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12.1 Introduction

Most of today’s content-based multimedia analysis and retrieval systems tend to follow
a low-level approach when tackling both content analysis and retrieval tasks, thus falling
short of benefits uprising from higher-level interpretation and knowledge. The role of addi-
tional information in the sense of semantics, context, and implicit or explicit knowledge is
gaining focus on the task of bridging the semantic and conceptual gap that exists between
humans and computers, in order to further facilitate human-computer interaction and scene
content understanding. This chapter focuses on modeling and exploiting contextual knowl-
edge toward efficient multimedia content understanding. As discussed below, this type of
information acts as a simulation of the human visual perception scheme, by taking into ac-
count all contextual information relative to the visual content of a scene [1]. As a result, the
notion of context, provided that it will be properly modeled and justified, may be used to
improve the performance of knowledge-assisted analysis, semantic indexing, and retrieval
of multimedia content.

When tackling the well-known problems of semi-automated high-level concept detec-
tion or scene classification, the researcher faces a challenging and broad research area. In
order to achieve better semantic results during any multimedia content analysis phase, the
influence of additional contextual information may be of great help, because although the
well-known semantic gap [2] has been acknowledged for a long time, current multimedia
analysis approaches are still divided into two rather discrete categories as low-level mul-
timedia analysis methods and tools (for example, Reference [3]) and high-level semantic
annotation methods and tools (for example, References [4] and [5]). Semantic knowledge
technologies, like ontologies [6] and folksonomies [7], are only lately being successfully
incorporated within multimedia analysis and retrieval frameworks, especially when using
them for creation, manipulation, and postprocessing of multimedia metadata.

Still, one of the most interesting problems in multimedia content analysis is detection of
high-level concepts within multimedia documents. Recognizing the need for such an anal-
ysis, many research works set focus on low-level feature extraction to efficiently describe
various audiovisual characteristics of a multimedia document. However, the semantic gap
often characterizes the differences between descriptions of a multimedia object by different
representations and the linking from the low-level to the high-level features. Moreover, the
semantics of each object depend on the context it is regarded within. For multimedia ap-
plications this means that any formal representation of real-world analysis and processing
tasks requires the translation of high-level concepts and relations, for instance, in terms of
valuable knowledge, into the elementary and extensively evaluated characteristics of low-
level analysis, such as visual descriptions and low-level visual features.

An important step for narrowing this gap is to automate the process of semantic feature
extraction and annotation of multimedia content objects, by enhancing image and video
classification with semantic characteristics. The main idea introduced herein relies on the
integrated handling of concepts evident within multimedia content. Recent advances in
the research field of knowledge-assisted multimedia analysis, along with the emerge of
new content and metadata representations, have driven more and more researchers looking
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beyond solely low-level features (such as color, texture, and shape) in pursuit of more ef-
fective high-level multimedia representation and analysis methods. Current and previous
multimedia research efforts are starting to focus on the combination of both low-level de-
scriptors computed automatically from raw multimedia content and semantics focusing in
extracting high-level features.

In the following, Section 12.2 describes the motivation in utilizing the notion of visual
context in concept detection and scene classification. Section 12.3 presents the notions
of bag-of-words image analysis techniques and visual context, and surveys the relevant
state-of-the art methods. Section 12.4 deals with a novel proposition of an enhanced visual
conceptualization of relative knowledge, as well as the instantiation of an image’s region
types. Section 12.5 presents three different types of context knowledge formalization, to-
gether with the proposed contextual adaptation in terms of the visual context algorithm and
its optimization steps, according to the utilized knowledge. Some self-explanatory exam-
ples are presented in Section 12.6, whereas Section 12.7 lists experimental results derived
from the beach domain. Finally, this chapter concludes with Section 12.8.

12.2 Motivation and Overview

Visual context forms a rather classical approach to context, tackling it from the scope
of environmental or physical parameters that are evident in multimedia applications. The
discussed context representation supports audiovisual information (for example, lighting
conditions, environmental information) and is separately handled by visual context models.
Research objectives in the field include visual context analysis, that is, to take into account
the extracted/recognized concepts during content analysis in order to find the specific con-
text, express it in a structural description form, and use it for improving or continuing the
content analysis, indexing, and searching procedures, as well as personalization aspects.
The following text refers to the term visual context, by interpreting it as all information
related to the visual scene content of a still image or video sequence that may be useful
during its analysis phase.

Since there is no globally applicable aspect of context in the multimedia analysis chain,
it is very important to establish a working representation for context, in order to benefit
from and contribute to the proposed enhanced multimedia analysis. The problems to be
addressed include how to represent and determine context, how to use it, and how to define
and model corresponding analysis features to take advantage of it. Additionally, efficient
ways to utilize the new content and context representations must be investigated, in order
to optimize the results of content-based analysis. In general, the lack of contextual infor-
mation significantly hinders optimal analysis performance [8] and, along with similarities
in low-level features of various object types, results in a significant number of misinter-
pretations. Taken into account the current state-of-the-art, both in terms of works dealing
with content classification and regional visual dictionaries, as well as context modeling
techniques, this work aims at a hybrid unification of them, in order to achieve optimized
content analysis results and strengthen its high-level and low-level correlation.
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According to the previous statements, visual context is strongly related to two main
problems of image analysis; that is, scene classification and high-level concept detec-
tion/recognition. Scene classification forms a top-down approach, where low-level visual
features are typically employed to globally analyze the scene content and classify it in
one of a number of predefined categories, such as indoor/outdoor, city/landscape, and so
on. Concept detection/recognition is a bottom-up approach that focuses on local analysis
to detect and recognize specific objects in limited regions of an image, without explicit
knowledge of the surrounding context (for example, recognize a building or a tree). The
above two major fields of image analysis actually comprise a chicken-and-egg problem.
For instance, detection of a building in the middle of an image might imply a picture of a
city with a high probability, whereas pre-classification of the picture as city would favor the
recognition of a building versus a tree.

However, a significant number of misclassifications usually occur because of the simi-
larities in low-level color and texture characteristics of various object types and the lack of
contextual information, which is a major limitation of individual object detectors. Toward
the solution to the latter problem, an interesting approach is the one presented in Refer-
ence [9]. A spatial context-aware object-detection system is proposed, initially combining
the output of individual object detectors in order to produce a composite belief vector for
the objects potentially present in an image. Subsequently, spatial context constraints, in the
form of probability density functions obtained by learning, are used to reduce misclassifi-
cation by constraining the beliefs to conform to the spatial context models. Unfortunately,
such an approach alone is not considered sufficient, as it does not utilize the significant
amount of available additional knowledge in the form of semantic relations.

So far, none of the existing methods and techniques utilizes the herein proposed contex-
tual modeling in any form. This tends to be the main drawback of these individual object
detectors, since they only examine isolated strips of pure object materials, without taking
into consideration the context of the scene or individual objects themselves. This is very
important and also extremely challenging even for human observers. The notion of visual
context is able to aid in the direction of natural object detection methodologies, simulating
the human approach to similar problems. For instance, many object materials can have the
same appearance in terms of color and texture, while the same object may have different
appearances under different imaging conditions, such as lighting and magnification. How-
ever, one important trait of humans is that they examine all the objects in the scene before
making a final decision on the identity of individual objects. The use of visual context in
the visual analysis process is the one that provides the necessary added value and forms
the key for such a solid unambiguous recognition process and will be extensively presented
and exploited in the following.

More specifically, this chapter presents an integrated approach, offering unified and un-
supervised manipulation of multimedia content. It acts complementary to the current state-
of-the-art, as it tackles both aforementioned challenges. Focusing on semantic analysis of
multimedia, it contributes toward bridging the gap between the semantic and raw nature of
multimedia content. It tackles one of the most interesting problems in multimedia content
analysis, namely, detection of high-level concepts within multimedia documents, based on
the semantics of each object, in terms of its visual context information. The latter is based
on semantic relationships that are inherent within the visual part of the content. The pro-
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posed approach proves also that the use of such information enhances the results obtained
from traditional knowledge-assisted image analysis techniques, based on both visual and
contextual information.

