 4.3 Let FK be a complete and clash-free completion-forest constructed by
the tableaux algorithm for A w.r.t. T . The construction of a fuzzy tableau T = (S,L, E,V)
will be performed based on the construction of a fuzzy model presented in [32,35].

For a set of triples of the form 〈A,≥, ni 〉 ∈ L(s), the maximum value of ni ’s is chosen as
a membership degree of s to the fuzzy set AI , i.e. the degree L(s, A) in our case. Please note
that the labellings L(s,C) refer to nodes of the fuzzy tableau, while those of L(s) to nodes
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of the completion-forest. Given the existence of a clash-free completion forest FK , a fuzzy
tableau can be constructed as follows:

S = {s | s is a node in FA and s is not blocked},
L(s,⊥) = 0, for all s ∈ S,
L(s,
) = 1, for all s ∈ S,
L(s,C) = sup {ni | 〈C,≥, ni 〉 ∈ L(s)} , for all s ∈ S,

E(P, 〈s, t〉) = sup ({ni | 〈P,≥, ni 〉 ∈ L(s, t)} ∪
{ni | 〈P,≥, ni 〉 ∈ L(s, z) for each node z blocked by t})

for all s, t ∈ S,
V(ai ) = sai , where sai is a root node.

(5)

It can be shown that T is a fuzzy tableau for A w.r.t. T :

1. Property 1 of Definition 4.1 is satisfied due to the construction of T and because FA is
class-free.

2. Properties 2,3 and 4 are satisfied and the proof is identical to the proof for fK D − SI.
3. Property 5 of Definition 4.1 is satisfied. Let s ∈ S with L(s,∀R.C) = n0 ≥ n for some

role conjunction R → P1 � · · · � Pk . We consider two possibilities, the first is that there
exists some Pi for some integer 1 ≤ i ≤ k, such that E(Pi , 〈s, t〉) = ni with ni ≤ 1 − n0

and the second is that E(Pi , 〈s, t〉) = ni with ni ≥ 1 − n0 + ε for all 1 ≤ i ≤ k.
For the first case we have that E(Pi , 〈s, t〉) = ni ≤ 1 − n, therefore property 5 is sat-
isfied. For the second case we have, by construction of T , that 〈∀R.C,≥, n1〉 ∈ L(s)
and since E(Pi , 〈s, t〉) = ni ≥ 1 − n0 + ε for all 1 ≤ i ≤ k we have either that t
is an R≥1−n+ε-successor of s, or that z is an R≥1−n+ε-successor of s and t blocks z.
If t is an R≥1−n+ε-successor of s the ∀≥ rule ensures that 〈C,≥, n0〉 ∈ L(t), there-
fore L(s, t) ≥ n0 ≥ n. Same applies for the second case since 〈C,≥, n0〉 ∈ L(z) and
L(z) = L(t) because of the blocking condition that indicates an isomorphismψ between
z and t .

4. Property 6 of Definition 4.1 is satisfied. Let s ∈ S with L(s, ∃R.C) = n0 ≥ n for a role
conjunction R → P1�· · ·�Pk . The construction of T implies that 〈∃R.C,≥, n0〉 ∈ L(s).
The ∃≥ rule ensures that s has an R≥n0 -successor t (and therefore 〈Pi ,≥, ni 〉 ∈ L(s, t)
holds for all integers 1 ≤ i ≤ k with ni ≥ n0) such that 〈C,≥, n0〉 ∈ L(t). If t is not
blocked Property 6 holds since, by construction of T , E(Pi , 〈s, t〉) ≥ n0 ≥ n for all
integers 1 ≤ i ≤ k and L(t,C) ≥ n0 ≥ n. Same applies for the case that t is blocked by
z, since L(t) = L(z) holds.

