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Abstract. Human brain processes undergo cycles of adaptation in order to 
meet the requirements of novel conditions. In affective state recognition, brain 
processes tend to adapt to new subjects as well as environmental changes. By 
using adaptive neural network architectures and by collecting and analysing 
data from specific environments we present an effective approach in 
mimicking these processes and modelling the way the need for adaptation is 
detected as well as the actual adaptation. Video sequences of subjects 
displaying emotions are used as data for our classifier. Facial expressions and 
body gestures are used as system input and system output quality is monitored 
in order to identify when retraining is required. This architecture can be used 
as an automatic analyzer of human affective feedback in human computer 
interaction applications. 

1 Introduction 

The ability to detect and understand affective states and other social signals of 
someone with whom we are communicating is the core of social and emotional 
intelligence and relies upon finely tuned neural mechanisms in the brain. This kind 
of intelligence is a facet of human intelligence that has been argued to be 
indispensable and even the most important for a successful social life 2. 
Neuropsychological (8) and neuroimaging data (9) with humans have suggested that 
recognition of some distinct facial expressions engages specific neural circuits. 
Although various brain regions have therefore been correlated with facial expression 
recognition, the nature of their contributions remains unresolved. The act of seeing is 
so effortless that it is difficult to appreciate the sophisticated mechanisms underlying 
it. However, current computing technology does not account for the fact that human-
human communication is always socially situated and that discussions are not just 
facts but part of a larger social interplay. Not all computers will need social and 
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emotional intelligence and none will need all of the related skills humans have. Yet, 
human-machine interactive systems capable of sensing stress, inattention, confusion, 
and heedfulness, and capable of adapting and responding to these affective states of 
users are likely to be perceived as more natural, efficacious, and trustworthy (see 6). 
Regarding personalized expressivity, it is well known (see, for example, recent 
results, on emotional signs from signals, of the Humaine network of Excellence 4) 
that in human computer interaction, the emotional characteristics and signs of signals 
captured from a specific user, although adhering to some general descriptive theories 
and psychological models, differ, sometimes significantly, between different 
persons. Thus, emotion recognition is a research problem, the solution of which 
highly depends on individual human characteristics and way of behaviour. Emotion 
recognition systems are generally based on a rule base system, or on a system that 
has learnt to solve the problem through extensive training. In either case, if such a 
system is to be used in a real life experiment, it fiirther needs to take into account, 
i.e., to adapt its knowledge to the specific user characteristics as well as behavioural 
and environmental conditions, i.e., the context of interaction. 

In all cases, it is essential that systems are derived which are able to adapt their 
performance to environmental changes, by detecting deterioration of their 
performance, and refining it with data obtained by the specific environment and 
respective cues provided by the user or by cross-correlating different modahties. 
Neural networks fit well with this requirement, since adaptation is their main 
advantage when compared with knowledge-based systems, where updating of 
knowledge is a complex, generally off-line procedure. Both supervised, such as 
multilayered feed-forward networks, and unsupervised networks, such as SOM or 
k-NN based approaches can be used for this purpose. In the rest of the paper an 
adaptive supervised feed-forward network is described and used for human computer 
interaction enriched with emotion analysis capabilities, showing that it can provide 
an effective approach to handling of the above described problems. The basic 
methodology can be extended to unsupervised, clustering techniques. 
Section 0 describes the adaptive network architecture, while its use in different 
contexts is presented in section 0. An experimental study, with emotion datasets 
showing, not only extreme emotions, but also intermediate real-life ones, generated 
in the framework of the EC 1ST Humaine Network of Excellence, is given in section 
0, while conclusions and fiarther work are discussed in section 0. 

1.1 Neural Architectures for Emotion Recognition 

Taylor and Fragopanagos describe a neural network architecture in 7 in which 
features, from various modalities, that correlate with the user's emotional state are 
fed to a hidden layer, representing the emotional content of the input message. The 
output is a label of this state. Attention acts as a feedback modulation onto the 
feature inputs, so as to amplify or inhibit the various feature inputs, as they are or are 
not useful for the emotional state detection. The basic architecture is thus based on a 
feed-forward neural network, but with the addition of a feedback layer (IMC in 
Error! Reference source not found.), modulating the activity in the inputs to the 
hidden layer. 
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Fig. 1. Information flow in the system. IMC= inverse model controller; EMOT = hidden layer 
emotional state; FEEL = output state emotion classifier 

