
Chapter 4
Introducing Context and Reasoning in Visual
Content Analysis: An Ontology-Based
Framework

Stamatia Dasiopoulou, Carsten Saathoff, Phivos Mylonas, Yannis Avrithis,
Yiannis Kompatsiaris, Steffen Staab, and Michael G. Strinztis

4.1 Introduction

The amount of multimedia content produced and made available on the World Wide
Web, and in professional and, not least, personal collections, is constantly grow-
ing, resulting in equally increasing needs in terms of efficient and effective ways to
access it. Enabling smooth access at a level that meets user expectations and needs
has been the holy grail in content-based retrieval for decades as it is intertwined
with the so-called semantic gap between the features that can be extracted from
such content through automatic analysis and the conveyed meaning as perceived by
the end users. Numerous efforts towards more reliable and effective visual content
analysis that target the extraction of user-oriented content descriptions have been
reported, addressing a variety of domains and applications, and following diverse
methodologies. Among the reported literature, knowledge-based approaches utilis-
ing explicit, a priori, knowledge constitute a popular choice aiming at analysis meth-
ods decoupled from application-specific implementations. Such knowledge may
address various aspects including visual characteristics and numerical representa-
tions, topological knowledge about the examined domain, contextual knowledge,
as well as knowledge driving the selection and execution of the processing steps
required.

Among the different knowledge representations adopted in the reported liter-
ature, ontologies, being the key enabling technology of the Semantic Web (SW)
vision for knowledge sharing and reuse through machine processable metadata,
have been favoured in recent efforts. Indicative state-of-the-art approaches include,
among others, the work presented in Little and Hunter (2004), and Hollink, Little
and Hunter (2005), where ontologies have been used to represent objects of the
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examined domain and their visual characteristics in terms of MPEG-7 descriptions,
and the ontological framework employed in Maillot and Thonnat (2005) that
employs domain knowledge, visual knowledge in terms of qualitative descriptions,
and contextual knowledge with respect to image capturing conditions, for the
purpose of object detection. Furthermore, in Dasiopoulou, Mezaris, Kompatsiaris,
Papastathis and Strintzis (2005), ontologies combined with rules have been pro-
posed to capture the processing steps required for object detection in video, while
in the approaches presented in Schober, Hermes and Herzog (2004) and Neumann
and Möller (2004), the inference services provided by description logics (DLs)
have been employed over ontology definitions that link domain concepts and visual
characteristics.

In this chapter, we propose an ontology-based framework for enhancing segment-
level annotations resulting from typical image analysis, through the exploitation of
visual context and topological information. The concepts (objects) of interest and
their spatial topology are modelled in RDFS (Brickley and Guha 2004) ontologies,
and through the use of reification, a fuzzy ontological representation is achieved,
enabling the seamless integration of contextual knowledge. The formalisation of
contextual information enables a first refinement of the input image analysis annota-
tions utilising the semantic associations that characterise the context of appearance.
For example, in an image from the beach domain, annotations corresponding to
concepts such as Sea and Sand are favoured contrary to those referring to concepts
such as Mountain and Car. The application of constraint reasoning brings further
improvement, by ensuring the consistency of annotations, through the elimination
of annotations violating the domain topology semantics, such as the case of the
Sky-annotated segment on the left of the Sea-annotated segment in Fig. 4.1.

Thereby, as illustrated in Fig. 4.1, the image analysis part is treated as a black box
that provides initial annotations on top of which the proposed context analysis and
constraint reasoning modules perform to provide for more reliable content descrip-
tions. The only requirement with respect to the image analysis is that the produced
annotations come with an associated degree of confidence. It is easy to see that
such a requirement is not restricting but instead reflects the actual case in image
analysis, where due to the inherent ambiguity, the similarities shared among differ-
ent objects, and the different appearances an object may have, it is hardly possible
to obtain unique annotations (labels) for each of the considered image segments.
Consequently, under such a framework, the advantages brought are threefold:

� Arbitrary image analysis algorithms can be employed for acquiring an initial set
of annotations, without the need for specialised domain-tuned implementations,
and integrated for achieving more complete and robust content annotations.

� The context-aware refinement of the degrees renders the annotations more reli-
able for subsequent retrieval steps, as the confidence is strengthened for the more
plausible annotations and lowered for the less likely ones, while false annotations
are reduced through the application of constraint reasoning.

� The use of ontologies, apart from allowing the sharing of domain knowledge and
providing a common vocabulary for the resulting content annotations (labels),
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Fig. 4.1 Ontology-based framework introducing context and constraint reasoning in image
analysis

ensures smooth communication among the different modules involved and facil-
itates interoperability with respect to future extensions with additional modules.

The rest of the chapter is organised as follows. Section 4.2 presents relevant work
in terms of utilising visual context and constraint reasoning approaches in semantic
image analysis, while in Section 4.3, the proposed framework is described, includ-
ing the specification and design of the ontology infrastructure. Section 4.4 details
the modelling and ontological representation of context of appearance and presents
the methodology for readjusting the initial degrees of confidence, while Section 4.5
describes the application of constraint reasoning for the purpose of consistent image
labelling. Experimental results and evaluation of the proposed framework are pre-
sented in Section 4.6, while Section 4.7 concludes the chapter.

4.2 Relevant Work

4.2.1 Context in Image Analysis

In semantic content-based image search and retrieval, research has shifted beyond
low-level colour, texture, and shape features in pursuit of more effective methods
of content access at the level of the meaning conveyed. Towards this goal, context
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plays a significant role as it allows performance to be enhanced by exploiting the
semantic correlation between the considered concepts. It is also rather true that in
the real world, objects always exist in a context. In principle, a single image taken
in an unconstrained environment is not sufficient to allow a computer algorithm
or a human being to identify the object. However, a number of cues based on the
statistics of our everyday visual world are useful to guide this decision. Identification
of an object in an image, or a close-up image of the same object, may be difficult
without being accompanied by useful contextual information. As an example, an
image of a cow is more likely to be present in a landscape environment, such as a
green field, whereas a desk is usually found indoors, or as depicted in Fig. 4.2, an
isolated close-up picture of a kitchen gadget or beach equipment is more difficult to
identify or enrol when considered out of the rest of the environmental information.