12.3 Image Analysis Based on Regions and Context

If focused solely on the visual part of analysis, it is rather true that high-level concept
detection remains still a challenging and unsolved problem. Its most interesting aspects
are first the low-level feature extraction, aiming to capture and describe the visual content
of images or regions, and last the way that these features will be assigned to high-level
concepts. This chapter deals with the latter part of the analysis process, and aims to cre-
ate image descriptions from image regions, using standardized visual features, that is, the
MPEG-7 (Moving Picture Experts Group) descriptors.

The most common approach in detection and recognition tasks begins with the extraction
of a low-level description of the visual content of concepts. Then, for each concept, a
detector is trained based on one or more examples. This is typically done using various
machine learning techniques, such as neural networks, support vector machines (SVMs),
and fuzzy systems.

In order to train the concept detectors, it is important to use or create a specific dataset,
appropriately annotated either globally or locally. For a globally annotated image, one
only gets the knowledge of the existence of certain concepts within it. For a locally anno-
tated image, one also knows the exact location of concepts within it. However, despite the
continuous growth of audiovisual content, the available locally annotated image collections
remain few. This is not surprising, since such an annotation process is a difficult and tedious
task. Two of the most important locally annotated collections are LabelMe [10], a collab-
oratively annotated collection for a very large number of concepts, and the PASCAL [11]
collection. On the other hand, a global annotation of a given image is a much easier and
less time-consuming task. There exist many such datasets, among which one should note
the collaborative annotation of the LSCOM workshop [12], which focused on sequences
from news videos of the TRECVID 2005 collection, and a similar attempt presented in
Reference [13], focusing on cultural videos from the TRECVID 2007 collection. It should
be noted here that in many popular social networks, such as Flickr,1 many thousands of
photos are globally annotated, while research efforts toward the annotation of such datasets
are still increasing [14], [15], [16].

It is now clear that image analysis techniques that focus on the extraction of high-level
concepts from globally annotated content are of greater importance and may have a broader
field of applications. Thus, the algorithms that are presented in this chapter aim toward
this exact problem, that is, how to extract and manipulate efficiently the visual content of
globally annotated images in order to detect the presence of high-level concepts, without
specifying their exact location.

1http://www.flickr.com
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12.3.1 The Bag-of-Words Model

A very popular model that combines the aforementioned aspects of visual analysis is
the bag-of-words model. Visual descriptions are extracted locally, from groups of image
pixels. Using an appropriate visual dictionary, these descriptions are quantized to the cor-
responding visual words. An image is then described by a set of visual words, without
considering any spatial or semantic relations. Finally, an appropriate detector is trained for
each concept.

In order to develop a bag-of-words based technique, the first step to consider is how
to select image parts, from whom visual descriptors should be extracted. Early approaches
used a grid, dividing images to blocks. References [17] and [18] used square blocks of equal
size. These techniques were very fast, but lacked in terms of the semantic interpretation
of each block. To overcome this, Reference [19] used random sampling and a variable
block size. Since this disintegration proved not to be very robust, later techniques were
based on the extraction of points of interest. References [20] and [21] extracted features
from the neighborhood of Harris affine points. Reference [18] selected points detected by
the difference-of-Gaussian and extracted multi-resolution features. All these approaches
aimed to selected invariant points under scale and some geometrical transforms and are very
effective in the case of object detection. In parallel, Reference [22] applied a segmentation
algorithm, in order to split an image to regions, based on their color and texture properties,
with many advantages in material or scene detection.

The next step to consider is the extraction of the visual descriptions. In the case of grid-
selected regions, color and texture descriptors are extracted. When regions are selected by a
segmentation process, shape descriptors may also be extracted, if applicable to the targeted
concepts. The MPEG-7 standard [23] contains many visual descriptors that are broadly
used. Finally, in the point-of-interest-based regions, appropriate and popular features are
those generated by the scale-invariant feature transform (SIFT) [24] and speeded-up robust
feature (SURF) [25] methods and their various variations.

The success or failure of each technique is highly related to the creation of an appro-
priate codebook, based on which an image region is assigned to a visual word. Most of
the techniques use typical clustering algorithms, such as the traditional K-means [26], or a
hierarchical variation, such as the one proposed in Reference [27]. The selection of K is
usually selected empirically or by a trial-and-error process on a validation set. However,
certain techniques, such as the minimum description length (MDL) approach, are often
applied in order to determine the appropriate dictionary size [28]. Typical sizes of dictio-
naries vary from a few tenths for grid approaches to many thousands of visual words for
point-of-interest approaches.

The last step is to select an appropriate bag-of-words representation, with which the
detectors will be trained. A number techniques have been proposed; many of them have
been inspired by text categorization. A brief overview of the most important techniques is
presented below.

Reference [29] created a texton library and trained texton histogram-based detectors.
Similarly, Reference [30] constructed a codebook of prototype regions with specific geo-
metric and photometric properties, namely, three-dimensional textons. Reference [31] used
mean-shift clustering to split images to regions based on color features. Each image was
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then represented by a binary vector indicating the presence of absence of visual words.
In another work [32] pixel-based concept detectors were used in order to achieve seman-
tic image clustering. Visual features were extracted from the resulting regions and scenes
were detected using a codebook. Reference [20] replaced visual words with points of in-
terest (bag-of-keypoints) and used K-means clustering to construct the visual dictionary.
Both SVM and naive Bayesian techniques were then applied for concept detection. Refer-
ence [33] used semantic descriptions instead of low-level descriptors. In Reference [34],
the authors used the bag-of-words model to a contour-based object recognition problem.
They constructed the visual dictionary based on curve parts. Another work [35] divided
images to subregions and calculated local histograms within these subregions. Then, the
bag-of-words model was used. Reference [36] proposed the use of keyblocks, which is the
equivalent of keywords in the field of images. A codebook, that contained those keyblocks
in various resolutions, was built. Reference [18] investigated various methods of splitting
images to parts and used a Bayesian hierarchical model.

During the past few years, there have been a few notable attempts to enhance the bag-
of-words model with spatial relations. Reference [37] used adaptive correlation histograms
and presented a model robust to geometric transformations. Reference [38] suggested a
hierarchical probabilistic model, based on a set of parts, each describing the expected posi-
tion of objects. Reference [39] suggested a hierarchical bag-of-words model of spatial and
spatiotemporal features of video sequences, whereas another work [40] suggested a seg-
mentation algorithm as an extension of object detection techniques with the aid of a visual
dictionary.

As the bag-of-words model is inspired by text processing techniques, it is not surprising
that it has been enhanced by popular methods in this field. For example, the latent semantic
analysis (LSA) approach [41] aims at exploiting the latent relations among the visual words.
References [42] and [43] extended the bag-of-words model using LSA and probabilistic
LSA (pLSA). Reference [21] modeled images as a mixture of concepts and also applied
pLSA, in a fully unsupervised model.