Results have been presented for the success levels of the trained neural system based 
on a multimodal database, including time series streams of text (from an emotional 
dictionary), prosodic features (as determined by a prosodic speech feature extraction) 
and facial features (facial animation parameters). The obtained results are different 
for different viewers who helped to aimotate the datasets. These results show high 
success levels on certain viewers, while lower (but still good) levels on other ones. In 
particular very high success was obtained using only prediction of activation values 
for one user who seemed to use mainly facial cues, whilst a similar, but slightly 
lower success level, was obtained on an annotator, who used predominantly prosodic 
cues. Other two armotators appeared to use cues from all modalities, and for them, 
the success levels were still good but not so outstanding. 
This leads to the need for a further study to follow up the spread of such cue-
extraction across the populace, since if this is an important component then it would 
be important to know how broad is this spread, as well as to develop ways to handle 
such a spread (such as having a battery of networks, each trained on the appropriate 
subset of cues). It is, thus evident that adaptation to specific users and contexts is a 
crucial aspect in this type of fusion. Decision-level fusion caters for integrating 
asynchronous but temporally correlated modalities. Here, each modality is first 
classified independently and the final classification is based on fusion of the outputs 
of the different modalities. Designing optimal strategies for decision level fusion is 
still an open research issue. Various approaches have been proposed, e.g. sum rule, 
product rule, using weights, max/min/median rule, majority vote etc. As a general 
rule, semantic fusion builds on individual recognizers, followed by an integration 
process; individual recognisers can be trained using unimodal data, which are easier 
to collect. 
In the rest of this paper, we examine the confidence produced by each classifier, such 
as a feed-forward multilayer neural network, handling a single modality - focusing 
on facial expressions - and we derive an efficient methodology for adapting the 
classifier's performance, when detecting such a need, by collecting data from its 
specific enviroimient. Thus, in the framework presented here, facial expression is 
considered as the dominant modality; this means that most of the time classification 
is performed using the facial features as input. In cases where the network trained 
with the facial data does not perform well (hence, the need to adapt arises), speech 
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prosody or gestures can be utilized as "fall-back" solutions, possibly providing the 
expected output for the adaptation process. 

2 The Adaptive neural network architecture 
Let us assume that we seek to classify, to one of, say, p available emotion classes co, 
each input vector Xi containing the features extracted from the input signal. A neural 

network produces aj9-dimensional output vector y{x^i) 

where /?^ denotes the probability that the ith input belongs to the jth class. 

Let us first consider that the neural network has been initially trained to perform the 
classification task using a specific training set, say, 

Sb = {{^i^dLx\'-'^{^m,^dLm,)] , where vectors x_. and d^. with / = l,2,---,m^ 
denote the ith input training vector and the corresponding desired output vector 
consisting ofp elements. 
Then, let y{j£.) denote the network output when applied to a new set of inputs, and 

let us consider the ith input outside the training set, possibly corresponding to a new 
user, or to a change of the environmental conditions. Based on the above described 
discussion, slightly different network weights should probably be estimated in such 
cases, through a network adaptation procedure. 
Let w^ include all weights of the network before adaptation, and w^ the new 

weight vector which is obtained after adaptation is performed. To perform the 

adaptation, a training set Sc has to be extracted from the current operational 

situation composed of, (one or more), say, rric inputs; 

^c-\\^v^\\"'\^m '^m j l where x^ and d_- with / = l,2,---,m^ similarly 
correspond to the i-th input and desired output data used for adaptation. The 
adaptation algorithm that is activated, whenever such a need is detected, computes 
the new network weights w^ , minimizing the following error criteria with respect to 
weights, 

1 ^ c 

1 ^ b 

/̂,.=-ilk.(x:,.)-c.||, 
2.=. (2) 

where Ec,a is the error performed over training set Sc ("current" knowledge), 

£'/,athe corresponding error over training set S^^ ("former" knowledge); z^(x.) 

and z^ (y . ) are the outputs of the adapted network, corresponding to input vectors 

X. and y• respectively, of the network consisting of weights w^ . Similarly 

z^(x-) would represent the output of the network, consisting of weights }V ,̂ when 
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accepting vector x- at its input; when adapting the network for the first time z^ (x.) 

is identical to y{x.). Parameter /; is a weighting factor accounting for the 

significance of the current training set compared to the former one and • denotes 

the L2 -norm. 
The goal of the training procedure is to minimize (2) and estimate the new network 
weights w^. The adopted algorithm has been proposed by the authors in 1. Let us 

first assume that a small perturbation of the network weights (before adaptation) w^ 
is enough to achieve good classification performance. Then, 

where Aw are small increments. This assumption leads to an analytical and 

tractable solution for estimating w^ , since it permits linearization of the non-linear 
activation function of the neuron, using a first order Taylor series expansion. 
Equation (2) indicates that the new network weights are estimated taking into 
account both the current and the previous network knowledge. To stress, however, 
the importance of current training data in (2), one can replace the first term by the 
constraint that the actual network outputs are equal to the desired ones, that is 

^aCi)"^^/ / = l,...,m^, for all data in iŜ  .^. 

