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ABSTRACT

Image segmentation and classification are basic operationsin image analysis and multimedia search which
have gained great attention over the last few years due to thelarge increase of digital multimedia content. A
recent trend in image analysis aims at incorporating symbolic knowledge representation systems and machine
learning techniques. In this paper, we examine interweaving of neural network classifiers and fuzzy description
logics for the adaptation of a knowledge base for semantic image analysis. The proposed approach includes a
formal knowledge component, which, assisted by a reasoningengine, generates the a-priori knowledge for the
image analysis problem. This knowledge is transferred to a kernel based connectionist system, which is then
adapted to a specific application field through extraction and use of MPEG-7 image descriptors. Adaptation
of the knowledge base can be achieved next. Combined segmentation and classification of images, or video
frames, of summer holidays, is the field used to illustrate the good performance of the proposed approach.

Keywords:fuzzy description logics, kernel based connectionist systems, machine learning, semantic image
analysis.

INTRODUCTION

Automatic image segmentation has been one
of the major problems in the area of image
processing and computer vision. For that reason a
plethora of techniques has been proposed in the
literature, including feature clustering (Comaniciu
and Meer, 2002; Carsonet al., 2002), mathematical
morphology (Meyer and Beucher, 1990) and graph-
based techniques (Morriset al., 1986; Felzenszwalb
and Huttenlocher, 2004). Furthermore, in many
cases, machine learning techniques are used to
handle specific classification and adaptation issues
(Papamarkoset al., 2000; Naphade and Huang, 2001;
Zhang et al., 2001; Christel and Hauptmann, 2005;
Spyrouet al., 2009).

Research efforts have focused on incorporating
certain knowledge about the domain, in which
an image belongs to, providing semantically rich
image segmentation. In this framework, Borenstein
et al. (2004) proposed the combination of top-
down (model-driven) and bottom-up segmentation,
where information of the image level can solve
ambiguities during the steps of a region-based
segmentation process. In Luo and Savakis (2001)
a Bayesian network was used to include low- and
mid-level features for the classification of indoor or
outdoor images; unsupervised fuzzy classification of

regions was used for segmentation purposes in Lee
and Crawford (2001). Spatial information about the
regions of an image has been used to reduce the
size of possible solutions, increasing the accuracy of
segmentation and object recognition (Milletet al.,
2002). Lately, the usage of semantic analysis in
multimedia applications has gained great attention
(Stamou and Kollias, 2005) also reflected in recent
European R&D activities (see for example IST
FP6/FP7 projects Acemedia, Muscle, K-Space, X-
Media, Mesh and Weknowit)1.

Intelligent systems based on symbolic knowledge
processing and artificial neural networks differ
substantially. Nevertheless, they are both standard
approaches to artificial intelligence and it is very
desirable to combine the robustness of neural
networks with the expressiveness of symbolic
knowledge representation. This is the reason why the
importance of efforts to bridge the gap between the
connectionist and symbolic paradigms of artificial
intelligence has been widely recognized. As the
amount of hybrid data containing symbolic and
statistical elements, as well as noise, increases, in
diverse areas, such as bioinformatics, multimedia
web mining, or multimodal application scenarios,
neural-symbolic learning and reasoning becomes of
particular practical importance. The merging of theory
(background knowledge) and data learning (learning

1http://www.image.ece.ntua.gr/php/rd.php
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from examples) has been indicated to provide learning
systems that are more effective than purely symbolic
and purely connectionist systems, especially when data
are noisy. This has contributed to the growing interest
in developing neural-symbolic systems (Pinkas, 1991;
Garcez and Zaverucha, 1999; Garcezet al., 2001;
Hitzler et al., 2004; Hammer and Hitzler, 2007).

This integration can be realized by an incremental
workflow for knowledge adaptation. Symbolic
knowledge bases can be embedded into a connectionist
representation, where the knowledge can be adapted
and enhanced from raw data. This knowledge may in
turn be extracted into symbolic form, where it can be
further used. This workflow is generally known as the
neural-symbolic learning cycle (Hammer and Hitzler,
2007), as depicted in the following diagram (Fig. 1).

Fig. 1.The neural-symbolic learning cycle.

This paper focuses on developing a novel
method for achieving connectionist adaptation of
ontological knowledge represented by expressive
fuzzy description logics. Moreover, it is shown that this
method can be effectively used in real life multimedia
applications, so as to improve the performance of
image segmentation and classification methods.

In particular, a knowledge base generated using
fuzzy description logics together with a reasoning
engine comprise the symbolic part of the system.
Recent research results that extract parameter kernel
functions from Description Logics (DL) ontological
representations are adopted for embedding the
above knowledge to a kernel-based connectionist
architecture. Adaptation of the connectionist system is
performed as follows.

MPEG-7 image descriptors are first extracted from
still images, or video image frames. A k-nearest
neighbor algorithm is proposed, based on the MPEG-7
features and a correlation distance measure, to relate
each new input data vector to one of the individuals
included in the DL ontology, so that the connectionist
system classifies it in a specific category. Whenever
such a classification is not evaluated positively (e.g., at
the user environment), retraining of the connectionist

system is performed, adapting its weights so as to
provide good results in the specific application field.
The new information, consisting of the new individual
and its properties, is then transferred to the knowledge
base, where they are evaluated and possibly used to
update concepts and relations.

The resulting scheme can be implemented and
used in real-life multimedia applications, in contrast
to other, afore-mentioned schemes that have not
shown such capability up to the present. Segmentation
and classification of images of summer holidays is
used as the application field illustrating the good
performance of the proposed connectionist-symbolic
analysis scheme and the obtained improvement over
conventional machine learning methods.

The rest of the paper is organized as follows.
The following section (“The proposed architecture”)
outlines the proposed architecture that mainly consists
of the formal knowledge, the semantic interpretation
layer and the knowledge adaptation components.
These modules are described in detail in Sections
“The formal knowledge component”, “Semantic
interpretation” and “The knowledge adaptation
mechanism” respectively. Section “A multimedia
analysis experimental study” presents a multimedia
analysis experimental study illustrating the theoretical
developments and also a comparison with state of
the art approaches on the same problem. Conclusions
and planned future activities are presented in Section
“Conclusions”.