The added value of using context in image analysis becomes more apparent
when considering the number of analysis errors that often occur because of the
similarities in visual features such as colour, texture, edge characteristics, and so
on of the concepts considered. The advantages of context utilisation overwhelm
the required effort increase on object annotation and analysis, provided a moderate
balance, between the efforts spent on the identification and annotation of one object
and the total amount of objects annotated within an image, will be followed. Given
a particular domain, the rule of thumb, in order to obtain optimal results, is to iden-
tify a set of characteristic objects to be annotated, after statistically analysing the
objects’ co-occurrence in a subset of the entire dataset (e.g. 20% of the images).

A number of interesting enhanced analysis efforts have been reported including,
among others, the exploitation of co-occurrence information for the detection of
natural objects in outdoor images (Vailaya and Jain 2000; Naphade, Kozintsev and
Huang 2002). In Luo, Singhal and Zhu (2003), a spatial context-aware object detec-
tion system is presented that combines the output of individual object detectors into
a composite belief vector for the objects potentially present in an image. In Murphy,
Torralba and Freeman (2003), scene context is proposed as an extra source of global

Fig. 4.2 Isolated object vs.
object in context Isolated object Object in context
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information to assist in resolving local ambiguities, while in Boutell (2006), three
types of context are explored for the scene classification problem, namely spatial,
temporal, and image capture condition context in the form of camera parameters,
also examined in Boutell and Luo (2005). Context information in terms of a com-
bination of a region index and a presence vector has been proposed in Le Saux and
Amato (2004) for scene classification.

The aforementioned efforts indicate the shift witnessed towards utilising avail-
able contextual information in multimedia analysis. However, contrary to natural
language processing (NLP), where the use of context has been investigated thor-
oughly (Wiebe, Hirst and Horton 1996), the respective efforts in the field of mul-
timedia analysis are in a very early stage. The formal model of context semantics
and its application as described in Section 4.4 aims to contribute with a generic
methodology towards introducing and benefiting from contextual knowledge.

4.2.2 Constraint Reasoning in Image Analysis

Constraint reasoning has a long history, starting with the system SKETCHPAD
(Sutherland 1963) in the early 1960s. Later, Waltz formalised the notion of con-
straints in order to solve the problem of deriving a 3D interpretation of 2D line
drawings as the scene labelling problem (Waltz 1975). Haralick and Shapiro formu-
lated this problem even more generally as the labelling of image segments based on
automatic low-level processing techniques (Haralick and Shapiro 1979). However,
this original work was mainly formal, introducing the consistent labelling prob-
lem as a general set of problems, while in the approach proposed in this chapter
we provide a concrete instantiation of the scene labelling problem, deployed in a
real application setting. As discussed in the following, only a few other approaches
exist that employ constraint reasoning to introduce explicit knowledge about spatial
arrangements of real-life objects into the image interpretation process.

In Kolbe (1998), constraint reasoning techniques are employed for the iden-
tification of objects in aerial images. One main aspect of the presented study is
the handling of over-constrained problems. An over-constrained problem is a con-
straint satisfaction problem in which not all constraints can be satisfied simultane-
ously. In traditional constraint reasoning, this would mean that no solution exists
and the problem is consequently unsolvable. Several techniques were proposed to
solve such over-constrained problems, providing solutions that are close to optimal.
Kolbe specifically introduces a solving technique based on an information theory-
based evaluation measure. However, Kolbe uses, in addition, specialised constraints
between the image parts that render the proposed techniques less applicable to more
generic domains.

In Hotz and Neumann (2005), a configuration system is adopted to provide
high-level scene interpretations. The system is evaluated on table-laying scenes,
i.e. scenes where a table is laid and where the table is monitored by a camera.
The goal is to identify the purpose the table is laid for, e.g. “Dinner for Two”,
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“Breakfast”. Hotz and Neumann use well-defined domain models based on the
spatial arrangements of the concepts found within the given domain to introduce
reasoning into this task. The underlying interpretation of the spatial knowledge is
also based on the notion of constraints on variable assignments, although the ter-
minology of constraint reasoning is not used. The whole approach does not focus
solely on the application of spatial knowledge, but also on the inference of higher
level knowledge and the scene-specific interpretation of the image. However, again
the problem is extremely specific and relies on very well-defined domain models
that are unlikely to exist for broad domains such as the ones of “holiday” or “family”
images.

Finally, an interesting approach is presented in Srihari and Zhang (2000), where
images are annotated semi-automatically and a user can manually prune the search
space by specifying hints such as “An L-shaped building in the upper left corner”.
A constraint reasoner is employed to enforce the user hints. Obviously, this approach
uses the constraints in an ad hoc manner, and not as a domain model, which is the
case of the framework proposed in this chapter.

4.3 Ontology Infrastructure

The proposed ontology-based framework aims to serve as a generic, easy-to-extend
knowledge-based framework for enhancing available semantic image analysis anno-
tations through context-aware refinement and spatial consistency checking. As
such, the intended usage purpose imposes certain requirements with respect to
the knowledge infrastructure that constitutes the proposed framework’s backbone,
which reflect on the representation and engineering choices.

The first requirement refers to the need for smooth communication among the
involved modules while preserving the intended semantics. This practically means
that the annotations and the employed contextual and spatial knowledge have to be
captured and represented in such a way as to promote clean semantics and facilitate
exchange. The ontology languages that emerged within the Semantic Web initiative
constitute promising candidates as, due to their relation with logic and particularly
DLs, they provide well-defined semantics, while their XML-based syntax enhances
exchange across different applications. Among the available languages, OWL DL
constitutes the optimal choice with respect to expressivity and complexity trade-off.
However, as described in the following sections, the expressivity requirements of
the proposed framework restrict in subclass and domain/range semantics, thus not
justifying the use of OWL DL or Lite. Additionally, the need for incorporating
fuzziness into the representation on the one hand and the lack of a formal nota-
tion for accomplishing this on the other renders reification the only viable choice,
which in turn would cancel out the inference capabilities the adoption of OWL DL
would bring. For these reasons, the RDFS language was chosen for the employed
knowledge infrastructure.