5. Property 7 of Definition 4.1 is satisfied. Suppose that L(s,≥ m R) = n0 ≥ n for a role
conjunction R → P1 � · · · � Pk . The construction of T indicates that 〈≥ m R,≥, n0〉 ∈
L(s). Since FA is complete, there will be at least m nodes t1, . . . , tm that are R≥n0 succes-
sors of s such that ti �= t j for all 1 ≤ i < j ≤ m (and therefore

〈
Pi ′ ,≥, ni,i ′

〉 ∈ L(s, ti )
and ni,i ′ ≥ n0 hold for all 1 ≤ i ≤ m, 1 ≤ i ≤ k). If ti ’s are not blocked, due to the
construction of T , we have that E(Pi ′ , 〈s, ti 〉) = ni,i ′ ≥ n0 ≥ n for all 1 ≤ i ≤ m,
1 ≤ i ′ ≤ k and ti �= t j for all 1 ≤ i < j ≤ m, so property 7 holds. If ti ’s are blocked,
due to our blocking condition that indicates isomorphism between completion forests,
and the construction of T that indicates zi �= z j , if zi blocks ti and z j blocks t j we have
that E(Pi ′ , 〈s, zi 〉) = ni,i ′ ≥ n0 ≥ n for all 1 ≤ i ≤ m, 1 ≤ i ′ ≤ k and zi �= z j for all
1 ≤ i < j ≤ m so property 7 holds.

6. Property 8 of Definition 4.1 is satisfied. Suppose that L(s,≤ m R) = n0 ≥ n. The con-
struction of T indicates that 〈≤ m R,≥, n0〉 ∈ L(s). Since FA is complete and class free,
there will be at most m R≥1−n0+ε successors of s. Following the previous reasoning it is
easy to show that property 8 holds.
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Table 3 Tableaux expansion rules for fuzzy ALCNR

7. The proof for property 9 of Definition 4.1 is presented in [34].
8. Property 10, 11 and 12 hold due to the initialization of the completion forest FK . ��

Proof of Lemma 4.4 The proof of completeness is based on [32] with some differences
emerging from the none existence of transitive and inverse roles in our knowledge.

Let T = (S,L, E,V) be a fuzzy tableau for A w.r.t. T . Using T we trigger the applica-
tion of the expansion rules such that they yield a completion-forest F that is both complete
and clash-free. Following [17] a mapping π , which maps nodes of F to elements of S and
guides the application of the non-deterministic rules �≥, ≤≥ and �, is defined such that the
following properties hold:

〈C,≥, n〉 ∈ L(x) in F ⇒ L(π(x),C) ≥ n in T (6)

x is a P≥n successor of y in F ⇒ E (P, 〈π(x), π(y)〉) ≥ n in T (7)

x �= y in F ⇒ π(x) �= π(y) in T (8)

According to [32], the proposed method differs from the one used in crisp DLs in the
following way. Using the membership degree of a node to a concept, found in the fuzzy
tableau, we create artificial triples which are tested against conjugation with the candidate
triples that the non-deterministic rules can insert in the completion forest. The triples that
don’t cause the conjugation can be added. The modified rules that are used to guide such an
expansion are presented in Table 3. ��

Proof of Lemma 4.5 For the if direction we make the hypothesis that UC Q ↪→ T for every
consistent tableau T w.r.t. A and T and we want to show that I |� UC Q for every model I
of K = 〈T ,A〉. Suppose that I is a model of K . Following the construction in the proof of
Lemma 4.1 we can build a tableau T for A w.r.t. T .
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From our hypothesis that UC Q ↪→ T for every consistent tableau T w.r.t. A and T accord-
ing to Definition 4.11, there exists a mapping σ : varsIndivs(C Q) → S such that: (i) σ maps
each a ∈ indivs(C Q) to V(a), (ii) L (σ (xi ),Ci ) ≥ ni and (iii) E

(
Pj , 〈σ(y j ), σ (z j )〉

) ≥
n j , where Ci , Pj are the concepts and roles in C Q, ni , n j their degrees and xi , yi , zi ∈
varsIndivs(C Q). By construction of T (see proof of Lemma 4.1) we have that (i) σ maps each
a ∈ indivs(C Q) to aI , (ii) CI(σ (xi )) = L (σ (xi ),Ci ) ≥ ni and (iii) PI (

σ(y j ), σ (z j )
) =

E
(
Pj , 〈σ(y j ), σ (z j )〉

) ≥ n j . Therefore, I |� UC Q.
For the only if direction we make the hypothesis that I |� UC Q for every model I of

K = 〈T ,A〉 and we want to show that UC Q ↪→ T for every consistent tableau T w.r.t. A
and T . Suppose that T is a consistent tableau w.r.t. A and T . Then we can build a model I
of K in a similar way as in the proof of Lemma 4.1.