12.3.2 The Role of Context

Scene context is probably the simplest way to model context in an image analysis prob-
lem. According to Reference [44], scene context may be defined as a combination of
objects/concepts which are correlated under human perception and share the property to
complement each other. Thus, in order to exploit scene context, one has first to detect
present concepts and optionally their location within the image and then use contextual
information to infer the scene the image depicts. For example, in a concept detection prob-
lem, if the concept sea is detected with high confidence, one could also expect the image to
contain sky and depict a beach scene. Reference [45] used scene context to detect events.
Reference [46] applied the expectation-maximization algorithm to the low-level features of
image parts that depict concepts. Reference [47] investigated the use of Bayesian networks,
Boltzmann machines, Markov random fields, and random fields to model the contextual re-
lations between concepts. Reference [48] used scene context as an extra source in global
descriptions and faced scene classification and object detection as a unified problem.
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Spatial context aims at modeling the spatial relations among concepts. This step is used
to enhance context models, after modeling scene context. It may be defined as a combina-
tion of objects/concepts, which, apart from their co-occurrences, occupy spatial positions
within an image that are not independent. For example, to further extend the previous scene
context example, if an image is detected to depict a beach scene and for a region it can-
not be determined with high confidence whether it depicts sky or sea, two concepts that
share similar visual features, its location should be considered. Thus, if it is located on
the top of all other regions it should depict sky. Reference [49] used quantitative spatial
and photometric relations among regions in a scene classification problem. Reference [50]
used probabilistic models to model spatial relations among materials; this effort was further
enhanced in Reference [9] by modeling spatial relations among concepts after a learning
process. Reference [51] proposed an expectation-maximization model, which after a learn-
ing process low-level features to visual words that describe concepts. Reference [52] used
a grid to split images to blocks and encoded both relations among low-level features and
concepts and spatial relations among concepts. References [53] and [54] also used a grid
and a two-dimensional hidden Markov model to form spatial relations among concepts.
Another work [55] used graphs and statistics and showed that spatial relation-driven mod-
els increase precision. In Reference [56], the authors combined knowledge about scene
layout and a generative model using material detectors and further improved their model in
Reference [57].

Temporal context considers the relations of an image with other images from the same
collection, taken with a small time difference, independently of their visual content. For
example, if an image depicts a beach scene with a confidence, concepts present in images
taken by the same user with a small time difference should also be in the context of beach.
Reference [58] exploited the idea that the visual content of a photo is correlated to the one
of photos taken with a small time interval. Reference [59] used many successive images
from different viewpoints and exploited their temporal context to solve a three-dimensional
photo retrieval problem by employing a Bayesian model. Reference [60] used temporal
context in event detection in text documents. References [61] and [62] combined temporal
context and photo location, whereas Reference [63] constructed hierarchical event models
based on the visual content and temporal context of photo collections.

Metadata context involves the relations among the metadata that are available in digital
images, such as the camera settings with which the image was taken. These metadata are
embedded in image files according to the EXIF (Exchangeable Image File) standard [64].
For example, for an indoor/outdoor scene classification problem, the knowledge of the fo-
cus distance can let one assume the depicted scene; for example, a large distance usually
indicates an outdoor scene. Reference [65] used metadata of camera settings combined
with low-level features to automatically annotate photos. Reference [66] used a boost-
ing algorithm and metadata in a scene classification problem. Reference [67] combined
metadata with color features and face and natural place detectors. References [68], [69],
and [70] showed that metadata information can significantly assist in the problems of in-
door/outdoor classification and sunset detection, using Bayesian networks. Finally, Refer-
ence [71] proposed a system that combines metadata and visual features in order to auto-
matically construct photo collections.
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(a) (b)

FIGURE 12.1 (See color insert.)

An input image and its coarse segmentation.

12.4 Image Description and High-Level Concept Detection Using a Region
Thesaurus

The following presents the proposed approach to tackle the problems of image descrip-
tion and high-level concept detection from a different and at the same time innovative as-
pect, that is, based on a region thesaurus containing a set of region types [72]. This research
effort was expanded and further strengthened in References [73], [74], [75] and [76] by ex-
ploiting visual context in the process and achieving promising research results. The main
focus remains to provide an ad hoc ontological knowledge representation containing both
high-level features (that is, high-level concepts) and low-level features and exploit them
toward efficient multimedia analysis.

Generally, the visual features extracted from an image or video can be divided into two
major categories. The first contains typical low-level visual features that may provide a
qualitative or quantitative description of the visual properties. Often these features are
standardized in the form of a visual descriptor. The second category contains high-level
features that describe the visual content of an image in terms of its semantics. One fun-
damental difference between these categories is that low-level features may be calculated
directly from an image or video, while high-level features cannot be directly extracted, but
are often determined by exploiting the low-level features. A human observer can easily
recognize high-level features, even in situations when it could be rather difficult to provide
their qualitative description and almost impossible to provide a quantitative one.
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FIGURE 12.2

Offline part of the high-level concept detection algorithm.
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FIGURE 12.3

Online part of the high-level concept detection algorithm.

In this sense, this chapter tries to enhance the notion of a visual context knowledge model
with mid-level concepts. Those concepts are referred to as region types, for reasons clar-
ified in Section 12.4.2. Such concepts may provide an in-between description, which can
be described semantically, but does not express neither a high-level nor a low-level feature.
Thus, this work will focus on a unified multimedia representation by combining low-level
and high-level information in an efficient manner and attach it to the context model by
defining certain relations. To better understand the notion of region types, Figure 12.1
presents a visual example. In this example, a human could easily describe the visual con-
tent of the image either in a high-level manner (that is, the image contains sky, sea, sand,
and vegetation) or in a lower level, but higher than a low-level description (that is, an azure
region, a blue region, a green region, and a gray region). Although a quantitative descrip-
tion cannot be provided, each image can be intuitively and even efficiently described by a
set of such features, that is, the region types. Therefore, it is of crucial importance to en-
code the set of region types in an effective manner that can efficiently describe almost every
image in a given domain. To achieve this, a region thesaurus needs to be constructed. The
next sections briefly describe the extraction of the low-level features and the construction
of the region thesaurus. Figure 12.2 presents the offline part of the overall methodology
for the high-level concept detection process that leads to a trained set of classifiers, while
Figure 12.3 presents the online part that leads to the extraction of high-level features.

12.4.1 Low-Level Feature Extraction

To represent the color and texture features of a given image, this chapter follows an ap-
proach of extracting visual descriptors locally, that is, from image regions. First, color seg-
mentation is performed using a multi-resolution implementation of the well-known RSST
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method [77], tuned to produce a coarse segmentation. Note that this under-segmentation
both facilitates image description and prevents the problem from being too complex. After
extracting image regions, low-level visual descriptors from the MPEG-7 standard [23] are
extracted to capture a description of their visual content. Here, the extraction process fo-
cuses on color and texture features using appropriate MPEG-7 color and texture descriptors,
since the employed high-level concepts belong to the categories of materials and scenes. To
perform such feature extraction, a descriptor extraction tool [78], which is fully compatible
with the MPEG-7 eXperimentation Model (XM) [79], is used.

More specifically, four color and two texture descriptors are selected: the dominant color
descriptor (DCD), the color layout descriptor (CLD), the scalable color descriptor (SCD),
the color structure descriptor (CSD), the homogeneous texture descriptor (HTD), and the
edge histogram descriptor (EHD). To obtain a single region description from all the ex-
tracted region descriptions, features are merged after their extraction [80] into a feature
vector. The feature vector fi that corresponds to a region ri ∈ R, for R denoting the set of
all regions, is defined as follows:

fi = f (ri) = [DCD(ri),CLD(ri),SCD(ri),CSD(ri),HT D(ri),EHD(ri)]. (12.1)

12.4.2 Construction of a Region Thesaurus

After extracting color and texture features, the next step aims to bridge these low-level
features to the high-level concepts aimed at detection. To achieve this, first a region the-
saurus will be constructed to assist with quantizing regions and forming an intermediate
image description. This description will contain all the necessary information to connect
one image with every region type of the dictionary. In this way, a fixed-size image descrip-
tion can be achieved, tackling the problem that the number of segmented regions is not
fixed. Moreover, this description will prove again useful when contextual relations will be
exploited, as described in Section 12.5.

Given the entire training set of images and their extracted regions, one can easily observe
that regions belonging to similar semantic concepts also have similar low-level descrip-
tions, and that images containing the same high-level concepts consist of similar regions.
This gives a hint to exploit region similarity, as region co-existences often characterize the
concepts that exist within an image [72].