An additional aspect relates to the kind of knowledge that needs to be captured.
Given that image analysis and annotation relate both to domain-specific aspects,
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i.e. the specific domain concepts and relations, and to media-related ones, i.e.
the structure of the labelled image, the corresponding knowledge infrastructure
needs to capture the knowledge of both aspects in an unambiguous, machine-
processable way. For the multimedia-related knowledge, the MPEG-7 specifica-
tions (Sikora 2001) have been followed, as it constitutes the main standardisation
effort towards a common framework for multimedia content description. Another
important requirement relates to the need for enabling extensibility in terms of
incorporating image analysis annotations that adhere to possibly different models
of the domain or media-related knowledge. To enable the smooth harmonisation
between such annotations, a reference point is needed so that the corresponding
intended meanings, i.e. ontological commitments, can be disambiguated and
correctly aligned. Consequently, the use of a core ontology through its rigorous
axiomatisation provides the means to handle more effectively terminological and
conceptual ambiguities.

As illustrated in Fig. 4.1, the developed knowledge infrastructure follows a mod-
ular architecture where different ontologies are utilised to address the different types
of knowledge required. Appropriate multimedia ontologies have been developed to
describe the structure and low-level features of multimedia content, which are har-
monised with the corresponding domain ontologies via the use of a core ontology.
The latter has been extended to cover the concrete spatiotemporal relations required
when analysing such content. Finally, a dedicated ontology has been developed to
provide the vocabulary and structure of the generated annotations. In the following,
we briefly overview the role of each of the ontologies. For further details, the reader
is referred to Bloehdorn, Petridis, Saathoff, Simou, Tzouvaras, Avrithis, Handschuh,
Kompatsiaris, Staab and Strintzis (2005).

4.3.1 Core Ontology

The role of the core ontology in this framework is threefold: (i) to serve as a starting
point for the engineering of the rest of the ontologies, (ii) to serve as a bridge allow-
ing the integration of the different ontologies employed, i.e. by providing common
attachment points, and (iii) to provide a reference point for comparisons among
different ontological approaches. In our framework, we utilise DOLCE (Gangemi,
Guarino, Masolo, Oltramari and Schneider 2002), which was explicitly designed as
a core ontology. DOLCE is minimal in the sense that it includes only the most
reusable and widely applicable upper-level categories, and rigorous in terms of
axiomatisation, as well as extensively researched and documented.

4.3.2 SpatioTemporal Extensions Ontology

In a separate ontology, we have extended the dolce:Region concept branch of
DOLCE to accommodate topological and directional relations between regions.
Directional spatial relations describe how visual segments are placed and relate
to each other in 2D or 3D space (e.g. left and above), while topological spatial
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relations describe how the spatial boundaries of the segments relate (e.g. touches
and overlaps). In a similar way, temporal relations have been introduced following
Allen interval calculus (e.g. meets, before).

4.3.3 Visual Descriptor Ontology

The visual descriptor ontology (VDO) models properties that describe visual charac-
teristics of domain objects. VDO follows the MPEG-7 visual part (ISO/IEC 2001),
with some modification so as to translate the XML schema and datatype definitions
into a valid RDFS representation.

4.3.4 Multimedia Structure Ontology

The multimedia structure ontology (MSO) models basic multimedia entities from
the MPEG-7 MDS (ISO/IEC 2003). More specifically, the MSO covers the five
MPEG-7 multimedia content types, i.e. image, video, audio, audiovisual, and mul-
timedia, and their corresponding segment and decomposition relation types. Apart
from the definition of classes (properties) reflecting the MPEG-7-defined descrip-
tions, additional classes (relations) have been introduced to account for descriptions
perceived semantically distinct, but treated ambiguously in MPEG-7 (such as the
concept of frame).

4.3.5 Annotation Ontology

The annotation ontology (AO) provides the schema for linking multimedia content
items to the corresponding semantic descriptions, i.e. for linking image regions to
domain concept and relation labels. Furthermore, it is the AO that models the uncer-
tainty with respect to the extracted labelling and allows the association of a degree
of confidence to each label produced by the analysis.

4.3.6 Domain Ontology

In the presented multimedia annotation framework, the domain ontologies are meant
to model the semantics of real-world domains that the content belongs to, such as
sports events or personal holiday images. They serve a dual role: (i) they provide
the vocabulary to be used in the produced annotations, thus providing the domain
conceptualisation utilised during retrieval, and (ii) they provide the spatial and con-
textual knowledge necessary to support the context-aware and constraint reasoning
refinements. As aforementioned, each domain ontology is explicitly aligned to the
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DOLCE core ontology, ensuring thereby interoperability between different domain
ontologies possibly used by different analysis modules.

4.4 Context Analysis

4.4.1 Ontology-Based Contextual Knowledge Representation

It should be rather clear by now that ontologies are suitable for expressing multime-
dia content semantics in a formal machine-processable representation that allows
manual or automatic analysis and further contextual processing of the extracted
semantic descriptions. Amongst all possible ways to provide an efficient knowledge
representation, we propose one that relies on concepts and their relationships. In
general, we may formalise domain ontologies as follows:

O = {C, {R}}, where R : C × C → {0, 1} (4.1)

where O is a domain ontology, C is a subset of the set of concepts described by the
domain ontology, and R is a possible semantic relation amongst any two concepts
that belong to C . In general, semantic relations describe specific kinds of links or
relationships between any two concepts. In the crisp case, a semantic relation either
relates (R = 1) or does not relate (R = 0) a pair of concepts with each other.