Since I |� UC Q we have that there exists a mapping σ : varsIndivs(C Q) → �I
such that (i) σ maps each a ∈ indivs(C Q) to aI , (ii) CI(σ (xi )) ≥ ni and (iii)
PI (

σ(y j ), σ (z j )
) ≥ n j , where Ci , Pj are the concepts and roles in C Q, ni , n j their degrees

and xi , yi , zi ∈ varsIndivs(C Q). By construction of I from T we also have that (i) σ maps
each a ∈ indivs(C Q) to V(a), and (ii) PI (

σ(y j ), σ (z j )
) = E

(
Pj , 〈σ(y j ), σ (z j )〉

) ≥ n j .
In order to finish our proof that σ is a mapping such that C Q ↪→ T it remains to show

that L (σ (xi ),Ci ) ≥ ni . Due to Eq. 3, we have for σ(xi ) that either L (σ (xi ),¬C) >
1 − n or L (σ (xi ),C) ≥ n holds. If L (σ (xi ),¬C) > 1 − n holds then according to Eq. 4
(¬C)I (σ (xi )) > 1 − n and according to the semantics of ¬ we have CI (σ (xi )) < n. Since
CI (σ (xi )) < n contradicts the fact that CI(σ (xi )) ≥ ni (by definition of the σ mapping)
we must have that L (σ (xi ),C) ≥ n which finishes our proof. ��

Proof of Lemma 4.6 We assume that UC Q ↪→ T for every consistent tableau T w.r.t. A and
T and we want to prove that UC Q ↪→ F for each F ∈ cc f

(
F

q
K

)
where K = 〈T ,A〉 and

q = |UC Q|. Suppose that F ∈ cc f (Fq
K ), from F we built a tableau T according to Eq. 5.

According to the proof of Lemma 4.3 this tableau T is consistent w.r.t. A and T , and from our
hypothesis this implies that UC Q ↪→ T . We call a pair 〈s, t〉 ∈ S × S in T as after-blocked,
if it emerges from the second branch of the construction of E in Eq. 5 (it represents an edge
between a non-blocked and a blocked node).

We will first prove that if there exists a mapping in T , containing no after-blocked pairs,
such that UC Q ↪→ T , then it also holds that UC Q ↪→ F . Since UC Q ↪→ T holds, there
exists a conjunctive query C Q ∈ UC Q such that C Q ↪→ T . Since C Q ↪→ T , according to
Definition 4.11, there exists a mapping σ : varsIndivs(C Q) → S such that: (i) σ maps each
a ∈ indivs(C Q) to V(a), (ii) L (σ (xi ),Ci ) ≥ ni and (iii) E

(
Pj , 〈σ(y j ), σ (z j )〉

) ≥ n j , where
Ci , Pj are the concepts and roles in C Q, ni , n j their degrees and xi , yi , zi ∈ varsIndivs(C Q).
Since L(σ (xi ),Ci ) = n′

i ≥ ni holds in T then—by construction of T according to Eq. 5—
〈Ci ,≥, n′

i 〉 ∈ L(σ (xi )) in F and n′
i ≥ ni . Similarly since E

(
Pj , 〈σ(y j ), σ (z j )〉

) = n′
j ≥ n j

holds in T , we conclude—according to Eq. 5—that 〈Pj ,≥, n′
j 〉 ∈ L(〈σ(y j ), σ (t j )〉) and

n′
j ≥ n j . Finally, according to Eq. 5 we have that V(ai ) = sai where sai is a root node.

Therefore the mapping σ satisfies all the conditions described in Definition 4.10 for the
completion forest F and so C Q ↪→ F and consequently UC Q ↪→ F both hold.

In order to finish our proof it remains to show that a mapping σ : C Q → S containing
after-blocked pairs can be reduced to a mapping σ ′ : C Q → S containing no after-blocked
pairs. The blocking condition in Definition 4.7 implies that in the initial completion forest
F , that was used in order to create T , there exists an isomorphism ψ between the nodes of a
q-tree A and a q-tree B where each node in B is a descendant of the root node in A and the

123



Expressive reasoning with horn rules and fuzzy description logics

set of nodes in A is disjoint with the set of nodes in B. Suppose that ψ is the isomorphism
from nodes in B to nodes in A. We inductively define the mapping σ ′ as follows:

σ ′(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ(σ(x)) if a conjunct Pj (x, y) ≥ n j in C Q is satisfied by
a pair 〈σ(x), σ (y)〉 that corresponds to an
after-blocked edge

ψ(σ(x)) if a conjunct Pj (x, y) ≥ n j in C Q is satisfied by
a pair 〈σ(x), σ (y)〉 and σ ′(y) = ψ(σ(y))

σ (x) otherwise.