THE PROPOSED ARCHITECTURE

The proposed system is based on a learning,
evolving and adapting cognitive model. Starting with
basic knowledge about the nature of the problem
and by using powerful reasoning mechanisms, the
proposed system gradually evolves its knowledge, by
incorporating its observations along with its own or its
user’s evaluations.

Fig. 2 summarizes the proposed system
architecture, consisting of two main components: the
Formal Knowledgeand theKnowledge Adaptation.
The Formal Knowledge stores the terminology and
assertions, i.e., the constraints that describe the
problem under analysis in the appropriate knowledge
representation formalism. More specifically, the
Ontologies moduleformally represents the general
knowledge about the problem. It is actually a formal
ontological description representing the concepts
and relationships of the field, providing formal
definitions and axioms that hold in every similar
environment. This forms the system’s knowledge
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Fig. 2.The semantic adaptation architecture.

which is generally generated during the Development
Phase by knowledge engineers and experts.

Moreover, theFormal Knowledgecontains the
World Descriptionthat is actually a representation of
all objects and individuals of the world, as well as their
properties and relationships in terms of the Ontology.
It is evident that most of the above data involve
different types of uncertain information and, thus, they
can be represented as formal (fuzzy) description logic
assertions connecting the objects and individuals of
the world with the concepts and relationships of the
Ontology. These assertions are provided automatically
or semi-automatically by theSemantic Interpretation
module.

In real environments however, this global
knowledge representation is rather optimistic.
Unfortunately, there may be lot of reasons that
cause inconsistencies in theFormal Knowledge. For
example, it is impossible to model all specific real
environments and thus, in some cases, conflicting
assertions can arise. As a more abstract example
(and more difficult to handle), the personality and
expressivity of a specific user makes some of
the axioms and constraints of the Ontology non-
applicable or even wrong, if applied in general to
all user interactions. These inconsistencies make the
formal use of knowledge that theReasonerprovides

rather problematic. In such cases, theKnowledge
Adaptationcomponent of the system tries to resolve
the inconsistency through a recursive learning process.

The knowledge adaptation improves the
knowledge of the system by changing to some degree
the axioms of the terminology of the system. The new
information as represented in a connectionist model
and, with the aid of learning algorithms, is adapted
and then re-inserted in the knowledge base through
the Knowledge Extractionmodule for adaptation
purposes.

THE FORMAL KNOWLEDGE
COMPONENT

FORMAL KNOWLEDGE AND
CONNECTIONIST MODELS

The focus of the proposed system architecture in
Fig. 2 is the adaptation of the knowledge base, so
as to deal with contextual information and raw data
peculiarities obtained from multimodal inputs. In this
paper, we adopt recent results in formal knowledge
representation and neural-symbolic integration. In
particular, formal knowledge is transferred to a
connectionist system and is adapted by means of
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machine learning algorithms. Knowledge extraction
from trained networks is another important issue,
which is included in the neural-symbolic loop,
although not studied analytically in this paper.

KERNEL DEFINITION FOR
DESCRIPTION LOGICS

In this section recent work that extracts parameter
kernel functions for individuals within ontologies
is presented (Bloehdorn and Sure, 2007; Fanizzi
et al., 2007; 2008). Exploitation of these kernels
permits inducing classifiers for individuals in Semantic
Web (OWL) ontologies. In this paper, extraction
of kernel functions is the main outcome of the
Formal Knowledgecomponent – assisted by the
reasoning engine – for feeding the connectionist-based
Knowledge Adaptationmodule.

The basis for developing these functions in the
framework of the formal knowledge is the encoding of
similarity between individuals, as they are presented
to the knowledge base of the system, by exploiting
semantic aspects of the reference representations.

The family of kernel functions is defined as
kF

p : Ind(A) × Ind(A) → [0,1], for a knowledge
base K = 〈T,A〉 consisting of the TBoxT (set
of terminological axioms of concept descriptions-
Ontology) and the ABoxA (assertions on the world
state-World Description); Ind(A) indicates the set of
individuals appearing inA, andF = {F1,F2, . . . ,Fm}
is a set of concept descriptions. These functions are
defined as theLp mean of the, say m, simple concept
kernel functionsκi , i = 1, . . . ,m, where, for every two
individuals a,b, andp > 0,

κi(a,b) =



















1 (Fi(a) ∈ A ∧ Fi(b) ∈ A) ∨
(¬Fi(a) ∈ A∧¬Fi(b) ∈ A);

0 (Fi(a) ∈ A∧ ¬Fi(b) ∈ A) ∨
(¬Fi(a) ∈ A∧Fi(b) ∈ A);

1
2 otherwise.
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The rationale of these kernels is that similarity
between individuals is determined by their similarity
with respect to each conceptFi , i.e., if they both
are instances of the concept or of its negation.
Because of the Open World Assumption for the
underlying semantics, a possible uncertainty in
concept membership is represented by an intermediate
value of the kernel. A value ofp = 1 has generally
been used for implementing Eq. 2 in Fanizziet al.

(2008). In our case, we have used the mean value of
the above kernel, which is computed through high level
feature relations, and a normalized linear kernel which
is computed through low level feature values, extracted
from multimedia data as described in the knowledge
adaptation mechanism section.

THE REASONING ENGINE

The reasoning engine, included in Fig. 2, is
of major importance for the whole procedure,
because it assists the operation of all knowledge
related components. First, during the knowledge
development phase, it is responsible for enriching
manual generation of concepts and relations, so that
computation of the kernels in Eqs. 1 and 2 includes the
fewest ambiguities possible, and any inconsistencies
are removed from the knowledge representation. In
fact Eqs. 1 and 2 are computed, by relating every two
individuals w. r. t. each concept in the knowledge base,
by using the reasoning engine. In the operation phase,
it interacts with the semantic interpretation layer and
the connectionist system for achieving knowledge
adaptation to real life environments. Both crisp and
fuzzy reasoners can form this engine. In our case, we
have been using the FIRE engine (Stoiloset al., 2006).