The first step is the selection of region types that will form the region thesaurus. Based on
the aforementioned observations, the proposed method starts from an arbitrary large num-
ber of segmented regions and applies a hierarchical clustering algorithm [81], adjusted for
the problem at hand and with the clustering level empirically selected. After the clustering
process, each cluster may or may not represent a high-level feature and each high-level
feature may be contained in one or more clusters. This means that the concept sand can
have many instances differing, for example, in color or texture. Moreover, in a cluster that
may contain instances from a semantic entity (for example, sea), these instances could be
mixed up with parts from another visually similar concept (for example, sky). Here, a single
region is selected to represent each cluster, that is, the region type.

Finally, a region thesaurus T can be formally described as a set of NT visual words ti:

T =
{

ti, i = 1,2, . . . ,NT

}
, ti ⊂ R, (12.2)
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⋃

i

t = R, i = 1,2, . . . ,NT ,
⋂

i, j

t = /0, i 6= j. (12.3)

Generally, a thesaurus combines a list of every term in a given domain of knowledge and
a set of related terms for each term in the list, which are the synonyms of the current term.
In the proposed approach, the constructed region thesaurus contains all the region types
that are encountered in the training set. Each region type is represented by its feature vector
that contains all the extracted low-level information. As it is obvious, a low-level descriptor
does not carry any semantic information. It only constitutes a formal representation of the
extracted visual features of the region. On the other hand, a high-level concept carries only
semantic information. It is now clear that a region type lies in-between those features. It
contains the necessary information to formally describe the color and texture features, but
can also be described with a lower description than the high-level concepts. Namely, one
can describe a region type as a green region with a coarse texture.

12.4.3 Construction of Model Vectors

This section presents the algorithm, which is used here to describe each image with the
aid of the region thesaurus. First, it must be noted that the MPEG-7 standard does not spec-
ify strict distance measures. It only suggests some, so as to allow for other measures to be
used and test their efficiency. As depicted in the experiments presented in Reference [72],
the use of the Euclidean distance provides a simple yet effective way to fuse all extracted
low-level information, leading also to satisfactory results. Then, the distance d(r1,r2) be-
tween two regions r1 and r2 defined in R is calculated by the Euclidean distance of their
feature vectors f1 and f2 as follows:

d(r1,r2) = d( f1, f2) =

√
n

∑
i=1

( f i
1− f i

2)
2. (12.4)

Having calculated the distance of each image region to all the words of the constructed
thesaurus, the model vector that semantically describes the visual content of the image is
formed by keeping the smaller distance for each intermediate concept (region type), thus
containing all the necessary information to associate an image with the whole set of the
region thesaurus. In particular, the model vector mp describing image p is given by

mp = [mp(1),mp(2), . . . ,mp( j), . . . ,mp(NT )], i = 1,2, . . . ,NK , (12.5)

where
mp( j) = min

r∈R(p)
{d( f (t j), f (r))}, i = 1,2, . . . ,NT ; j = 1,2, . . . ,NT , (12.6)

and R(p) denotes the set of all regions of image p.
In order to better understand the above process, Figure 12.4 presents an indicative ex-

ample, where an image is segmented in regions and a region thesaurus is formed by six
region types. On the left, this figure presents the distances of each region type from the sky
region; the distances of each image region from region type 5 are presented on the right.
The model vector is constructed by the smallest distances for each region type. In this case
and considering region type t5, the minimum distance is equal to 0.1. The model vector for
the specific image, given the region thesaurus, is defined as
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FIGURE 12.4 (See color insert.)

Distances between regions and region types: (a) distances between an image region and all region types;

(b) distances between all regions and a specific region type.
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Construction of model vectors for two images and a visual thesaurus of six region types; lowest values of

model vectors are highlighted (light gray) to note which region types of the thesaurus are most contained in

each image, whereas a high value (dark gray) indicates a high distance between the corresponding region type

and the image.
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m = [m(1),m(2), . . . ,m(5),m(6)], (12.7)

where m(5) will be equal to 0.1. Taking into consideration all distances between all four
image regions and all six region types (that is, a total of 24 distances), the corresponding
model vector is formed. Figure 12.4 presents the model vectors for two images, using the
region thesaurus shown in Figure 12.5.

12.4.4 High-Level Feature Detection

After extracting model vectors from all images in the (annotated) training set, an SVM-
based detector is trained separately for each high-level concept. A model vector mi, de-
scribing a keyframe in terms of the region thesaurus, is fed to the detectors. The output
of the network is the confidence that the image in question contains the specific concept,
this is done for all concepts. It is important to note that the detectors are trained based on
annotation per image and not per region. The same stands for their output, thus providing
the confidence that the specific concept exists somewhere within the keyframe in question.

12.5 Visual Context Optimization

In order to fully exploit the notion of visual context and combine it with the aforemen-
tioned bag-of-words technique, a threefold approach is introduced next. The proposed
methodology could be divided into the following three sections, according to the effect of
visual context regarding concepts and region types:

• a scene context approach that aims to refine initial high-level concept detection re-
sults by exploiting solely the contextual relations between high-level concepts;

• an approach that aims to refine the input of trained high-level concept detectors based
on the contextual relations between region types of the given training set; and

• a unified approach that utilizes contextual relations among high-level concepts and
region types.

It should be emphasized here that this research effort focuses on the integrated approach of
the subject, which offers a unified and unsupervised management of multimedia content.
It is proved that the use of enhanced intermediate information can improve the results of
traditional, knowledge-assisted image analysis, based on both visual and contextual infor-
mation.

12.5.1 Scene Context

The proposed approach differentiates itself from most of the related research works, be-
cause it deals with a global interpretation of the image and the concepts that are present in
it. In other words, high-level concepts either exist or do not exist within the entire image un-
der consideration and not within a specific region of interest (for example, the image might
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contain concept water, but there is no information regarding its spatial location). Now,
in order to further adapt the results of low-level and descriptor-based multimedia analy-
sis, utilizing the notion of region types, a scene context method, founded on an enhanced
high-level contextual ontology, is introduced. The proposed visual context application opti-
mizes the high-level concept detection results (in terms of the classifiers’ output) that were
obtained based on the detailed methodology described in the previous sections.

12.5.1.1 A Scene Context Knowledge Model

The high-level concept ontology proposed herein is described as a set of concepts and
semantic relations between concepts within a given universe. This set is introduced in order
to efficiently express the real-world relations that exist between the concepts of the domain
at hand. In general, one may decompose such an ontology Oc into two parts:

• Set C = {ci}, for i = 1,2, . . . ,n, of all semantic concepts in the domain of interest.

• Set Rc = {Rci j}, i, j = 1,2, . . . ,n of all semantic relations among concepts. Note that
Rc,i j = r(k)

c,i j contains the K relations that can be defined among concepts ci and c j.

Moreover, for a given relation r(k)
c,i j, its inverse r̄(k)

c,i j can be defined.

More formally:
Oc = {C,Rc}, Rc,i j : C×C →{0,1}. (12.8)

However, modeling of a domain using Oc is inappropriate, since it does not model re-
lations among concepts as fuzzy as in real-world domains. Therefore, the aforementioned
model is expanded to produce a fuzzified version of the scene context ontology, formally
denoted as follows:

Oc = {C,Rc}, (12.9)

where Rc = {Rc,i j} is the set of fuzzy relations among concepts, with Rc,i j = r(k)
c,i j and r̄(k)

c,i j
denoting again the corresponding inverse relation. Now, the following can be written:

rci j : C×C → [0,1] . (12.10)

Since for two concepts the existence of more than one relations is possible, a combination
of all relations among ci and c j is defined as

Uc,i j = ∪
k
[r(k)c,i j]

p, i, j = 1,2, . . . ,N, k = 1,2, . . . ,K. (12.11)

The final combination of the MPEG-7 originating relations forms a resource description
framework (RDF) graph and constitutes the abstract contextual knowledge model to be
used (Figure 12.6). The value of p is determined by the semantics of each relation rci j used
in the construction of Uc,i j. More specifically:

• p = 1, if the semantics of rci j imply that it should be considered as is;

• p =−1, if the semantics of rci j imply that its inverse r̄ci j should be considered; and

• p = 0, if the semantics of rci j do not allow its participation in the construction of the
combined relation Uc,i j.
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FIGURE 12.6

A fragment of the Beach domain ontology depicting the relations between concept Beach (the root element)

and seven high-level concepts.