(9)

The q-blocking condition ensures that the mapping ψ is defined for every σ(x) ∈ nodes(B)
since the depth of the q-tree B is at least equal to the depth of C Q.

By construction, the mapping σ ′ does not contain any after-blocked pairs. Now it remains
to prove that if σ is a mapping implying that C Q ↪→ T the same applies for σ ′. According
to the definition of q-tree equivalence (Definition 4.5) for an isomorphism ψ , we have that
L(s) = L(ψ(s)) in the completion forest F and therefore L(s,C) = L(ψ(s),C) for each
concept description C ∈ sub(K ) in the tableau T and therefore:

L(σ (x),C) = L(ψ(σ (x)),C)

Now it remains to show that E
(
P,

〈
σ ′(x), σ ′(y)

〉) = E (P, 〈σ(x), σ (x)〉):
– If the mapping σ ′ was altered by the first rule of Eq. 9 this indicates that 〈σ(x), σ (y)〉

corresponds to an after-blocked edge, meaning that in the completion forest F there is
a node z that is a successor of σ(x) and σ(y) blocks z. Since σ(y) blocks z accord-
ing to the conditions of q-blocking and q-tree equivalence (Definitions 4.7, 4.5) there
exists an isomorphism ψ such that ψ(z) = σ(y) and if 〈P,≥, n〉 ∈ L (〈σ(x), z〉) then
〈P,≥, n〉 ∈ L (〈ψ(σ(x)), ψ(z)〉) holds for each role name in R. Since L (〈σ(x), z〉) =
L (〈ψ(σ(x)), ψ (z)〉) and ψ (z) = σ(y) we have by construction of E that
E

(
Pj ,

〈
σ ′(x), σ ′(y)

〉) = E
(
Pj , 〈ψ(σ(x)), σ (y)〉

) = E
(
Pj , 〈σ(x), σ (y)〉

)
.

– If the mapping was altered by the second rule of Eq. 9 we have due to the blocking
condition that L (〈σ(x), σ (y)〉) = L (〈ψ(σ(x)), ψ(σ (y))〉) and therefore
E

(
Pj ,

〈
σ ′(x), σ ′(y)

〉) = E
(
Pj , 〈σ(x), σ (y)〉

)
.

– Finally for edges
〈
σ ′(x), σ ′(y)

〉
such that σ ′(x) = σ(x) and σ ′(y) = σ(y) it obviously

holds that E
(

Pj ,
〈
σ ′(x), σ ′(y)

〉)
= E

(
Pj , 〈σ(x), σ (y)〉

)
.

Therefore σ ′ is a mapping with no after-blocked edges that satisfies C Q ↪→ T . ��
Proof of Lemma 4.7 Suppose that UC Q ↪→ F for every F ∈ cc f

(
F

q
K

)
where K = 〈T ,A〉

and q = |UC Q| and we want to prove that UC Q ↪→ T for every consistent tableau T
w.r.t. A and T . We will prove it by contradiction. We make the assumption that there exists
a tableau T such that C Q ↪→ T does not hold.

We construct from T a completion forest F as in Lemma 4.4 by a mapping π which maps
nodes of F to elements of S and steers the application of the non-deterministic rules such that
the knowledge in T won’t be conjugated with the corresponding knowledge in F . According
to Lemma 4.4 F ∈ cc f

(
F

q
K

)
. Since UC Q ↪→ F for every F ∈ cc f

(
F

q
K

)
, there exists a map-

ping σ : varsIndivs(C Q) → nodes (F) such that: (i) σ maps each individual in indivs(C Q)
to its corresponding root node, (ii) 〈Ci ,≥, ni 〉 ∈ L (σ (xi )) for each conjunct Ci (xi ) ≥ ni in
C Q, and (iii) σ(yi ) is an Pj≥n j successor of σ(z j ) for each conjunct Pj

(
y j , z j

) ≥ n j in
C Q (where C Q is some mapping in UC Q such that C Q ↪→ F).