The FIRE system is based on Description Logic f-
SHIN (Stoiloset al., 2007) that is a fuzzy extension of
the DL SHIN (Horrockset al., 2000) and it similarly
consists of an alphabet of distinct concept names
(C), role names (R) and individual names (I). The
domain of interest is represented by concepts and
role descriptions using DLs constructors. The set of
constructors specifies the name of the DL language
(Baaderet al., 2002) and in the case of f-SHIN these
are the ALC constructors (i.e., negation¬, conjunction
⊓, disjunction⊔, full existential quantification∃ and
value restriction∀) extended by transitive roles (S),
roles hierarchy (H), inverse roles (I), and number
restrictions (N). Hence, ifR is a role thenR− is also
a role, namely the inverse ofR. f-SHIN concepts are
inductively defined as follows:

1. If C∈ C, thenC is a f-SHIN concept

2. If C andD are concepts,R is a role,S is a simple
role and n ∈ N, then (¬C), (C ⊔ D), (C ⊓ D),
(∀R.C), (∃R.C), (≥ nS) and (≤ nS) are also f-
SHIN concepts.

Differently to crisp DLs, the semantics of fuzzy
DLs are given by afuzzy interpretation(Straccia,
2001). A fuzzy interpretation is a pairI = 〈∆I , ·I 〉
where ∆I is a non-empty set of objects and·I

is a fuzzy interpretation function, which maps an
individual namea to elements ofaI ∈ ∆I and
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a concept nameA (role nameR) to a membership
functionAI : ∆I → [0,1] (RI : ∆I ×∆I → [0,1]).

Fuzzy set theory is used in order to extend the
interpretation function to give semantics to complex
concepts, roles and axioms (Klir and Yuan, 1995).
Therefore, fuzzy complement, indicated as c, is
used to interpret negation constructor, s-norm (u)
and t-norm (t) are used to interpret fuzzy union
and fuzzy intersection constructors respectively, while
implication is interpreted by fuzzy implicationJ .
In fuzzy set theory there are different functions for
these operations that specify different fuzzy logics. In
the DL fKD-SHIN, Lukasiewicz complementcL(a) =
1−a, Gödel t-normtG(a,b) = min(a,b), Gödel s-norm
uG(a,b) = max(a,b) and Kleene-Dienes implication
JKD(a,b) = max(1 − a,b) are used which form
the Zadeh fuzzy logic (Klir and Yuan, 1995). The
complete set of semantics is depicted in Table 1.

A fKD-SHIN knowledge baseΣ is a triple〈T,R,A〉,
where T is a fuzzyTBox (Terminological Box), R
is a fuzzyRBox (Role Box) and A is a fuzzyABox
(Assertional Box).TBoxis a finite set of fuzzy concept
axioms which are of the formC ≡ D called fuzzy
concept equivalence axioms orC ⊑ D called fuzzy
concept inclusion axioms saying thatC is equivalent or
C is a sub-concept ofD, respectively. Similarly,RBox
is a finite set of fuzzy role axioms of the formTrans(R)
called fuzzy transitive role axioms andR⊑ S called
fuzzy role inclusion axioms saying thatR is transitive
andR is a sub-role ofS, respectively. Finally,ABoxis
a finite set of fuzzy assertions of the form〈a : C ⊲⊳ n〉,
〈(a,b) : R ⊲⊳ n〉, where ⊲⊳ stands for≥, >, ≤, <
or a 6

.
= b, for a,b ∈ I. Fuzzy representation enriches

expressiveness, so a fuzzy assertion of the form〈a :
C≥ n〉 means thata participates in the conceptC with
a membership degree that is at least equal ton.

The main reasoning services supported by crisp
reasoners areentailment and subsumption. These
services are also available by FiRE together with
greatest lower bound queries which incorporate the
fuzzy element. Since a fuzzyABoxmight contain many
positive assertions for the same individual, without
forming a contradiction, it is of interest to compute
what is the best lower and upper truth-value bounds
of a fuzzy assertion. The term ofgreatest lower bound
(GLB) of a fuzzy assertion with respect to a knowledge
base has been defined in (Straccia, 2001).

The reason why we use fuzzy reasoning is that
fuzzy assertional component permits more detailed
descriptions of a domain. Furthermore, the fact that we
deal with image analysis algorithms that can provide
rich though imperfect results makes fuzzy DLs the

most appropriate formalism for such a representation.
On the other hand this representation requires a more
sophisticated way for the kernels evaluation. In order
to compute Eqs. 1 and 2 the GLB reasoning service of
FiRE is used, but the resulting greatest lower bound is
treated using a threshold. In other words, if GLB for
Fi(a) > 0.5, thenFi(a) ∈ A, while if GLB for Fi(a) <
0.5, then ¬Fi(a) ∈ A. In that way we incorporate
the uncertainty of image analysis algorithms in the
creation of the kernels. As a future extension, we
intend to further work on the incorporation of the fuzzy
element in the estimation of kernel functions using,
as well, fuzzy operations like fuzzy aggregation and
fuzzy weighted norms for the individual’s evaluation.

SEMANTIC INTERPRETATION

The main operation of the semantic interpretation
(SI) layer is to create the assertional component of the
knowledge base, in other words to link the individuals
with the concepts. In the experimental study of
this paper, the SI layer includes a segmentation
algorithm, an algorithm for extraction of low level
MPEG-7 features from image segments, and an
algorithm for matching image segments (individuals)
based on correlation of their feature values. A
semantic variation of the Recursive Shortest Spanning
Tree (Morris et al., 1986) constitutes the main
segmentation method, which is also responsible for
extracting spatial relations among image segments.
These relations are inserted in the knowledge base
and used by the reasoning engine. Moreover, it
merges neighboring regions, based on their labeling,
or obtained classification.