As indicated in Reference [82], any kind of semantic relation may be represented by such
an ontology, however, herein it is restricted to a fuzzified ad hoc context ontology. The latter
is introduced in order to optimally express the real-world relationships that exist between
each domain’s participating concepts. In order for this ontology to be highly descriptive,
it must contain a representative number of distinct and even diverse relations among con-
cepts, so as to scatter information among them and thus describe their context in a rather
meaningful way. Moreover, the utilized relations need to be meaningfully combined, so
as to provide a view of the knowledge that suffices for context definition and estimation.
Since modeling of real-life information is usually governed by uncertainty and ambiguity,
it is believed that these relations must incorporate fuzziness in their definition. Therefore,
the proposed method extends a subset (Table 12.1) of the MPEG-7 semantic relations [83]
that are suitable for image analysis and specified, in this case, by a domain expert. It should
be noted at this point that since the proposed semantic relations are redefined in a way to
represent fuzziness, a degree of confidence is associated to each of them. To further un-

TABLE 12.1
Fuzzy scene context semantic relations between concepts.

Name Inverse Symbol Meaning

Specialization Generalization Sp(a,b) b is a specialization in the meaning of a
Part PartOf P(a,b) b is a part of a
Example ExampleOf Ex(a,b) b is an example of a
Instrument InstrumentOf Ins(a,b) b is an instrument of or is employed by a
Location LocationOf Loc(a,b) b is the location of a
Patient PatientOf Pat(a,b) b is affected by or undergoes the action of a
Property PropertyOf Pr(a,b) b is a property of a
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FIGURE 12.7

A fragment of the Beach domain ontology depicting the relations between concept sand (the root element) and

six high-level concepts.

derstand the meaning of these semantic relations, some indicative examples are presented
below. For example, a bear is a Specialization of an animal, whereas tree is a part of forest.
Moreover, clay is an Example of a material and a wheel is the Instrument of a car. Beach
might be the Location of an umbrella, gun is a Patient of the action of soldier, and wavy is
a Property of a sea.

The graph of the proposed model contains nodes (that is, domain concepts) and edges
(that is, an appropriate combination2 of contextual fuzzy relations between concepts). The
degree of confidence of each edge represents fuzziness in the model. Non-existing edges
imply non-existing relations, meaning that relations with zero confidence values are omit-
ted. An existing edge between a given pair of concepts is produced based on the set of
contextual fuzzy relations that are meaningful for the particular pair. For instance, the edge
between concepts rock and sand is produced by the combination of relations Location and
Patient, whereas the edge between water and sea utilizes Specialization, PartOf, Example,
Instrument, Location, and Patient, in order to be constructed. Since each concept has a
different probability to appear in the scene, a flat context model would not have been suf-
ficient in this case. On the contrary, concepts are related to each other, implying that the
graph relations used are in fact transitive. The degree of confidence is implemented using
the RDF reification technique [84].

12.5.1.2 Scene Context Optimization

Once the contextual knowledge structure is finalized and the corresponding represen-
tation is implemented, a variation of the context-based confidence value readjustment al-
gorithm [8] is applied to the output of the neural network-based classifier. The proposed
contextualization approach empowers a postprocessing step on top of the initial set of re-

2The combination of different contextual fuzzy relations toward the generation of a practically exploitable
knowledge view is conducted by utilizing fuzzy algebraic operations in general and the default t-norm in
particular.
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FIGURE 12.8

Contextual influence on high-level concepts.

gion types extracted. It provides an optimized re-estimation of the initial concepts’ degrees
of confidence for each region type and updates each model vector. In the process, it uti-
lizes the high-level contextual knowledge from the constructed contextual ontology. The
corresponding methodology is presented in Figure 12.8.

The degree of membership for each concept is estimated from direct and indirect rela-
tionships of the concept with other concepts using a meaningful compatibility indicator or
distance metric. Again, depending on the nature of the domains provided in the domain on-
tology, the best indicator could be selected using the max or the min operator, respectively.
Algorithm 12.1 depicts the general structure of the degree of membership re-evaluation
procedure. The number of the iterations is defined empirically and usually three to five it-
erations are enough. The final output of the algorithm are the updated degrees of confidence
for the presence of all concepts of the given domain within image p.

ALGORITHM 12.1 Procedure for evaluating the degree of membership.

1. The considered domain imposes the use of a domain similarity (or dissimilarity)
measure ws ∈ [0,1].

2. For each image p, a fuzzy set Lp with the degrees of confidence µp(ci) is defined
for all concepts ci of the domain.

3. For each ci in the fuzzy set Lp with a degree of membership µp(ci), the particular
contextual information is obtained in the form of the set Uc,i = {Uc,i j : ci,c j ∈
C,∀i 6= j}.

4. The new degree of membership µ ′p(ci) is calculated by taking into account each
domain’s similarity measure. In the case of multiple concept relations in the on-
tology, when relating concept ci to more concepts apart the root concept (Fig-
ure 12.6), an intermediate aggregation step should be applied for the estima-
tion of µ ′p(ci) by considering the context relevance notion, cri = max j{Uc,i j},
j = 1,2, . . . ,ck, defined in Reference [8]. The calculation of µp(ci), which is the
degree of confidence for ci at the l-th iteration, is expressed with the recursive
formula

µ l
p(ci) = µ l−1

p (ci)−ws(µ l−1
p (ci)− cri).

Equivalently, for an arbitrary iteration l:

µ l
p(ci) = (1−ws)l ·µ0

p(ci)+(1− (1−ws)l) · cri,

where µ0
p(ci) represents the initial degree of membership for concept ci.
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12.5.2 Region Type Context

This section presents a different approach on scene context. The context optimization
will have an effect on region types rather than concepts. It is relatively easy to prove
that the utilization of this context information will improve the results of traditional image
analysis. Indeed, initial analysis results are enhanced through the utilization of semantic
knowledge, in terms of region-independent region types and semantic relations between
them. In general, this information may be described by an intermediate description, which
can be semantically described, but does not express the high-level concepts.

12.5.2.1 A Region Type Knowledge Model

The proposed methodology, that is presented in this section, follows precisely the steps of
the scene context optimization from Section 12.5.1. Thus, an appropriate fuzzified ontology
will be first defined in order to model in an appropriate way the real-world relations among
the region types. In this case, the crisp ontology OT may be described as set T of m region
types and a set RT,i j of semantic relations among them. More specifically, let:

1. T = {ti}, for i = 1,2, . . . ,m, be the set of all region types of the visual thesaurus used
in the problem at hand, and

2. RT = {RT,i j}, for i, j = 1,2, . . . ,m, be the set of the semantic relations among region
types. Set R(k)

T,i j, for k = 1,2, . . . ,K′, includes K′ relations that can be defined between

region types ti and t j. Moreover, for a given relation r(k)
T,i j, its inverse r̄(k)

T, ji can be
defined.