In addition, for a knowledge model to be highly descriptive, it must contain a
large number of distinct and diverse relations among its concepts. A major side
effect of this approach is the fact that available information will then be scattered
among them, making each one of them inadequate to describe a context in a mean-
ingful way. Consequently, relations need to be combined to provide a view of the
knowledge that suffices for context definition and estimation. In this work, we
utilise three types of relations, whose semantics are defined in the MPEG-7 stan-
dard, namely the specialisation relation Sp, the part relation P , and the property
relation Pr .

The last point to consider when designing such a knowledge model is the fact that
real-life data often differ from research data. Real-life information is, in principal,
governed by uncertainty and fuzziness, thus herein its modelling is based on fuzzy
relations. For the problem at hand, the above set of commonly encountered crisp
relations can be modelled as fuzzy relations and can be combined for the generation
of a meaningful fuzzy taxonomic relation, which will assist in the determination of
context. Consequently, to tackle such complex types of relations, we propose the
following “fuzzification” of the previous domain ontology definition:

OF = {C, {rpq}}, where rpq = F(R) : C × C → [0, 1] (4.2)

where OF defines a “fuzzified” domain ontology, C is again a subset of all possible
concepts it describes, and rpq denotes a fuzzy semantic relation amongst two
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concepts p, q ∈ C . In the fuzzy case, a fuzzy semantic relation relates a pair of
concepts p, q with each other to a given degree of membership, i.e. the value of rpq

lies within the [0, 1] interval. More specifically, given a universe U , a crisp set C is
described by a membership function µC : U → {0, 1} (as already observed in the
crisp case for R), whereas according to Klir and Yuan (1995), a fuzzy set F on C is
described by a membership function µF : C → [0, 1]. We may describe the fuzzy
set using the widely applied sum notation (Miyamoto 1990):

F =
n∑

i=1

ci/wi = {c1/w1, c2/w2, . . . , cn/wn} (4.3)

where n = |C| is the cardinality of set C and concept ci ∈ C . The membership
degree wi describes the membership function µF (ci ), i.e. wi = µF (ci ), or for the
sake of simplicity, wi = F(ci ). As in Klir et al., a fuzzy relation on C is a function
rpq : C × C → [0, 1] and its inverse relation is defined as r−1

pq = rqp. Based on
the relations rpq and for the purpose of image analysis, we construct the following
relation T with use of the corresponding set of fuzzy relations Sp, P , and Pr :

T = Tr t (Sp ∪ P−1 ∪ Pr−1). (4.4)

Based on the roles and semantic interpretations of Sp, P , and Pr , as they are defined
in the MPEG-7 MDS (ISO/IEC 2003), it is easy to see that Equation (4.4) combines
them in a straightforward and meaningful way, utilising inverse functionality where
it is semantically appropriate, i.e. where the meaning of one relation is semantically
contradictory to the meaning of the rest on the same set of concepts. The set of the
above relations is either defined explicitly in the domain ontology or is considered to
be a superset of the set defined in the latter. Most commonly encountered, a domain
ontology includes some relations between its concepts that are all of the SubclassOf
type, and consequently, we extend it by defining additional semantic relations. The
transitive closure relation extension T r t is required in both cases, in order for T
to be taxonomic, as the union of transitive relations is not necessarily transitive, as
discussed in Akrivas, Wallace, Andreou, Stamou and Kollias (2002).

The representation of this concept-centric contextual knowledge model follows
the resource description framework (RDF) standard (Becket and McBride 2004)
proposed in the context of the Semantic Web. RDF is the framework in which
Semantic Web metadata statements can be expressed and represented as graphs.
Relation T can be visualised as a graph, in which every node represents a con-
cept and each edge between two nodes constitutes a contextual relation between the
respective concepts. Additionally, each edge has an associated membership degree,
which represents the fuzziness within the context model. A sample graph derived
from the motor-sports domain is depicted in Fig. 4.3.

Representing the graph in RDF is a straightforward task, since the RDF struc-
ture itself is based on a similar graph model. Additionally, the reification technique
(Brickley and Guha 2004) was used in order to achieve the desired expressiveness
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Fig. 4.3 Graph
representation example –
motor-sports domain

and obtain the enhanced functionality introduced by fuzziness. Representing the
membership degree associated with each relation is carried out by making a state-
ment about the statement, which contains the degree information. Representing
fuzziness with such reified statements is a novel but acceptable way, since the rei-
fied statement should not be asserted automatically. For instance, having a statement
such as Motor-sportsScene part Car, which means that a car is part of a motor-sports
scene, and a membership degree of 0.75 for this statement does obviously not entail
that a car is always a part of a motor-sports scene. A small illustrative example is
provided in Table 4.1 for an instance of the specialisation relation Sp. As defined
in the MPEG-7 standard, Sp (x, y) > 0 means that the meaning of x “includes” the
meaning of y; the most common forms of specialisation are subclassing, i.e. x is a
generalisation of y, and thematic categorisation, i.e. x is the thematic category of
y. In the example, the RDF subject wrc (World Rally Championship) has special-
isationOf as an RDF predicate and rally forms the RDF object. Additionally, the
proposed reification process introduces a statement about the former statement on
the specialisationOf resource, by stating that 0.90 is the membership degree to this
relation.

4.4.2 Visual Context Analysis

Since visual context is acknowledged to be a difficult notion to grasp and cap-
ture (Mylonas and Avrithis 2005), we restrict it herein to the notion of ontological
context, as the latter is defined on the “fuzzified” version of traditional ontologies
presented in Section 4.4.1. From a practical point of view, we consider context as

Table 4.1 Fuzzy relation representation: RDF reification

<rdf:Description rdf:about=“#s1”>
<rdf:subject rdf:resource=“&dom;wrc”/>
<rdf:predicate rdf:resource=“&dom;specialisationOf”/>
<rdf:object> rdf:resource=“&dom;rally”</rdf:object>
<rdf:type rdf:resource=“http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement”/>
<context:specialisationOf rdf:datatype=“http://www.w3.org/2001/XMLSchema#float”>0.90<

/context:specialisationOf>
</rdf:Description>
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information depicted by specific domain concepts that are identified and whose rela-
tions are analysed based on the utilised data set and not by external factors, such as
EXIF metadata.