FEATURE EXTRACTION AND
CLASSIFICATION

The given image, or video frame, is initially
processed by a hierarchical segmentation algorithm
(Adameket al., 2005) which partitions it in a number
of regions. Standard MPEG-7 low level visual features,
especially color and texture metrics, are extracted,
based on the values of pixels belonging in each region.
Extraction of these low-level descriptors is performed
using the Visual Descriptor Extraction tool2. VDE has
been developed based on the experimentation Model
(XM) of MPEG-7 (Yamadaet al., 2001). It uses XM
extraction algorithms, optimized in order to provide a
faster performance, while remaining fully compatible
to the XM in terms of the MPEG-7 descriptors. Since
regions usually share the property of homogeneity of
a certain feature (color and/or texture), it is possible

2http://image.ntua.gr/iva/tools/vde
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Table 1.The fKD-SHIN syntax and semantics.

Constructor Syntax Semantics
top ⊤ ⊤I (a) = 1
bottom ⊥ ⊥I (a) = 0
general negation ¬C (¬C)I (a) = c(CI (a))
conjunction C⊓D (C⊓D)I (a) = t(CI (a),DI (a))
disjunction C⊔D (C⊔D)I (a) = u(CI (a),DI (a))
exists restriction ∃R.C (∃R.C)I (a) = supb∈∆I {t(RI (a,b),CI (b))}
value restriction ∀R.C (∀R.C)I (a) = infb∈∆I {J (RI (a,b),CI (b))}

at-most ≤ pR infb1,...,bp+1∈∆I J (t p+1
i=1 RI (a,bi),ui< j{bi = b j})

at-least ≥ pR supb1,...,bp∈∆I t(t p
i=1RI (a,bi), ti< j{bi 6= b j})

inverse role R− (R−)I (b,a) = RI (a,b)
equivalence C≡ D ∀a∈ ∆I .CI (a) = DI (a)
sub-concept C⊑ D ∀a∈ ∆I .CI (a) ≤ DI (a)
transitive role Trans(R) ∀a,b∈ ∆I .RI (a,b) ≥ supc∈∆I {t(RI (a,c),RI (c,b))}
sub-role R⊑ S ∀a,b∈ ∆I .RI (a,b) ≤ SI (a,b)
concept assertions 〈a : C ⊲⊳ n〉 CI (aI ) ⊲⊳ n
role assertions 〈(a,b) : R⊲⊳ n〉 RI (aI ,bI ) ⊲⊳ n

to label them, using a simple classifier (Papadopoulos
et al., 2007). We may consider the classifier outputs,
denoting the category that each region (i.e., segment)
belongs to, as fuzzy variablesµa(Ck) showing the
respective degree of confidence in the classification
of segmentα to each categoryCk. This information
feeds the semantic segmentation algorithm, which is
presented next.

SEMANTIC SEGMENTATION

RSST is a bottom-up segmentation algorithm
that starts its processing from the pixel level and
iteratively merges similar neighboring regions until
certain termination criteria are satisfied. It uses an
Attributed Relation Graph (ARG) (Berrettiet al., 2001)
that is an internal graph representation of image
regions. In the beginning, all edges of the graph are
sorted according to a criterion, such as the color
dissimilarity of two connected regions, using the
Euclidean distance of the color components. The edge
with the least weight is found and the two regions
connected by that edge, are then merged. After each
step, the merged region’s attributes (e.g., region’s mean
color) are re-calculated. Additionally, RSST also re-
calculates the weights of the related edges and re-sorts
them. In that way, in every step the edge with the least
weight is selected, the two neighboring regions by that
edge are merged, and the process continues recursively
until the algorithm meets the termination criteria. Such
criteria may vary, but they are usually based on either

the number of regions, or a threshold based on the
dissimilarity distance.

This algorithm was modified in order to operate on
the fuzzy sets, aiming at improving the usually over-
segmentation results obtained by the former procedure,
incorporating the acquired region labeling in the
segmentation process (Athanasiadiset al., 2007). The
modification of the traditional algorithm to S-RSST
lies on the definition of the two criteria:

1. The dissimilarity criterion between two adjacent
regionsa andb (verticesva andvb in the graph),
based on which the graph’s edges are sorted, and

2. the termination criterion.

In order to calculate the similarity between
two regions, a metric between two fuzzy sets that
corresponds to the candidate concepts of the two
regions is defined. This dissimilarity value is computed
according to the following formula and is assigned as
the weight of the respective graph’s edgeeab:

w(eab) = 1− sup
ck∈C

(tG(µa(ck),µb(ck))) , (3)

where a and b are the two neighboring regions,
tG(a,b) = min(a,b), is Gödel t-norm andµa(ck) is
the degree of membership of the concept-region label
ck ∈C in the fuzzy setLa.

Let us now examine one iteration of the S-RSST
algorithm. Firstly, the edgeeab with the least weight
is selected, then regionsa andb are merged. Vertexvb
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is removed completely from the ARG, whereasva is
updated appropriately. This update procedure consists
of the following two actions:

1. Re-evaluation of the membership degrees of the
labels’ fuzzy set in a weighted average (w. r. t. the
regions’ size) fashion.

2. Re-adjustment of the ARG edges by removing
edge eab and re-evaluating the weight of the
affected edges.

This procedure will continue until the edge with
the least weight in the ARGe∗, is bigger than a
threshold:w(e∗) > Tw. This threshold is calculated in
the beginning of the algorithm, based on the histogram
of all weights of the set of all edges.

THE KNOWLEDGE ADAPTATION
MECHANISM

THE SYSTEM OPERATION PHASE

In the proposed architecture of Fig. 2, let us assume
that the set of individuals (with their corresponding
features and kernel functions), that have been used
to generate the formal knowledge representation in
the development phase, are provided, by theSemantic
Interpretation Layer, to the Knowledge Adaptation
component.