Through linearization, solution of (3) with respect to the weight increments is 
equivalent to a set of linear equations 

where vector c and matrix A are appropriately expressed in terms of the previous 
network weights. In particular. 

Moreover, minimization of the second term of (2), which expresses the effect of the 
new network weights over data set S^^, can be considered as minimization of the 

absolute difference of the error over data in S^^ with respect to the previous and the 
current network weights. This means that the weight increments are minimally 
modified, with respect to the following error criterion 

with E. ^ defined similarly to Er, with z^ replaced by z^ in (2). 

It can be shown 5 that (6) takes the form of 

Es=-(Awf -K^ 'K-Aw 
2 (7) 

where the elements of matrix K are expressed in terms of the previous network 
weights w^ and the training data in St. The error function defined by (7) is convex 
since it is of squared form. Thus, the weight increments can be estimated through 
solution of (7). The gradient projection method has been used in [6] to estimate the 
weight increments. 
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Each time the decision mechanism ascertains that adaptation is required, a new 
training set S^ is created, which represents the current condition. Then, new 
network weights are estimated taking into account both the current information (data 
in S^) and the former knowledge (data in 5^). Since the set S^ has been optimized 
only for the current condition, it cannot be considered suitable for following or future 
states of the environment. This is due to the fact that data obtained from future states 
of the environment may be in conflict with data obtained from the current one. On 
the contrary, it is assumed that the training set St, which is in general based on 
extensive experimentation, is able to roughly approximate the desired network 
performance at any state of the environment. Consequently, in every network 
adaptation phase, a new training set S^ is created and the previous one is discarded, 

while new weights are estimated based on the current set S^ and the old one Sb , 
which remains constant throughout network operation. 

3 Detecting the need for adaptation 
The purpose of this mechanism is to detect when the output of the neural network 
classifier is not appropriate and consequently to activate the adaptation algorithm at 
those time instances when a change of the environment occurs. 
Let us first assume that a network adaptation has taken place and let us focus visual 
inputs. Let x{k) denote the feature vector of the ^-th image or image frame, 
following the time at which adaptation occurred. Index k is therefore reset each time 
adaptation takes place, with x(0) corresponding to the feature vector of the image 
where the adaptation of the network was accomplished. At this input, the network 
performance had deteriorated, i.e., the network output deviated from the desired one. 
Let us recall that vector c in eq. (5) expresses the difference between the desired 

and the actual network outputs based on weights w^ and applied to the current data 

set. As a result, if the norm of vector c increases, network performance deviates 

from the desired one and adaptation should be applied. On the contrary, if vector c 
takes small values, then no adaptation is required. In the following we use the 
difference between the output of the adapted network and of that produced by the 
initially trained classifier to approximate the value of c . Moreover, we assume that 
the difference computed when processing input x(0) constitutes a good estimate of 
the level of improvement that can be achieved by the adaptation procedure. Let us 
denote by ^(0) this difference and let e(k) denote the difference between the 

corresponding classifiers' outputs, when the two networks are applied to x(k) . It is 

anticipated that the level of improvement expressed by e(k) will be close to that of 

e(0) as long as the classification results are good. This will occur when input 

images are similar to the ones used during the adaptation phase. An error e(k), 

which is quite different from e(0) , is generally due to a change of the environment. 

Thus, the quantity a{k) = \e{k) - e(0)\ can be used for detecting the change of the 
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environment or equivalently the time instances where adaptation should occur. Thus, 
no adaptation is needed if: 

«(^)<^ (8) 

where T is a threshold which expresses the max tolerance, beyond which adaptation 
is required for improving the network performance. 
Such an approach detects with high accuracy the adaptation time instances both in 
cases of abrupt and gradual changes of the operational environment since the 
comparison is performed between the current error difference e(k) and the one 

obtained right after adaptation, i.e., e{0). In an abrupt operational change, error 

e(k) will not be close to ^(0); consequently, a(k) exceeds threshold T and 

adaptation is activated. In case of a gradual change, error e{k) will gradually 

deviate from e(0) so that the quantity a(k) gradually increases and adaptation is 

activated at the frame where a{k) > T. 
Network adaptation can be instantaneously executed each time the system is put in 
operation by the user. Thus, the quantity a(0) initially exceeds threshold T and 
adaptation is forced to take place. 