Thus, for a given ontology OT and sets T and RT,i j, the following can be written:

OT = {C,RT}, (12.12)

RT,i j : T ×T →{0,1}. (12.13)

Now, the ontology modeling should be redefined to include fuzziness. A fuzzified version
OT of OT is defined as

OT = {T,RT}, (12.14)

where RT = {RT,i j} denotes the set of fuzzy semantic relations. Set RT,i j = r(k)T,i j, for
k = 1,2, . . . ,K′, includes all K′ relations that can be defined between two region types ti
and t j. Moreover, for each relation r(k)T,i j, its inverse r̄(k)T, ji can be defined. Finally, since
relations are fuzzy, the following can be written:

rT,i j : T ×T → [0,1]. (12.15)

Since it is possible that more than one relation may be valid simultaneously between two
region types, a combination of relations can be defined as

UT,i j = ∪
k
[r(k)T,i j]

p, i, j = 1,2, . . . ,N; k = 1,2, . . . ,K′. (12.16)

The value of p is once again determined by the semantics of each relation r,i j used to
construct U,i j. More specifically:
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• p = 1, if the semantics of rT,i j imply that it should be considered as is;

• p =−1, if the semantics of rT,i j imply the use of its inverse r̄T, ji; and

• p = 0, if the semantics of rT,i j do not allow its participation in the construction of the
combined relation UT,i j.

12.5.2.2 Relations between Region Types

Once again, semantic relations defined by the MPEG-7 standard [83] are chosen and
redefined to include fuzziness. The relations that may be applicable between region types
are summarized in Table 12.2.

In this case, these relations may be calculated after a statistical analysis in an appropriate
training set, that is, the one used to form the region thesaurus. To make their semantics and
the calculations clear, a few indicative examples are presented below.

• Similar denotes that a region type is similar to another region type, under a certain
degree of confidence. To calculate this degree, their low-level features should be
compared using an appropriate similarity function.

• Accompanier denotes the degree to which two region types co-occur in an image.
It is calculated as the percentage of the images in the training set that contain both
region types to the images that contain either of them.

• PartOf denotes that a region type is part of another. This relation is defined by
an expert, when this knowledge derives from observations to the visual thesaurus
construction.

• Combination denotes that two region types are combined to form another region type.
This is a special case where the inverse relation cannot be defined.

It becomes obvious that modeling region type context with an ontology leads again to
the construction of an RDF graph (Figure 12.9). Its nodes correspond to region types and
its edges to their combined relations. RDF reification [84] is used again here to estimate
the corresponding degrees of confidence. This way RDF triplets are formed, for instance,
blue partOf green, with a degree of confidence equal to 0.85. This triplet does not imply
that a blue region type will always be part of a green region type.

The region types of the ontology are those of the region thesaurus that have been con-
structed for the visual analysis. The final ontology relations are formed after calculations
among these regions.

TABLE 12.2
Contextual relations between region types.

Relation Inverse Symbol Meaning

Similar Similar Sim(a,b) region type a is similar to region type b
Accompanier Accompanier Acc(a,b) region type a is accompanier of region type b
Part PartOf P(a,b) region type a is part of region type b
Combination – Comb(a,b) combines two or more region types
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FIGURE 12.9

A fragment of the Beach region type knowledge model.

12.5.2.3 Region Type Context Optimization

After the construction of the model vector of an image p, an appropriately modified
version of Algorithm 12.1 is applied. The algorithm now aims at refining the model vector
by modifying its constituents, each corresponding to the degree of confidence for a region
type. This is a preprocessing step that outputs an improved version of the model vector
after considering the context of its region types. This leads to an increase in the detectors’
precision, as the refined model vectors are closer to those used for their training.

To make this clear, a simplistic example is considered below. The sea detector in the
Beach domain may have correlated this concept with the existence of a blue, a light blue,
and a brown region, which corresponds to a typical Beach image that depicts sea, sky, and
sand, respectively. If an image is presented where the region type that corresponds to sea is
green (as in Figure 12.10) while the others remain as described before, the sea detector is
certain to produce either a wrong result or a correct result with a small confidence, which
will decrease overall precision.

Algorithm 12.2, which is a modified version of the previous algorithm, aims at this exact
problem. In the given example, the model vector will be altered in a way that the confidence
of the existence of a blue region type is increased, while the one of a green region type is
decreased.

(a) (b)

FIGURE 12.10 (See color insert.)

An example from the Beach domain, where the region types of an image are different than a typical Beach

image.
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ALGORITHM 12.2 Improved procedure for evaluating the degree of membership.

1. The model vector for the image in question is calculated using the procedure
presented in Section 12.4.3.

2. The considered domain imposes the use of a domain similarity (or dissimilarity)
measure wT ∈ [0,1].

3. For each image p, the fuzzy set LT with the degrees of confidence µp(ti) is
defined for all region types ti, with i = 1,2, . . . ,k′ of the visual thesaurus.

4. For each region type ti in the fuzzy set L with a degree of confidence µp(Ti),
the particular contextual information is obtained in the form of the set UT,i =
{UT,i j : ti, t j ∈ T,∀i 6= j}.

5. The new degrees of confidence µ ′p(Ti) are calculated by taking into account
the current domain’s similarity measure. In the case of multiple concept re-
lations, when ti is related with one or more types, apart from the root of the
ontology, an intermediate aggregation step should be applied in order to calcu-
late µ ′p(Ti) using the context relevance notion cri defined in Reference [8] as
cri = max j{UT,i j}, for j = 1,2, . . . ,ck. The calculation of µ l

p(ti), which is the
degree of confidence for ti at the l-th iteration, is expressed with the recursive
formula

µ l
p(ti) = µ l−1

p (ti)−wt(µ l−1
p (ti)− cri).

Equivalently, for an arbitrary iteration l:

µ l
p(ti) = (1−wt)l ·µ0

p(ti)+(1− (1−wt)l) · cri,

where µ0
p(ci) represents the initial degree of confidence for ti.

Figure 12.11 depicts a flowchart that describes the region type context. The number of
the iterations is defined empirically and usually three to six iterations are enough also in this
case. The final output of the algorithm is a refined model vector that is fed to the concept
detectors instead of the one that is calculated by the visual features.

12.5.3 Unified Context

This section further advances the proposed conceptualization; it introduces a novel
knowledge representation approach in the form of an extended mixed context model [74].
The classical notion of a contextual ontology is enhanced with mid-level concepts, that is,
the region types and relations among different types of entities. These provide an interme-
diate description, which may be semantically described, but they do not express a high-level

visual context
multimedia

documents

model vector

estimation

optimized model

vector

high-level

feature extraction

FIGURE 12.11

Contextual influence on region types.

D
ow

nl
oa

de
d 

by
 [

Io
ni

an
 U

ni
ve

rs
ity

] 
at

 0
3:

06
 2

0 
O

ct
ob

er
 2

01
5 



Concept-Based Multimedia Processing Using Semantic and Contextual Knowledge 381

nor a low-level concept. As a result, the focus here is on an integrated multimedia represen-
tation, combining efficiently low-level and high-level information and the description of a
typical context model by defining new and expanding older relations. Within this section,
both high-level concepts and region types will be simply referred to as entities.

12.5.3.1 A Unified Knowledge Model

This section describes a mixed fuzzified ontology that aims to model real-world relations
among all entities present in images, that is, high-level concepts and region types. An
ontology O that will model the unified context of a given domain contains:

• C = {ci}, for i = 1,2, . . . ,n, which is the set of all high-level concepts of a given
domain;

• T = {ti}, for i = 1,2, . . . ,m, which is the set of all region types of the visual thesaurus
used in the analysis process; and

• R = Ri j, for i, j = 1,2, . . . ,n+m, which is the set of all semantic relations among two
entities xi and x j. The set Ri j = r(k)

i j , for k = 1,2, . . . ,K +K′, includes at most K +K′

relations among xi and x j.