Based on the mappings π , σ we build a new mapping σ ′ : varsIndivs(C Q) → S as fol-
lows: σ ′(x) = π(σ(x)). From the properties of the mapping π presented in Eqs. 6, 7, 8 we

123



T. Mailis et al.

have that if 〈C,≥, n〉 ∈ L(σ (x)) in F then L (π(σ (x)),C) ≥ n in T . We also have that ifσ(x)
is a P≥n successor of σ(y) in the completion forest F then E (P, 〈π(σ(x)), π(σ (y))〉) ≥ n
holds in T . Finally since the mapping π maps root nodes to elements of V we can conclude
that σ ′ implies that C Q ↪→ T which contradicts our assumption that C Q ↪→ T does not
hold. ��
Proof of Lemma 4.9 Only if direction: For the only if direction it suffices to prove that K |�
UC Q′ ⇒ K |� UC Q. Suppose that I is a model of K if I |� C Q for some C Q ∈
UC Q′ ∩UC Q, then obviously I |� UC Q. If I |� C Q for some C Q ∈ UC Q′ \UC Q then
according to Algorithm 1 it satisfies a conjunctive query of the form:

C Q′ = p1
(
Y 1

) ≥ n1 ∧ · · · ∧ r1
(
ψ

(
X1

)) ≥ nq ∧ · · ·
∧rk

(
ψ

(
Xk

)) ≥ nq ∧ · · · ∧ pk
(
Y k

) ≥ nk

where the mapping ψ is defined according to Algorithm 1 due to the existence of a Horn
rule r1(X1) ∧ · · · ∧ rk(Xk) ⇒ q(Y ). Since I satisfies C Q′, then there exists a mapping
σ : varsIndivs(C Q′) → �I such that rI

i

(
σ

(
ψ

(
Xi

))) ≥ nq for every integer 1 ≤ i ≤ k.
According to the Horn rules semantics we have that:

qI (
σ

(
ψ

(
Y

))) ≥ min
(
rI

1

(
σ

(
ψ

(
X1

)))
, . . . , rI

k

(
σ

(
ψ

(
Xk

)))) ≥ nq

and since ψ
(
Y

) = Y q we also have that qI (
σ

(
Y q

)) ≥ nq . So there also exists a solution
for UC Q.

If direction: We want to prove that K |� UC Q ⇒ K |� UC Q′. It suffices to prove
that if there exists a model I ′ of K that does not satisfy UC Q′ then there also exists a
model I of K that does not satisfy UC Q. If the interpretation I ′ does not satisfy UC Q
then I ′ is the mapping we were searching for. If I ′ satisfies UC Q this means that the query
C Q ∈ UC Q \UC Q′ is satisfied by I ′ (UC Q \UC Q′ contains exactly one element since in
each cycle of an execution of the reduction algorithm only one conjunctive query is removed).
This means that there exists a mapping σ : varsIndivs(C Q′) → �I′

such that:

pI′
1

(
σ

(
Y 1

)) ≥ n1 ∧ · · · ∧ qI′ (
σ

(
Y q

)) ≥ nq ∧ · · · ∧ pI′
k

(
σ

(
Y k

)) ≥ nk

From the interpretation I ′ we build another interpretation I such that �I = �I′
and ·I

is identical to ·I′
with the only exception that qI (

σ
(
Y q

)) = n′
q such that n′

q satisfies the
following two properties:

– for every Horn rule of the form p1(X1) ∧ · · · ∧ pk(Xk) ⇒ q(Y ) that has q in
its head it holds that n′

q ≥ min
(

pI
1 (ψ(X1)), . . . , pI

k (ψ(Xk))
)

for every mapping

ψ : varsIndivs
(
X1, . . . , Xk, Y

) → �I such that ψ
(
Y

) = σ
(
Y q

)
.

– for some Horn rule of the form p1(X1) ∧ · · · ∧ pk(Xk) ⇒ q(Y ) that has q in
its head it holds that n′

q = min
(

pI
1 (ψ(X1)), . . . , pI

k (ψ(Xk))
)

for some mapping

ψ : varsIndivs
(
X1, . . . , Xk, Y

) → �I such that ψ
(
Y

) = σ
(
Y q

)
.