Support Vector Machines constitute a well known
method which can be based on kernel functions to
efficiently induce classifiers that work by mapping the
instances into an embedding feature space, where they
can be discriminated by means of a linear classifier.
As such, they can be used for effectively exploiting
the knowledge-driven kernel functions in Eqs. 1 and
2, and be trained to classify the available individuals
in different concept categories included in the formal
knowledge. In Fanizziet al. (2008) it is shown that
SVMs can exploit such kernels, so that they can
classify the (same) individuals - used for extracting the
kernels – accurately. A Kernel Perceptron is another
connectionist method that can be trained using the set
of individuals and applied to this linearly separable
classification problem.

Let us assume that the system is in its – real life
– operation phase. Then, the system deals with new
individuals, with their corresponding – multimodal –
input data and low level features being captured by
the system and being provided through the semantic
interpretation layer to the connectionist subsystem for
classification to a specific concept. It is well known
that due to local or user oriented characteristics,

these data can be quite different from those of the
individuals used in the training phase; thus they
may be not well represented by the existing formal
knowledge. In the following, we discuss the adaptation
phase of the system to this local information, being
realized through the adaptation of the connectionist
architecture.

ADAPTATION OF THE CONNECTIONIST
ARCHITECTURE

Whenever a new individual is presented to the
system, it should be related, through the kernel
function to each individual of the knowledge base
w. r. t. a specific concept – category; the input data
domain is, thus, transformed to another domain –
taking into account the semantics that have been
inserted to the kernel function.

There are some issues that should be solved
in this procedure. The first is that the number of
individuals can be quite large, so that transporting
them in different user environments is quite difficult. A
Principal Component Analysis (PCA), or a clustering
procedure can reduce the number of individuals so as
to be capable of effectively performing approximate
reasoning. Consequently, it is assumed that through
clustering, individuals become the centers of clusters,
to which a new individual will be related through
Eqs. 1 and 2.

The second issue is that the kernel function in
Eqs. 1 and 2 is not continuous w. r. t. individuals.
Consequently, the values of the kernel functions
when relating a new individual to any existing one
should be computed. To cope with this problem,
it is assumed that the semantic relations, that are
expressed through the above kernel functions, also
hold for the syntactic relations of the individuals, as
expressed by their corresponding low level features,
estimated and presented at the system input. Under
this assumption, a feature based matching criterion
using a k-nearest neighbor, is used to relate the new
individual to each one of the cluster centers w. r. t. the
low level feature vector. Various techniques can be
adopted for defining the value of the kernel functions
at the resulting instances. A vector quantization type
of approach, where each new individual is replaced by
its closest neighbor, when computing the kernel value,
is a straightforward choice. To extend the approach to
a fuzzy framework, weighted averages and Gaussian
functions around the cluster centers can be used to
compute the new instances’ kernel values.

In cases that classification of the new individual
is evaluated as not correct by the user, the SVM or
Kernel Perceptron are retrained - including the new
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individuals in the training data set, while getting the
corresponding desired responses by theUser or by
theSemantic Interpretation Layer– thus, adapting its
knowledge to the specific context and use.

The problem will, in parallel, be reported back
to formal knowledge and reasoning mechanism, for
updating system’s knowledge for the specific context,
and then (off-line) providing again the connectionist
module of the user with a new, knowledge-updated,
version of the system. This case is discussed in the
following subsection.

ADAPTATION OF THE KNOWLEDGE
BASE

Knowledge extraction from trained neural
networks,e.g., perceptrons, or neuro-fuzzy systems,
has been a topic of extensive research (Kolman and
Margaliot, 2005). Such methods can be used to transfer
locally extracted knowledge to the central knowledge
base. In our case, the – most characteristic – new
individuals obtained in the local environment, together
with the corresponding desired outputs – concepts
of the knowledge base, can be transferred to the
knowledge development module of the main system
(Fig. 2), so that, with the assistance of the reasoning
engine, the system’s formal knowledge,i.e., the TBox
can be updated, w. r. t. the specific context or user.

More specifically, the new individuals obtained in
the local environment form an ABoxA′. In order to
adapt a knowledge base (KB), according to the new
world description, the concepts of interest, which are
defined by axioms contained in the KB, must change
appropriately. Since a concept of interest defined by an
axiom is specified by some other concepts composed
using DL constructors, adaptation of the KB can be
achieved by the effective modification of the concepts
and the constructors used.

However, both formal and connectionist part
adaptation is based on the assumption that only small
modifications of the a-priori knowledge are envisaged,
caused by the specific context of the application,
while the original knowledge and respective reasoning
about the application field is generally valid. In this
framework, axioms and concepts that are considered
of major importance for the field are not adapted, thus
restricting adaptation only to the remaining concepts.
The concepts of an axiom are separated in these two
categories from the knowledge engineer that defines
the knowledge base.

Therefore, in order to adapt a knowledge base
K = 〈T,R,A〉, for a defined conceptFi , using concepts
of major importance, denoted asC, we check all the

concepts for adaptation denoted asR1Fi . . .RnFi under
the specific context,i.e., in A′. Let |RnFi | denote the
occurrences ofRnFi ∈ A′, t denote a threshold defined
according to the data size andAxiom(Fi) denote the
axiom defined for the conceptFi in the knowledge base
(i.e., Axiom(Fi) ∈ T ). Furthermore, we writeRnFi ∈
Axiom(Fi) when the conceptRnFi is used inAxiom(Fi)
andRnFi 6∈ Axiom(Fi) when it is not used. Knowledge
adaptation is made according to the following criteria:

|RnFi | =



























[0,t/4)
If RnFi ∈ Axiom(Fi) →
Remove RnFi from
Axiom(Fi);

[t/4,t] No adaptation inK;

> t
If RnFi 6∈ Axiom(Fi) →
Axiom(Fi)∪RnFi .

(4)

Eq. 4 implies that the related concepts with the
most occurrences inA′ are selected for the adaptation
of the terminology, while those that are not significant
are removed. At this point we must note that the DL
constructor that will be used for the incorporation of
a concept, in order to adapt the knowledge base, is
specified by the domain expert. Future work includes
a semi-automatic selection of constructors, that will
be based on the inconsistencies formed by the use of
specific DL constructors for updating the knowledge
base.