In a more formal manner, the problem that this work attempts to address is sum-
marised in the following statement: the visual context analysis algorithm readjusts
in a meaningful way the initial label confidence values produced by the prior steps of
multimedia analysis. In designing such an algorithm, contextual information resid-
ing in the aforementioned domain ontology is utilised. In general, the notion of
context is strongly related to the notion of ontologies since an ontology can be seen
as an attempt towards modelling real-world (fuzzy) entities, and context determines
the intended meaning of each concept, i.e. a concept used in different contexts may
have different meanings. In this section, the problems to be addressed include how to
meaningfully readjust the initial membership degrees and how to use visual context
to influence the overall results of knowledge-assisted image analysis towards higher
performance.

Based on the mathematical background described in the previous sections, we
introduce the algorithm used to readjust the degree of membership µa(c) of each

concept c in the fuzzy set of candidate labels La =
|C|∑
i=1

ci/µa(ci ) associated with a

region a of an image in an image scene. Each specific concept k ∈ C present in the
application domain’s ontology is stored together with its relationship degrees rkl to
any other related concept l ∈ C .

Another important point to consider is the fact that each concept has a different
probability of appearing in the scene. A flat context model (i.e. relating concepts
only to the respective scene type) would not be sufficient in this case. We model a
more detailed graph where ideally concepts are all related to each other, implying
that the graph relations used are in fact transitive. As can be observed in Fig. 4.3,
every concept participating in the contextualised ontology has at least one link to the
root element. Additional degrees of confidence exist between any possible connec-
tions of nodes in the graph, whereas the root motor-sports element could be related
either directly or indirectly with any other concept. To tackle cases where more than
one concept is related to multiple concepts, the term context relevance crdm(k) is
introduced, which refers to the overall relevance of concept k to the root element
characterising each domain dm. For instance, the root element of the motor-sports
domain is concept cmotorsports . All possible routes in the graph are taken into con-
sideration, forming an exhaustive approach to the domain, with respect to the fact
that all routes between concepts are reciprocal.

An estimation of each concept’s degree of membership is derived from direct
and indirect relationships of the concept with other concepts, using a meaningful
compatibility indicator or distance metric. Depending on the nature of the domains
provided in the domain ontology, the best indicator could be selected using the max
or the min operator, respectively. Of course the ideal distance metric for two con-
cepts is again one that quantifies their semantic correlation. For the problem at hand,
the max value is a meaningful measure of correlation for both of them. A simplified
example derived again from the motor-sports domain ontology, assuming that the
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Fig. 4.4 Graph representation
example – compatibility
indicator estimation

only available concepts are motorsports (the root element – denoted as m), asphalt
(a), grass (g), and car (c), is presented in Fig. 4.4 and summarised in the following:
let concept a be related to concepts m, g, and c directly with: ram , rag , and rac,
while concept g is related to concept m with rgm and concept c is related to concept
m with rcm . Additionally, c is related to g with rcg . Then, we calculate the value for
crdm(a):

crdm(a) = max{ram, ragrgm , racrcm, ragrcgrcm, racrcgrgm}. (4.5)

The general structure of the degree of membership re-evaluation algorithm is as
follows:

1. Identify an optimal normalisation parameter np to use within the algorithm’s
steps, according to the considered domain(s). The np is also referred to as
domain similarity, or dissimilarity, measure and np ∈ [0, 1].

2. For each concept k in the fuzzy set La associated with a region in a scene with a
degree of membership µa(k), obtain the particular contextual information in the
form of its relations to the set of any other concepts: {rkl : l ∈ C, l �= k}.

3. Calculate the new degree of membership µa(k) associated with the region, based
on np and the context’s relevance value. In the case of multiple concept relations
in the ontology, when relating concept k to more than one concept, rather than
relating k solely to the “root element” re, an intermediate aggregation step should
be applied for k: crk = max {rkre , . . . , rkm}. We express the calculation of µa(k)
with the recursive formula:

µn
a(k) = µn−1

a (k) − np(µn−1
a (k) − crk) (4.6)

where n denotes the iteration used. Equivalently, for an arbitrary iteration n,

µn
a(k) = (1 − np)n · µ0

a(k) + (1 − (1 − np)n) · crk (4.7)

where µ0
a(k) represents the original degree of membership.

In practice, typical values for n reside between 3 and 5. Interpretation of the
above equations implies that the proposed contextual approach will favour confident
degrees of membership for a region’s concept in contradistinction to non-confident
or misleading degrees of membership. It will amplify their differences, while on the
other hand it will diminish confidence in clearly misleading concepts for a specific
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region. Furthermore, based on the supplied ontological knowledge, it will clarify
and solve ambiguities in cases of similar concepts or difficult-to-analyse regions.

A key point in this approach remains the definition of a meaningful normalisa-
tion parameter np. When re-evaluating this value, the ideal np is always defined
with respect to the particular domain of knowledge and is the one that quantifies
its semantic correlation to the domain. Application of a series of experiments on
a training set of images for every application domain results in the definition of
an np corresponding to the best overall evaluation score values for each domain.
Thus, the proposed algorithm readjusts in a meaningful manner the initial degrees
of membership, utilising semantics in the form of the contextual information that
resides in the constructed “fuzzified” ontology.

4.5 Constraint Reasoning to Eliminate Ambiguities
in Labelled Images

So far, the initial labelling provides a hypothesis set of labels for each segment, that
is computed based on the low-level features extracted from the specific segment.
Each label is associated with a degree of confidence, indicating how likely the label
is to be depicted. The context algorithm introduces global context into the labelling
by readjusting the degrees for each label. In this section, we will discuss the appli-
cation of spatial knowledge to the initially labelled image, with the goal to identify
a final and spatially consistent labelling. The spatial knowledge will be represented
by a set of spatial constraints, and the initially labelled image will be transformed
into a constraint satisfaction problem (CSP), which will be solved using standard
constraint reasoning techniques.