Thus, for a unified context ontology O and the aforementioned sets C, R, and T , the follow-
ing can be written:

O = {C,T,Ri j}, (12.17)

r(k)
i j : (C∪T )× (C∪T )→{0,1}, i, j = 1,2, . . .m+n, i 6= j. (12.18)

As can be observed in Equation 12.18, unified context includes relations among concepts
and region types. To model these relations as they exist in real-world problems, a fuzzified
ontology O should be defined as follows:

O = {C,T,R}, (12.19)

where R contains fuzzified relations among entities. As in the crisp ontology, R = Ri j.
Set Ri j = r(k)

i j , for k = 1,2, . . . ,K +K′, includes K +K′ among two entities xi and x j. For a

given relation r(k)
i j , its inverse r̄(k)

ji can be defined. Finally, ri j can be formally expressed as

ri j : (C∪T )× (C∪T )→ [0,1]. (12.20)

Since there often exist more than one relation among two entities, their combination is
defined as

Ui j = ∪
k
[r(k)i j ]p, i, j = 1,2, . . . ,N; k = 1,2, . . . ,K′. (12.21)

This way allows constructing the model to be used in the analysis step. The value of p is
defined by the semantics of each relation ri j. More specifically:

• p = 1, if the semantics of ri j imply that it should be considered as is;

• p =−1, if the semantics of ri j imply the use of its inverse r̄ ji; and

• p = 0, if the semantics of ri j do not allow its participation in the construction of the
combined relation Ui j.
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TABLE 12.3
Semantic relations used in unified context.

Relation Inverse Symbol Meaning C×C T ×T C×T

Similar Similar Sim(a,b) similarity between a and b – • –
Accompanier Accompanier Acc(a,b) co-occurrence between a and b • • •
Part PartOf P(a,b) a is part of b • • •
Component ComponentOf Comp(a,b) a is a component of b • • •
Specialization Generalization Sp(a,b) b specializes the meaning of a • – –
Example ExampleOf Ex(a,b) b is an example of a • – –
Location LocationOf Loc(a,b) b is a location of a • – –
Property PropertyOf Pr(a,b) b is a property of a – • •

12.5.3.2 Relations between Entities

The relations between entities, as defined in Sections 12.5.1 and 12.5.2, are summarized
in Table 12.1. Note that each entity may be related to another with more than one relation.
However, it should be made clear that not all of the relations are appropriate for any two
given entities. For instance, Similar cannot be defined between two concepts or a concept
and a region type, whereas sea cannot be Similar to sand or to a brown region type. All
applicable pairs of entities for each relation are summarized in Table 12.3.

The appropriate degrees of confidence of the semantic relations are either defined by an
expert or calculated as described in Sections 12.5.1 and 12.5.2. For example:

• Similar may be defined only between two region types, with their visual similarity
denoting the degree of confidence.

• Accompanier denotes the co-occurrence of any two entities in the same image. It
should be noted here that a region type that co-occurs with a high degree of con-
fidence with a concept does not necessarily depicts this concept. This degree is
calculated statistically.

• PartOf is defined for any two given entities, when one is part of the other. For
example, in case of two concepts, sea is PartOf Beach. In case of two region types,
a green and textured region type is PartOf a green region type. Finally, in case of a
concept and a region type, a green region type is PartOf a tree.

• Component is defined for any two given entities. For example, in case of two con-
cepts, tree is a Component of forest, and in case of two region types, a dark green
region type is a Component of a green region type. Finally, in case of a concept and
a region type, an orange region type is a Component of a sunset. It should be noted
here that there is also the case that a concept may be Component of a region type, due
to undersegmentation. However, this case is not considered in this approach, since
local annotation per image are unavailable.

• Specialization may be defined between two concepts, as defined in Section 12.5.1.

• Example may be defined between two concepts, as defined in Section 12.5.1.

• Location may be defined between two concepts, as defined in Section 12.5.1.
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FIGURE 12.12

A fragment of unified context ontology that includes relations among sand and all other entities.
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FIGURE 12.13

A fragment of unified context ontology that includes relations among region type t1 and all other entities.

• Property may be defined between a concept and a region type, or between two con-
cepts. In the first case, a green region type is a Property of vegetation. In the latter
case, wave is a Property of sea.

The aforementioned relations model the unified context among all concepts and region
types of a given domain. Between any two given entities xi and x j a single relation Ui j

is formed and the occurring ontology O forms again an RDF graph, using RDF reifica-
tion [85] to describe the degree of confidence for each edge. It is noted again that an edge
between two entities is formed based on the set of valid relations for this pair. For exam-
ple, the edge between rock and sand is formed by Location and Accompanier, while the
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edge between water and sea is formed by Specialization, PartOf, Example, and Location.
Similarly, a green and a blue region types are related by the combination of Similar, Accom-
panier, and Component, while a blue region type and sea are related by the combination of
Accompanier, PartOf, and Component.

Figures 12.12 and 12.13 present two fragments of the graph built for the Beach domain.
More specifically, Figure 12.12 depicts relations among sea and other entities, while Fig-
ure 12.13 depicts relations between region type T4 and other entities.

12.5.3.3 Unified Context Optimization

Algorithm 12.3 is used for the optimization in the case of the unified context. This
algorithm is a mixture of the ones presented in Sections 12.5.1 and 12.5.2. The target now
is to refine model vectors and detector results in an iterative way.

ALGORITHM 12.3 Optimized iterative procedure for evaluating the degree of
membership in the case of the unified context.

1. The considered domain imposes the use of a domain similarity (or dissimilarity)
measure wm ∈ [0,1].

2. For each image p, the fuzzy set Lp with the degrees of confidence µp(ci) is
defined for all concepts ci, with i = 1,2, . . . ,k of the given domain.

3. For each image p, the fuzzy set LT with the degrees of confidence µp(ti) is
defined for all region types ti, with i = 1,2, . . . ,k′ of the visual thesaurus.

4. For each concept ci in Lp with a degree of confidence µp(ci), the particular
contextual information is obtained in the form of the set Uc,i = {Uc,i j : ci,c j ∈
C,∀i 6= j}.

5. For each region type ti in L with a degree of confidence µp(Ti), the particular
contextual information is obtained in the form of the set UT,i = {UT,i j : ti, t j ∈
T,∀i 6= j}.

6. The new degrees of confidence µ ′p(ci) and µ ′p(Ti) are calculated by taking into
account the similarity measure of the given domain. In the case of multiple
concept relations, when xi is related with one or more types, apart from the root
of the ontology, an intermediate aggregation step should be applied in order to
calculate µ ′p(ci) and µ ′p(Ti) by applying the context relevance notion [8], that
is, cri = max j{Ui j}, for j = 1,2, . . . ,ck. The calculation of µ l

p(ci) and µ l
p(ti),

which correspond to the degrees of confidence for the presence of ci and ti at the
l-th iteration of the algorithm, is expressed with the recursive formula

µ l
p(xi) = µ l−1

p (xi)−wm(µ l−1
p (xi)− cri). (12.22)

Equivalently, for the l-th iteration:

µ l
p(xi) = (1−wm)l ·µ0

p(xi)+(1− (1−wm)l) · cri,

where µ0
p(xi) denotes the initial degree of confidence for xi.

The number of the iterations is defined empirically and usually three to six iterations are
enough also in this case. A flowchart that describes the influence of the unified context is
depicted in Figure 12.14.
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FIGURE 12.14

Unified contextual influence.

12.6 Context Optimization Examples

In order to clarify the influence of the context optimization on image analysis, this section
presents simplistic examples for all three above cases.

12.6.1 Scene Context Example

Focused on scene context optimization, a simple example is presented to illustrate the
way in which this optimization influences on the initial degrees of confidence. Based on
the context ontology, whose fragments are depicted in Figures 12.6 and 12.7, and using
appropriately trained detectors, Table 12.4 depicts degrees of confidence for all concepts
before and after context optimization for the images shown in Figure 12.15. It can be
observed that concepts detected with high confidence are considered to appear on images
with a higher confidence. The opposite may be observed for concepts initially detected
with low confidence.