A MULTIMEDIA ANALYSIS
EXPERIMENTAL STUDY

CONSTRUCTION OF THE FORMAL
KNOWLEDGE – ADAPTATION OF THE
CONNECTIONIST ARCHITECTURE

The proposed architecture has been evaluated in an
image analysis application, involving classification of
segments in images of summer holidays. Such images
typically include persons swimming or playing sports
in the beach or visiting places with buildings or trees;
in this framework the selected concepts of interest in
our experiments are the following:Sea, Sand, Sky,
TreeandBuilding.

Following the described region-based segmentation
procedure, we let each individual in our knowledge
base correspond to an image segment. 45 low level
features are used to characterize each individual,
derived from the MPEG-7 Color Structure, Scalable
Color and Homogeneous Texture Descriptors together
with the Dominant Color of each segment. To
illustrate the performance of the proposed neuro-
symbolic architecture, we created a segment base
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composed of 3000 segments extracted from about
500 images of the Acemedia and K-Space datasets.
This extraction was made through the described
semantic R-SST segmentation algorithm, which also
produced the spatial relations between each segment
and its neighboring ones. Therefore, the resulting
alphabet of our KB is composed of the set of
conceptsC = {WhiteSeg, BlueSeg, GreenSeg, RedSeg,
YellowSeg, BrownSeg, GreySeg, BlackSeg}, the set of
rolesR = {aboveOf, belowOf, leftOf, rightOf}, while
the set of individualsI consists of the segments of
the images. The Terminological Box (TBox – Formal
Knowledge) was then created based on the above
mentioned concepts; this is described in Table 2 while
the assertional component (ABox) of the KB is of the
form:

〈image1 seg01 :BlueSeg≥ 0.65〉,
〈image1 seg01 :GraySeg≥ 0.35〉,
〈image1 seg02 :GreenSeg≥ 0.75〉,
. . .
〈(image1 seg01, image1 seg02) : above-of≥ 1〉,
〈(image1 seg01, image1 seg03) : left-of≥ 1〉,
. . .

In addition to the above assertions that are
extracted by the semantic R-SST algorithm, each
segment was also annotated with respect to the
concepts of interest by the user, permitting the
evaluation of classification.

After that, we selected 1500 image segments,
which the Fuzzy Reasoning Engine FiRE classifies
correctly according to the axioms defined in the
initial TBox. This process forms new assertions in the
assertional component of the KB (ABox) while the
remaining 1500 segments, where errors occur, form the
testing data. The following step has been to transfer
the above knowledge to the connectionist – kernel
based - architecture using this ABox. To accomplish
this, we compute the kernel functionκi , for every
two segments combination w. r. t. (see Eqs. 1,2) the
concepts of interest. Then, we compute thekF

p for
every two-segment combination, thus defining a kernel
matrix (1500× 1500), each row of which indicates
the similarity of segment with all other ones. Some
of the images and segments used for this process are
illustrated in Fig 3. As we can observe the dominant
colour and the colour of the neighboring segments in
these examples are as defined in our knowledge base.
For example in Fig. 3c the building in the middle has
colour red (i.e., RedSeg) and it is below ofBlueSeg,
therefore it is classified by the KB asBuildingSeg.

Segment classification was then accomplished
through the use of a Support Vector Machine. At first

(a) (b)

(c) (d)

Fig. 3. Some of the images with their segments that
were classified correctly by FiRE according to the
initial TBox and used for the kernel evaluation process.

we verified that the SVM was able to classify correctly
the segments (based on the above kernel matrix).
Having verified this, we assume that the SVM has been
delivered to a user who wants to test its performance
to the rest 1500 segments, which the knowledge base
has not classified correctly. Since this SVM is the only
tool that the user possesses (no knowledge base or
reasoning engine), and one has to apply it to the new
image segments, which are characterized by their low
– level MPEG-7 features, it is assumed that the SVM
package includes – apart from the trained SVM and
its kernel matrix – a file with the low-level MPEG-7
features of each one of the 1500 training segments.

For each test image segment, obtained at the
users environment, the semantic interpretation layer
of the approach automatically extracts the low level
MPEG-7 features. It then uses a matching algorithm
to select the training data segment (individual)
whose corresponding low-level MPEG-7 features are
closest to those of the testing one. This is done by
comparing the Euclidean correlation distance measure
between the testing feature set and each feature
set of the training segments. Assuming that if two
image segments are the most similar w. r. t. their
low level features, then this will hold for their
high level characteristics as well, the layer uses the
characteristics of the selected training segment (i.e.,
the concept it is an instance of and the relationships
it participates) for the testing image segment as well.
The role of the semantic interpretation layer stops
here. The characteristics of the test image segment are
then inserted in the kernel Eqs. 1-2, which is Positive
Definite (Fanizziet al., 2008), so that the SVM
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.Some of the images and their segments that were
classified correctly by the SVM while not by the initial
KB.

provides the respective classification. Whether this has
been a successful choice or not, will be evaluated by
the user, and, if it is not, it may be used to adapt/retrain
the classifier based on the possible users feedback.

Based on the above, we computed the correlation
distance between each new input sample and the 1500
training segments and classified each input segment
by the SVM. This resulted in correct classification
of 510 out of the 1500 segments, which the original
knowledge base and reasoning had not classified
correctly. The following figure (Fig. 4) illustrates some
segments that had not been initially classified correctly.
For example, in Fig. 4b,d, sky segments include white
colour and therefore were classified incorrectly by the
KB because of their neighbors (see Table 2). Similarly
in Fig. 4f, a sand segment with brown colour is below
of another sand segment with the same colour, fact that
causes mistaken classification by the KB. All these
misclassified segments by the KB were corrected by
the SVM.