4.5.1 Constraint Satisfaction Problems

Informally, a constraint satisfaction problem (CSP) consists of a number of variables
and a number of constraints. A variable is defined by its domain, i.e. the set of values
that can be assigned to the variable, and a constraint relates several variables and
thereby restricts the legal assignments of values to each of the involved variables.
Constraint reasoning is the process of computing a solution to the given CSP, i.e.
an assignment of values to the variables that satisfy all the given constraints on
the variable.

In Fig. 4.5, a simple CSP is depicted, containing three variables x , y, and z and
three constraints. The domains of x , y, and z are D(x) = {1, 2, 3}, D(y) = {2, 3, 4},
and D(z) = {2, 3}. The constraints are x = y, x = z, and y = z, so that in a solution
to the problem, the values of x , y, and z must be equal.

Formally, a CSP consists of a set of variables V = {v1, . . . , vk} and a set
of constraints C = {c1, . . . , cl}. Each variable vi has an associated domain
D(vi ) = {l1, . . . , lm}, which contains all values that can be assigned to vi . Each
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Fig. 4.5 A simple constraint
satisfaction problem

=
yx
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constraint c j is a relation on the domains of a set of variables, v1, . . . , vr ∈ V , such
that a constraint c j is defined as c j ⊆ D(v1) × · · · × D(vr ). The constraint is said
to be solved iff both c j = D(v1) × · · · × D(vr ) and c j is non-empty. A CSP is
solved iff both all of its constraints are solved and no domain is empty and failed iff
it contains either an empty domain or an empty constraint.

A variety of techniques have been proposed to solve constraint satisfaction prob-
lems, and they are usually collected under the name constraint reasoning. One can
distinguish between two major types of solving techniques: consistency techniques
and search methods. Consistency techniques try to simplify subproblems of a given
CSP. However, a CSP that is locally consistent, i.e. where each relevant subproblem
is consistent, is not necessarily (and in fact usually not) globally consistent. As an
example consider arc consistency. Arc consistency only considers one constraint at
a time. The constraint is said to be arc consistent if for each assignment of a domain
value to a variable of the constraint, assignments to all other related variables exist
that satisfy the constraint. This variable is said to have support in the other domains.
A CSP is arc consistent if each of its constraints is arc consistent.

Now, in the example of Fig. 4.5, the domain of x, y, and z would all be reduced to
{2, 3} by an arc consistency algorithm. One can easily verify this, since an assign-
ment of 1 to x would in every case violate the constraint x = y, since 1 is not a
member of D(y), and the same is true for an assignment y = 4, which has support
neither in D(x) nor in D(z).

Local consistency can remove values from the domains of variables that will
never take part in a solution. This can already be useful in some scenarios, but
usually one searches for a concrete solution to a given CSP, i.e a unique assignment
of values to variables that satisfy all the given constraints. As we can see from the
example, an arc consistent CSP does not provide this solution directly. Obviously,
assigning an arbitrary value from the remaining domains will not yield a valid solu-
tion. For instance, the assignment x = 2, y = 2, z = 3 only uses values from the
arc consistent domains, but it is not a solution.

Therefore, in order to compute a concrete solution, search techniques are
employed, such as backtracking. Often local consistency checks and search are
integrated in hybrid algorithms, which prune the search space during search using
local consistency notions and thus provide an improved runtime performance.
However, solving CSPs efficiently is highly problem specific, and a method that
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performs well for a specific problem might have a much worse performance in
another problem.

We will not further elaborate on local consistency notions and search techniques
since they are out of the scope of this chapter. We assume that standard methods
are employed to solve the constraint satisfaction problems we generate and that run-
time performance is of lower priority. In general, a good introduction to constraint
reasoning is given in Apt (2003). An overview of recent research in the field of
constraint reasoning can be found in the survey presented in Bartak (1999).

4.5.2 Image Labelling as a Constraint Satisfaction Problem

In order to disambiguate the region labels using a constraint reasoning approach, we
have to

1. represent the employed knowledge as constraints and
2. transform a segmented image into a CSP.

Spatial relations provide an important means to interpret images and disambiguate
region labels. Although heuristic, they give very valuable hints on what kind of
object is depicted in a specific location. So, one would never expect a car depicted
in the sky, or in the context of our framework, one would not expect the sky to be
depicted below the sea in a beach image. Obviously, in order to use spatial knowl-
edge for this kind of multimedia reasoning, the core elements are the spatial relations
between the regions and the knowledge about the expected spatial arrangements of
objects (i.e. labels) in a given domain.

It is obvious that, projected on the terminology of CSPs, the regions will become
variables of the resulting CSP and that the spatial relations will be modelled as
constraints on those variables. In the following section, we will first discuss how to
define spatial constraints and then, in the subsequent section, introduce the transfor-
mation of an initially labelled image into a CSP.

4.5.2.1 Spatial Constraints

The purpose of a spatial constraint is to reduce the number of labellings for a number
of segments that are arranged in a specific spatial relationship. In other words, if a
segment is above another segment, we want to make sure that the lower segment
only gets the label Sky if the upper one has a compatible label, such as Sky or
Cloud. We will therefore define for each spatial relation that we want to consider
a corresponding spatial constraint type that encodes the valid labellings as tuples
of allowed labels. We will also call this set of tuples the domain of the constraint
type. The concrete spatial constraint that is instantiated between a set of variables
will then be formed by the intersection of the constraint type domain and the cross-
product of the relevant variable domains.

Let S R now be the set of spatial relations under consideration and rt ∈ S R be a
spatial relation of type t . Furthermore, O is the set of all possible labels of a given
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application domain. We then define the domain of a spatial constraint type t to be
D(t) ⊆ On , with n being the arity of the spatial relation. Obviously, each tuple in
the domain of the constraint type is supposed to be a valid arrangement of labels for
the spatial relation of type t .

Now, let V := {v1, . . . , vn} be a set of variables related by a spatial relation rt ∈
S R and D(t) the corresponding domain for the spatial relation. A constraint ct

V of
type t on the set of variables V is now defined as ct

V := D(t)∩(D(v1)×· · ·×D(vn)).
Apparently, ct

V now is a relation on the variable domains containing only those
tuples that are allowed for the spatial relation rt .