In order to prove that I is also a model of K it suffices to show that it satisfies each Horn
rule in H that has q in its head. This is obvious by construction of n′

q and according to the
semantics of Horn rules presented in Sect. 3.2. So in the constructed model I we have that
qI (

σ
(
Y q

)) = n′
q < nq (otherwise there would be a model of I ′ that also satisfied UC Q′).

If there is some other mapping in I σ ′ such that qI (
σ ′ (Y q

)) ≥ nq we can similarly create
another interpretation such that qI (

σ ′ (Y q
))
< nq . Therefore we can create a model I of K

such that it does not satisfy C Q and therefore UC Q as we wanted to show. ��
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Proof of Lemma 4.10 We want to show that 〈β, T 〉 |� {Q1, . . . , Qm} ⇔ K |� {
Q′

1, . . . ,

Q′
m

}
for K = 〈

A′, T
〉
. It suffices to prove that there exists some I ′ |� K such that I ′ �|�{

Q′
1, . . . , Q′

m

}
iff there exists some I |� 〈β, T 〉 such that I �|� {Q1, . . . , Qm}.

For the if direction: Suppose that I ′ |� K and I ′ �|� {
Q′

1, . . . , Q′
m

}
. From the mapping

I ′ we create a mapping I such that �I = �I′
, xI = h(x)I

′
for each x ∈ varsIndivs(β),

AI(υ) = AI′
(υ) and RI (υ, ω) = RI′

(υ, ω) for each υ, ω ∈ �I′
. It is obvious that

I |� 〈β, T 〉. In order to finish our proof it remains to show that I �|� {Q1, . . . , Qm}.
We make the assumption that I |� Qi for some integer 1 ≤ i ≤ m. Then there exists

a mapping τ : varsIndivs(Qi ) → �I that satisfies the conditions described in Eq. 2. We
define a mapping σ : varsIndivs(Q′

i ) → �I′
such that:

σ(x ′) =
{
τ(x ′) if x ′ ∈ vars(Q′

i )

x ′I′
if x ′ ∈ indivs(Q′

i )
(10)

In order to prove that σ is a solution for Q′
i it suffices to show that τ(x) = σ(x ′) for every

element x ∈ varsIndivs(Qi ), x ′ ∈ varsIndivs(Q′
i ) such that if x is located in the j th position

in Qi , x ′ is located in the j th position in Q′
i . If x is an existentially quantified variable in

Qi then it remains unchanged in Q′
i and therefore τ(x) = σ(x ′) according to Eq. 10. If x

is a universally quantified variable, or some individual in Qi , then x ′ corresponds to h(x)
in Q′

i . From Eq. 2 we have that τ(x) = xI and from Eq. 10 that σ(x ′) = h(x)I
′
. By

construction of I we have that xI = h(x)I′
as we wanted to show. Therefore we have that

I ′ |� {
Q′

1, . . . , Q′
m

}
which is impossible and therefore the assumption that I |� Qi is wrong

and therefore I �|� {Q1, . . . , Qm}.
For the only if direction: Suppose that I |� 〈β, T 〉 and I �|� {Q1, . . . , Qm}. For every

x ∈ varsIndivs(β) we create an homomorphism h as follows:

h(x) = {
y | xI = yI for every y ∈ varsIndivs(β)

}

From the homomorphism h we build a new ABox A′ and union of conjunctive queries{
Q′

1, . . . , Q′
m

}
.

From I we create a mapping I ′ such that �I′ = �I , h(x)I
′ = xI for every x ∈

varsIndivs(β), AI′
(υ) = AI(υ) and RI′

(υ, ω) = RI (υ, ω) for every υ, ω ∈ �I . Obvi-
ously I ′ |� A′. If I ′ |� Q′

i for some Q′
i then there exists a mapping σ : varsIndivs(Q′

i ) →
�I′

that satisfies the conditions described in Eq. 1. From this mapping, we build a mapping
τ : varsIndivs(Qi ) → �I such that:

τ(x) =
{
σ(h(x)) if x ∈ varsIndivs(β)
σ (x) otherwise

It can be easily checked that the mapping τ satisfies the conditions described in Eq. 2 and
therefore it implies that I |� {Q1, . . . , Qm}. Since I |� {Q1, . . . , Qm} contradicts the fact
that I �|� {Q1, . . . , Qm}, the hypothesis we have made that I ′ |� Q′

i is wrong. ��
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