Let us now assume that the user informs the system
that some segment (of the rest 990) has been wrongly
classified, providing also its correct category. After

(a) (b)

(c) (d)

(e) (f)

Fig. 5. An image and its segments, annotated by the
user and used to adapt the SVM (a,b); Similar images,
correctly classified by the adapted SVM (c–f).

that, adaptation of the SVM kernel matrix can be
performed by enhancing correlations of the segment
with training segments of the correct category, while
reducing (by half) its correlation value with segments
of the misleading categories. With this procedure
the SVM was able to classify correctly the specific
segment and all other segments that were similar to
them. Such an example is illustrated in Fig. 5. The user
corrected the wrong classification of the KB and the
SVM in Fig. 5b in which the sea segment was wrongly
classified because of its green colour. This correction
was used for the adaptation of the SVM and after that
SVM succeeded in the classification of sea segments
Fig. 5c,e that are also green. It should, however, be
mentioned that the resulting adaptation is valid for
specific contexts – image segments in our application
– and should be tagged as such, if it is to be preserved
in the system knowledge base.

ADAPTATION OF THE KNOWLEDGE
BASE

The next step, after the enrichment and the
possible adaptation of the SVM according to user
corrected data, was to transfer the acquired knowledge
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Table 2.The initial knowledge for the specific context.

SandSeg ⊑ (BrownSeg⊔GraySeg)⊓ (∃belowOf.(BlueSeg⊔BrownSeg)

⊔∃leftOf.(BlueSeg⊔BrownSeg)⊔∃rightOf.(BlueSeg⊔BrownSeg))

BuildingSeg ⊑ (RedSeg⊔YelowSeg⊔BrownSeg⊔GraySeg)⊓ (∃belowOf.BlueSeg⊔∃leftOf.BlueSeg

⊔∃rightOf.BlueSeg)

SeaSeg ⊑ (BlueSeg⊔WhiteSeg)⊓ (∃belowOf.BlueSeg⊔∃leftOf.(BlueSeg⊔BrownSeg)

⊔∃rightOf.(BlueSeg⊔BrownSeg)⊔∃aboveO f.BrownSeg

SkySeg ⊑ (BlueSeg⊔WhiteSeg⊔GraySeg)⊓ (∃aboveO f.(BlueSeg⊔GraySeg⊔RedSeg⊔YellowSeg

⊔GreenSeg)⊔∃leftOf.(BlueSeg⊔GraySeg⊔RedSeg⊔YellowSeg⊔GreenSeg)

⊔∃rightOf.(BlueSeg⊔GraySeg⊔RedSeg⊔YellowSeg⊔GreenSeg))

TreeSeg ⊑ GreenSeg⊓ (∃belowOf.BlueSeg⊔∃leftOf.BlueSeg⊔∃rightOf.BlueSeg)

to the Formal Knowledge – TBox. The adapted
SVM produces a new ABox consisting of the initial
assertions extracted by the semantic interpretation
layer (i.e., colours and spatial relations) together with
the classification of each segment to the concepts of
interest (i.e., SeaSeg, SkySegetc), as enriched by the
SVM.

In the original knowledge base every concept of
interest was defined according to a disjunction of
some colour concepts, considered as concept of major
importance, together with concepts that specify the
colours of neighboring regions, considered as the
concepts for adaptation. For example, the concept
SeaSegwas defined by the axiomSeaSeg⊑ (BlueSeg⊔
WhiteSeg) ⊓ (∃belowOf.BlueSeg⊔ ∃leftOf.BlueSeg⊔
∃rightOf.BlueSeg). Assuming SeaSegas F1 (see
Eq. 4), then the concept of major importance that
will remain unchanged from the adaptation process is
conceptBlueSeg⊔WhiteSegwhile the concept formed
by the disjunctions of the neighboring criteria colours
i.e., ∃belowOf.BlueSeg⊔ . . . ⊔ ∃rightOf.BlueSeg,
may be adapted. Therefore, in our approach, the
set of concepts that are examined for adaptation
consists of the concepts formed using the full
existential operator with each one of the 4 roles,
having, as role-filler, each of the colour concepts
(i.e., ∃belowOf.BlueSeg, ∃belowOf.WhiteSeg, . . .,
∃rightOf.BlueSeg, ∃rightOf.WhiteSeg, . . . ).

All the segments that are classified by the adapted
SVM result in an ABox also consisting of the initial
assertions and the assertions added after classification.
After the classification of an individual asSeaSeg, the
assertions inABox are examined. All concepts that
can be adapted are examined and indexed for each
individual. If the occurrence of one of these concepts
exceeds a threshold, that is defined according to the
total number of regions, and this concept is not used
in the axiom, then it is proposed to the knowledge

engineer for incorporation in the relevant axiom (i.e.,
SeaSeg). The incorporation of the concept is made
with the use of the appropriate DL constructor selected
by the knowledge engineer. On the other hand, if
one of these concepts has very few occurrences and
this concept is used in the relevant axiom, then it is
suggested for removal.

To understand the reason why selection of
representative segments is necessary for the adaptation
of a knowledge base let us examine the following
example illustrated in Fig. 6. The images on the left are
the original images, while on the right the segmented
images are illustrated together with the desired targets
as assigned by the annotator. If we first examine the
images of first row (i.e., images a,b) we observe that
the color of the segments agrees with the concepts
defined in our knowledge base (see Table 2). In other
words the colour of segment a is Gray, White, so the
knowledge base correctly classifies it asSkySegwhile
the segment b that is blue is classified asSeaSeg. On
the other hand examining the colours of the segments
in the original image of the second row (c), according
to which the concepts of interest are defined, we can
observe that the colour of segment c is brown. This
means that the defined axiom in the knowledge base
for conceptSeaSeg( Table 2) will mistakenly classify
the specific segment asSandSeg. On the other hand,
clearly this segment is not characteristic of concept
SeaSegand therefore adaptation of the knowledge base
according to such a special case would detune its
performance.

Using this technique, the relative concepts
that play a significant role for a concept of
interest, according to the new ABox formed by the
connectionist model, are included in its definition.
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(a) (b)

(c) (d)

Fig. 6. KB adaptation for specific contexts or
circumstances.