Currently, we only consider two types of spatial relations: relative and absolute.
Relative spatial relations are binary and derived from spatial relations that describe
the relative position of one segment with respect to another, such as contained-in or
above-of. Absolute spatial constraints are derived from the absolute positions of seg-
ments on the image, such as above-all, and which are apparently unary constraints.

4.5.2.2 Transformation

In order to describe the transformation of an initially segmented and labelled image,
we will shortly introduce some formal notions. Let a labelled image be a tuple
I = (S, S R), where S is the set of segments produced by the initial segmentation
and S R is the set of spatial relations extracted by the spatial extraction module. For
each segment s ∈ S, the hypothesis set of initial labels is denoted as ls(s). The set
of all possible labels is named O and ls(s) ∈ O must hold. Each spatial relationship
rt ∈ S R is of type t and has an associated domain of D(t).

Transforming a labelled image into a CSP is now a straightforward process. For
each segment, a variable is created and the hypotheses sets become the domains of
the variables. For each spatial relation, a constraint with the corresponding type is
added. In the following, we will formalise the transformation.

Let I = (S, S R) be a labelled image as introduced above; then the algorithm to
transform I into a corresponding CSP is as follows:

1. For each segment s ∈ S create a variable vs .
2. For the newly created variable vs , set the domain to D(vs ) = ls(s).
3. Let S R be the set of all spatial relations defined in the domain knowledge, then

add for each spatial relation rt ∈ S R between a number of segments s1, . . . , sn ∈
S a constraint ct

{v1,...,vn} to the CSP, where v1, . . . , vn are the variables created
from s1, . . . , sn .

The result is a CSP conforming to what was introduced in Section 4.5.1. Standard
constraint reasoning techniques can be used to solve the CSP, and because of the
finiteness of the problem, all solutions can be computed. The latter property is quite
useful, since the degree of confidence produced during the initial labelling, which
is currently not employed during the constraint reasoning, can afterwards be used
to rank the solutions according to the labels’ degrees. If only one solution would be
computed, one would have to accept the first one found.
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(a)

(b)

Input Image Initial Hypothesis

Labelling without CSP Labelling after CSP

Fig. 4.6 Example of CSP application

An example is depicted in Fig. 4.6, where the input image, the initial set of
hypotheses, the corresponding labelling that would have been produced without
constraint reasoning, and the labelling after the constraint reasoning are depicted.
Please note that for the initial labelling, the labels with the highest score are kept
for each segment. It is easy to see that two errors were made by the segment clas-
sification. The topmost segment was labelled as Sea instead of Sky and one of the
small segments within the sand region was labelled with Sea. After applying the
constraint reasoning, both erroneous labels have been corrected. For the topmost
segment, the absolute spatial relation above-all restricts the segment to the label
Sky and the second wrong label was corrected using the contained-in constraint that
does not allow a Sand segment to contain a Sea segment.

4.6 Experimental Results and Evaluation

In this section, we present experimental results and evaluation of the enhancement
achieved by the application of the proposed context analysis and constraint reason-
ing modules over typical image analysis. As aforementioned, under the proposed
framework, image analysis is treated as a black box, and different implementations
can be used interchangeably. In the presented experimentation, we followed the
approach presented in Petridis, Bloehdorn, Saathoff, Simou, Dasiopoulou, Tzou-
varas, Handschuh, Avrithis, Kompatsiaris and Staab (2006) for two main reasons:
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Fig. 4.7 Image analysis architecture

(i) the presented approach is quite generic, not making use of domain-specific
implementation and tuning that would boost performance, and (ii) the produced
annotations adhere to the proposed framework ontology infrastructure, thus making
the application of the framework straightforward, without the need for an interme-
diate aligning step to harmonise the annotations’ semantics with the corresponding
framework.

The overall architecture of the analysis used for experimentation is illustrated
in Fig. 4.7. First segmentation is applied to partition the image into a set of seg-
ments. Subsequently, for each of the resulting segments, the dominant colour, homo-
geneous texture, and region shape descriptors are extracted, and additionally, the
spatial relations between adjacent segments are estimated. Initial sets of graded
hypotheses, i.e. sets of labels with associated degrees of confidence, are generated
for each image segment through the computation of matching distances between
each segment’s descriptors and the prototypical values defined for the consid-
ered domain objects. These prototypical values are created using the M-OntoMat-
Annotizer tool, which enables users to annotate segments with concepts from a
given ontology and then extract selected descriptors, thus allowing the linking of
low-level visual features to domain concepts (Petridis, Bloehdorn, Saathoff, Simou,
Dasiopoulou, Tzouvaras, Handschuh, Avrithis, Kompatsiaris and Staab 2006).

For the experimentation, a set of 150 images from the beach domain has been
assembled, 30 of which were used as the training set for estimating the parameter
values required for context analysis, as well as to statistically induce the initial fuzzy
values of relations utilised within the context ontology. The resulting 120 images
have first undergone the aforementioned analysis in order to obtain the correspond-
ing initial annotation (labelling). Then, the proposed framework was applied. First,
the context analysis module, exploiting the domain concepts’ associations and the
information extracted through training, readjusts the annotations’ degrees of confi-
dence towards more meaningful values. Secondly, the constraint reasoner, applying
the spatial rules on the contextually refined labels results in the removal of those that
violate the domain spatial topology. To quantify the performance of image analysis,
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and allow us to measure the enhancement brought by the proposed framework, we
keep for each image segment the label with the highest degree of confidence from
the respective hypotheses set as the analysis results. Similarly, to measure the per-
formance of context analysis and constraint reasoning, the label with the highest
degree is kept for each segment.