4 Experimental Study 

Our experiments aimed at investigating the practical stand of the proposed adaptation 
procedure. The main idea of the experimental study was to explore the performance 
of the adapted networks over inputs belonging to the same tune, but not used for 
adaptation, as well as to tunes of the same emotional quadrant as the one used for 
adaptation purposes. 
Out of approximately 35.000 frames, belonging to 477 tunes of the SAL database 3, 
we selected a merely 500 frames - from all four subjects - for training a feed-forward 
back-propagation network referred from now as NetProm. The architecture details 
for NetProm are three layers consisting of 10 and 5 neurons on the first and second 
hidden layers respectively and 5 neurons of the output layer. The targets were 
formatted as a 5x1 vector for every frame so as to only one, of the 5 candidate 
classes, was equal to 1. So for example if the frame used for training belonged to the 
first quadrant the output vector would be [1 0 0 0 0]. The fifth class of the 
classification problem corresponds to the neutral emotional state and the other four 
to the four quadrants of the Whissel's wheel. 
The selection of the 500 frames used for training the NetProm network was made 
following a prominence criterion. More specifically, for every frame, a metric was 
assigned denoting the distance of the values of the FAPs for that specific frame with 
reference to the mean values of the FAPs of the other frames belonging to the same 
class. This metric of FAP variance was the sorting parameter for the frames. Under 
the constraint that each class should be represented as equally as possible we selected 
the 500 most prominent frames and used it as input for training the NetProm 
network. 



406 Lori Malatesta, Amaryllis Raouzaiou, George Caridakis, Kostas Karpouzis 

2 

1.5 

1 

0.5 

0 

( 
2 

1.5 

1 

0.5 

0 

( 
2 

1.S 

1 

0.5 

0, 

50 

50 

100 0 

flM'M 
11 1 

50 

0 
100 0 

2 r 

1,5 

1 

0.5 

0^ 

100 

i 1 

III 
100 0 

100 0 50 100 0 

Fig. 2. MSE of NetProm (blue) and Neti (red) 

50 100 

100 

With regard to the adaptation phase we selected eleven tunes - from a single subject -
consisting of the largest number of frames. This selection was based on the idea that 
it would not make much sense selecting very short tunes, because the adaptation data 
would be very sparse as will be explained later. Also we made sure that no frame 
belonging to these eleven tunes was used for training NetProm. Each of the eleven 
tunes was divided into two groups of frames, the adaptation group and the testing 
group containing 30% and 70% of the total frames of the original tune, sorted by the 
prominence criterion, respectively. 
NetProm was adapted using the adaptation group of the eleven tunes and produced 
eleven new networks Neti, i=l..l 1. Each Neti was then tested on the testing group of 
the respective tune and the results can be seen in Error! Reference source not 
found.. It is clear that the adaptation procedure has been beneficial and greatly 
reduced the MSE for every tune it was applied. 
Furthermore, we tested the procedure proposed in section 4 for detecting when 
adaptation is necessary. In particular, we used the above derived Neti and compared 
their performance with that of NetProm through criterion (8) in 11 synthetic 
experiments, shown in Figure 3. In the first 6 experiments and in the 9*, there was no 
change of the subject showing the expression. It can be verified that the value of ^(^), 
for all values of A: shown in the horizontal axis, are close to the e(0) value, so no need 
for adaptation was detected. On the contrary, the 7*, 8*̂ , 10*̂  and 11* experiments 
contained one or more frames where a different subject (the first) showed a similar 
expression. In most of these cases the a(k) value was raised due to the 
inappropriateness of the adapted (to the fourth subject) network to cope well with the 
specific characteristics of the first subject. Consequently the need for (new) 
adaptation was detected through usage of criterion (8). 
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Fig. 3. Detecting the need for network adaptation using the criterion of eq.(8) 

These results are very promising indicating that the proposed process can form an 
effective adaptation tool in expression/emotion recognition. 

5 Conclusions - Future work 
Recognition of facial expressions is an important part of human-computer 
interaction, especially since psychological research has shown that the face is a vital 
ingredient of human expressivity. However, in everyday HCI, emotions are usually 
subtle, hence difficult to pick out using a small set of universal labels; to tackle this, 
one needs to consider multiple modalities as a "fall-back" or reinforcement solution. 
In addition to this, personalized expressivity and context-dependence make 
generalization of learning techniques a daunting task. 
In this paper we proposed an extension of a neural network adaptation procedure 
which caters for training from different modalities. After training and testing on a 
particular subject, the best-performing network is adapted using prominent samples 
from discourse with another subject, so as to adapt and improve its ability to 
generalize. Results shown here indicate that the performance of the network is 
improved using this approach, without the need to train a specific network for each 
subject, which would wipe out the nice generalization attribute of the network. 
Future work includes the extension of this work to include speech-related modalities, 
deployment on different naturalistic contexts and introduction of mechanisms to 
handle uncertainty in the various modalities and decide which of them would be the 
more robust to depend upon for co-training. 
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