Table 3 illustrates the adapted knowledge base.
The axioms were corrected by the adaptation process
and in some cases differ form the original axioms
defined. For exampleTreeSegaxiom was changed and
in its new description the neighboring segments are of
colour green while the possibility of brown neighbors
in SeaSegwas omitted. Additionally, the white and
brown neighbors were added as possible neighbors of
SkySegandSandSegrespectively as described in the
previous section.

RESULTS

The performance of the proposed approach
has been compared with standard approaches for
classification of image regions (Athanasiadiset al.,
2009). These approaches have similar characteristics
to our region-based method, since their purpose
is to classify a region produced by a bottom-
up segmentation algorithm to a predefined set of
categories. The first approach introduces an individual
Support Vector Machine (SVM) for every defined
concept, to detect the corresponding instances. Every
SVM is trained under the “one-against-all” approach
using the same training set (composed of the same
input features) which was also used for training in our
approach.

More specifically, an individual SVM is introduced
for every defined concept, to detect the corresponding
instances. Every SVM is trained under the “one-
against-all” approach. The region feature vector,
consisting of the MPEG-7 visual descriptors,
constitutes the input to each SVM, which returns for
every image segment a numerical value in the range

[0,1]. This value denotes the degree of confidence,
to which the corresponding region is assigned to
the concept associated with the particular SVM.
For each region, the maximum of the K calculated
degrees of confidence,argmax(µa(Ck)), indicates its
concept assignment, whereas the pairs of all supported
concepts and their respective degree of confidenceµ
computed for segmentα comprise the region’s concept
hypothesis.

The second approach is based on Particle Swarm
Optimization (PSO) (Chandramouli and Izquierdo,
2006), which is based on optimization of the results
of a Self Organizing Map classifier. Again in this case
the same training set was used and an individual SOM
network trained using the “one-against-all” approach
is employed for each category. In the basic training
algorithm the prototype vectors are trained according
to wd(t + 1) = wd(t) + gd(t)[x − wd(t)] where wd
denotes the weight of the neurons in the SOM network,
gd(t) is the neighborhood function andd is the
dimension of the input feature vector.

Table 4 illustrates the performance of the above
two algorithms and of the proposed in this paper
approach, when classifying the same 1320 image
segments in five concepts (sand, sea, sky, tree,
building). Two columns of results are provided in
the case of the proposed approach. The third column
shows the performance of the SVM when its kernel is
designed through Eqs. 1-2 by transferring the initial
high level knowledge. The fourth column shows the
resulting SVM performance after adaptation using the
presented method.

As we can notice, in Table 4, the proposed
methods outperform the other two by a large margin,
using the standard precision and recall measures for
the evaluation. This has been achieved, because the
concepts can be represented in much detail (slightly
varying from concept to concept) by an axiom; regions
also have, in most cases, specific surroundings, thus,
defining respective spatial relations. In this way,
the interweaving of the formal knowledge and the
connectionist system, enriches the latter with more
information, that varies with the concept examined,
and consequently manages to provide much better
results, when compared to conventional machine
learning techniques.

CONCLUSION

In this paper we presented a novel architecture
for image analysis applications based on connectionist
adaptation of ontological knowledge. The proposed
system architecture, consists of two main components:
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Table 3.The adapted knowledge for the specific domain.

SandSeg ⊑ (BrownSeg⊔GraySeg)⊓ (∃belowOf.(BlueSeg⊔BrownSeg)⊔∃leftOf.(BlueSeg⊔BrownSeg)

⊔∃rightOf.(BlueSeg⊔BrownSeg)

BuildingSeg ⊑ (RedSeg⊔YelowSeg⊔BrownSeg⊔GraySeg)

SeaSeg ⊑ (BlueSeg⊔WhiteSeg)⊓ (∃belowOf.BlueSeg⊔∃leftOf.BlueSeg⊔∃rightOf.BlueSeg)

SkySeg ⊑ (BlueSeg⊔WhiteSeg⊔GraySeg)⊓ (∃aboveO f.(BlueSeg⊔GreenSeg⊔RedSeg⊔GraySeg

⊔GreenSeg⊔WhiteSeg)⊔∃leftOf.(WhiteSeg⊔GreenSeg⊔BlackSeg)

⊔∃rightOf.(WhiteSeg⊔GreenSeg⊔BlackSeg))

TreeSeg ⊑ GreenSeg⊓ (∃belowOf.GreenSeg⊔∃leftOf.GreenSeg⊔∃rightOf.GreenSeg)

Table 4. Comparison of Connectionist System (CS) performance (before and after adaptation) with two
competitive methods: SVM classifier and Particle Swarm Optimization.

Label
SVM PSO Initial CS/KB Adapted CS/KB

Precision Recall Precision Recall Precision Recall Precision Recall
Sand 50.62 % 35.48% 30.45% 63.19% 75.12% 51.72% 83.17% 72.13%

Building 47.43 % 44.65% 35.41% 48.59% 52.82% 31.43% 58.73% 37.61%
Sea 46.22 % 62.22% 18.81% 65.78% 68.15% 75.94% 88.74% 79.24%
Sky 66.83 % 50.7% 64.87% 64.66% 64.74% 50.1% 75.32% 64.92%
Tree 44.94 % 40% 12.07% 57 % 58.34% 51.65% 65.84% 60.23%
Total 51.21 % 46.61% 32.32% 59.84 % 63.83% 52.17% 74.36% 62.83%

theFormal Knowledgeand theKnowledge Adaptation.
The Formal Knowledgestores, the terminology and
assertions that describe the problem under analysis.
On the other hand, theKnowledge Adaptationconverts
the formal knowledge to a connectionist system that
adapts and reconverts to formal knowledge, offering in
that way an improved adapted knowledge.

The proposed architecture was applied to an image
classification and segmentation problem, presenting
very promising results. A comparison with other state
of the art approaches on the same problem validated
the very good performance of our proposal. Future
work, includes the incorporation of fuzzy set theory
in the kernel evaluation. Additionally, we intend to
further examine the adaptation of a knowledge base
using the connectionist architecture, mainly focusing
on an improved semi-automatic selection of the
appropriate DL constructors.
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