To overcome the difficulties and cost in defining generally accepted pre-
annotated segmentation masks and avoid getting into a segmentation evaluation
process, a grid-based evaluation approach has been followed. This choice is justified
by the given evaluation context as well, since contrary to applications that require
very accurate object boundaries detection, it allows a certain tolerance for these
kinds of inaccuracies. More specifically, in the proposed evaluation framework,
ground truth construction and comparison against the examined annotations are
both performed at block level. The grid size is selected with respect to the desired
degree of evaluation precision: the smaller the block size, the greater the accuracy
attained. To evaluate an annotation, the corresponding annotated mask is partitioned
according to the selected grid size, and the annotations within each block are
compared to the ground truth.

To quantify the performance, we adopted the precision and recall metrics from
the information retrieval (IR) field. For each domain concept, precision (p) defines
the proportion of correctly annotated segments cf over all the number of segments
annotated with that concept f, while recall (r ) is the proportion of correctly anno-
tated segments over the number of segments depicting that concept in reality c.
To determine the overall performance per concept, all c, f, and cf for each of the
respective concepts are added up, and using the above formulae, overall precision
and recall values are calculated. Additionally, the F-measure was used to obtain
a single metric. The F-measure is the harmonic mean of precision and recall, i.e.
F = 2 pr/(p + r ), and contrary to the arithmetic mean, it gets large only if both
precision and recall are large. In the case that a concept was not depicted in an
image at all, all three values are set to 0, so that they do not influence the overall
computation. Furthermore, objects that appear in the test images but do not belong
to the supported set of concepts have not been taken into account, since they do not
add to assessing the proposed modules performance.

In the current experimentation, six concepts have been considered, namely Cliff,
Person, Plant, Sand, Sea, and Sky. In Table 4.2, the precision (p), recall (r ), and
F-measure ( f ) are given for the examined test images with respect to sole image
analysis, image analysis followed by context analysis, and image analysis followed
by constraint reasoning respectively, while in Table 4.3, the integrated performance
is shown. From the obtained results, one easily notes that in almost all cases, preci-
sion and recall improve. The actual percentage of the gained performance improve-
ment differs with respect to the concept considered, as each concept bears less or
more semantic information. For example, a lower improvement is observed with
respect to the concept Person, as due to over- and under-segmentation phenom-
ena the effects of the transition from 2D to 3D, and its generic context of appear-
ance a region depicting a Person may validly appear almost in any configuration
with respect to the rest of the domain concepts. Observing the integrated context
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Table 4.2 Evaluation results for the beach domain (where IA, CTX and CSP stand for image
analysis, context, and constraint reasoning, respectively)

IA IA+CTX IA+CSP

Concept p r f p r f p r f

Cliff 0.09 0.20 0.12 0.30 0.94 0.46 0.47 0.40 0.44
Person 0.56 0.40 0.47 1.00 0.07 0.14 0.61 0.40 0.48
Plant 0.35 0.77 0.48 0.72 0.26 0.38 0.85 0.89 0.87
Sand 0.82 0.80 0.81 0.90 0.95 0.92 0.81 0.94 0.87
Sea 0.87 0.58 0.70 0.90 0.83 0.86 0.87 0.49 0.63
Sky 0.86 0.89 0.87 0.94 0.94 0.94 0.80 0.95 0.87
AVG 0.73 0.73 0.73 0.84 0.85 0.84 0.77 0.75 0.76

Table 4.3 Evaluation results for the beach domain for the combined application of context and
constraint reasoning over image analysis

IA+CTX+CSP

Concept p r f

Cliff 0.38 0.94 0.54
Person 1.00 0.14 0.25
Plant 0.82 0.48 0.61
Sand 0.90 0.97 0.93
Sea 0.90 0.86 0.88
Sky 0.95 0.91 0.93
AVG 0.86 0.86 0.86

analysis and constraint reasoning results, it is noted that the latter adds only a little
to the attained performance, compared to when combined with image analysis only.
However, given the set of concepts currently supported and the inaccuracies of the
segmentation, this is an expected outcome. Having a broader set of concepts from
different and possibly partial overlapping domains (in terms of concepts included)
would lower the context refinement accuracy and would make more evident the role
of spatial consistency for disambiguation.

4.7 Conclusions and Further Discussions

In this chapter, we have proposed an ontology-based framework for enhancing
semantic image analysis through the refinement of initially available annotations
by means of explicit knowledge about context of appearance and spatial constraints
of the considered semantic objects. Following the proposed framework, one can
smoothly integrate independent analysis modules benefiting from the knowledge
sharing facilities provided by the use of ontologies and from the sole dependency of
context analysis and constraint reasoning from the available knowledge that decou-
ples them from the actual analysis. Consequently, the main contributions of the
proposed framework can be summarised as follows: (i) the formal representation
of context of appearance semantics in an ontology compliant way that facilitates its
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integration within knowledge-based multimedia analysis, and a methodology for its
application; (ii) the adoption of a constraint problem solving methodology within
the semantic image annotation domain for addressing topological knowledge; and
(iii) the proposed framework that supports its applicability and extensibility to dif-
ferent image analysis applications.

Future directions include further investigation of the proposed framework using
more concepts, thereby making available additional knowledge, i.e. more spa-
tial constraints and contextual associations. More specifically, with respect to the
constraint reasoner, a fuzzified extension is under investigation in order to pro-
vide greater flexibility and better scalability to broader domains. Introducing such
uncertainty support will enable the handling of situations that cannot be adequately
modelled in the provided domain knowledge, and for which the current crisp imple-
mentation may fail to provide a solution, i.e. none of the values may satisfy the
constraints. Another appealing characteristic of using a fuzzy CSP approach is that
preferences among certain solutions can be captured, as for instance solutions where
the sea is above the sand. Furthermore, since the manual definition of constraints
for large numbers of concepts is infeasible and error-prone, a heuristic approach
towards a more efficient acquisition needs to be investigated. With respect to con-
textual knowledge modelling and utilisation, an interesting future aspect refers to
the exploration of additional semantic associations between the concepts that par-
ticipate in a domain and the interdependencies that emerge from overlapping sets
of concepts between different domains. Finally, experimentation with alternative
analysis modules or their combination would provide useful and concrete insight
into the proposed framework contribution in real applications scenarios.
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