12.6.2 Region Type Context Example

Next, a simple example is presented to illustrate region type context influence. In this
case, context acts as a preprocessing step. For the image shown in Figure 12.10 and the

TABLE 12.4
Degrees of confidence before and after scene context optimization for the
images shown in Figure 12.15.

Figure 12.15a Figure 12.15b Figure 12.15c

Concept Before After Before After Before After

sea 0.77 0.85 0.65 0.75 0.62 0.72
water 0.63 0.70 0.60 0.69 0.58 0.67
vegetation 0.35 0.43 0.35 0.40 0.62 0.72
sky 0.45 0.57 0.55 0.60 0.53 0.61
sand 0.69 0.75 0.45 0.56 0.52 0.60
rock 0.25 0.35 0.63 0.68 0.65 0.75
wave 0.00 0.00 0.25 0.34 0.20 0.27
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(a) (b) (c)

(d) (e) (f)

FIGURE 12.15 (See color insert.)

Three examples from the Beach domain. Initial images and their segmentation maps.

simplistic ontology, a fragment of which is depicted in Figure 12.9, the model vector cal-
culated from the visual features is as follows:

MVbe f ore =
[

0.723 0.220 0.753 0.364
]
. (12.23)

As it can be observed from the example image, it depicts sky and sea and intuitively one
would expect that it should contain region types similar to those of the region thesaurus.
However, in this case, sea is significantly different, perhaps more similar to a rock. After
region type optimization, the model vector takes the following form:

MVa f ter =
[

0.778 0.452 0.800 0.338
]
. (12.24)

Thus, the degree of confidence for the region type that corresponds to sea (2nd constituent)
is increased while the one that corresponds to rock (4th constituent) is decreased.

12.6.3 Unified Context Example

Finally, in the unified context case, the ontology with fragments depicted in Figures 12.12
and 12.13 is used. The proposed algorithm is applied to the image shown in Figure 12.10.
Model vector T is initially set as

T = {Ti}=
[

0.89 0.62 0.21 0.68 0.670.31
]
, (12.25)

while the degrees of confidence ci are

C = {ci}=
[

0.32 0.91 0.12 0.87 0.35
]
. (12.26)
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As can be seen, the input image depicts sea, sky, and wave. However, the initial con-
fidence for sea was low because no similar instances of sea were part of the training set.
After unified context optimization, the improved value of the model vector T ′ is

T′ = {T ′i }=
[

0.89 0.62 0.21 0.68 0.670.31
]
, (12.27)

and the degrees of confidence for all concepts are

C′ = {c′i}=
[

0.62 0.95 0.18 0.90 0.29
]
. (12.28)

In brief, it should be emphasized that the unified context algorithm exploited the follow-
ing information that was stored in the unified ontology:

• This was a Beach image, thus using the appropriate ontology.

• Sky was initially detected with a high confidence.

• Wave was initially detected with a high confidence.

• Image contains a blue region type.

• Image contains a white region type.

• sky and wave are related with a high degree with sea.

• blue and white region type are related with a high degree with sea.

Thus, the model vector and the degrees of confidence were modified in a way that:

• The confidence for the blue region type was increased.

• The confidence for the other region types remained invariable.

• The confidence for sea was increased.

• The confidence for the other concepts remained invariable.

12.7 Experimental Results

The following presents an indicative selection of experimental results. It includes results
from the application of the proposed visual context utilization methodology, as presented
in Sections 12.5.1.2 to 12.5.3.3. The utilized expert knowledge is rather ad hoc; however,
this is not considered to be a liability, nor part of the discussed context model and is aligned
to the current application datasets. More specifically, the evaluation focuses on both utiliz-
ing parts of the well-known Corel and TRECVID datasets and compares the efficiency of
relevant state-of-the-art techniques.
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(a) (b) (c)

(d) (e) (f)

FIGURE 12.16 (See color insert.)

Indicative Corel images.

Initially, a set of experimental results are presented from the application of the proposed
visual context approaches on a dataset containing 750 images, 40 region types, and 6 high-
level concepts (sea, vegetation, sky, sand, rock, and wave). The number of the region types
was selected based on the size of the region thesaurus and was verified using the minimum
description length (MDL) method [28]. The amount and type of utilized concepts is im-
posed by the problem/dataset at hand; the employed dataset was a subset of the well-known
Corel image collection [86], an indicative sample of which is presented in Figure 12.16.
For the non-contextual detection of high-level concepts, the methodology described in Sec-
tion 12.4 was applied. Overall, 525 images were used to train six individual SVM-based
concept classifiers and 225 images were used as the test set.

Some additional results are also presented from the application of the proposed uni-
fied contextualization approach on a second dataset, consisting of 4000 images from the
TRECVID collection [87], 100 region types and 7 high-level concepts (vegetation, road,
fire, sky, snow, sand, water). The number of region types for this dataset was again decided
based on experiments on the size of the region thesaurus and verified by using the mini-
mum description length methodology introduced in Reference [28]. Figure 12.17 shows
a characteristic sample of this dataset. In total, 250 of those images were used to train 7
individual SVM classifiers, whereas other 997 images were used for testing.

To evaluate the proposed approaches, they are compared to similar techniques used in
previous research work. The results of all approaches on both Corel and TRECVID datasets
are summarized in Tables 12.5 and 12.6. Note that Region Types (RT) refers to the results
based only on the detection scheme presented in Section 12.4, without exploiting any con-
textual knowledge. Results from the application of contextual approaches correspond to
RT+Scene Context (SC), RT+RT Context (RTC), and RT+Unified Context (UC).

To further evaluate the last proposed approach, two other techniques are implemented.
The first technique, known as relative LSA (RLSA) [42], adds directly structural constraints
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(a) (b) (c)

(d) (e) (f)

FIGURE 12.17 (See color insert.)

Indicative TRECVID images.

to the visual words of the thesaurus. The fundamental difference between the traditional
LSA and RSLA is that every possible unordered pair of clusters is this time considered as a
visual word. In this way, a visual thesaurus with too many words (that is, pairs of clusters)
is created. Nevertheless, the low-level features extracted from each region are simpler than
the MPEG-7 low-level features used here. More specifically, a 64-bin histogram expressed
in the hue-saturation-value (HSV) color space is used to capture the color features of 24 Ga-
bor filters whose energies capture the texture features. The number of the words that form
the visual thesaurus is determined empirically. The second implemented technique [88]
starts with the extraction of local interest points (LIPs). The local interest points, often de-
noted as salient, tend to have significantly different properties compared to all other pixels
in their neighborhood. To extract these points, a method called difference of Gaussians is
applied. From each LIP, a SIFT descriptor is extracted from an elliptic region. A visual
thesaurus is generated by an offline quantization of LIPs. Then, using this thesaurus, each
image is described as a vector of visual keywords. Finally, for each high-level concept,
a classifier is trained. It should be noted that the proposed method is compared against
the above techniques and methodologies mainly because they try to face the same problem
with more or less the same motivation as the presented work. The first one tries to exploit
the co-occurrence of region types and to incorporate structural knowledge when building
a visual thesaurus, while the the other one defines the LIPs as the regions of interest and
extracts therein appropriate low-level descriptors. Moreover, both works have been suc-
cessfully applied to the TRECVID dataset. Finally, as it is obvious from the interpretation
of Tables 12.5 and 12.6, the proposed contextual unified approach outperforms in principle
all compared approaches in terms of the achieved precision, whereas in some cases it lacks
in terms of the recall criterion.
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TABLE 12.5
Comparative precision P, recall R, and F-measure scores per concept for six different concept detection methodologies applied on the Corel dataset.

RT SC RTC UC LIPs [88] RLSA [42]

Concepts P R F P R F P R F P R F P R F P R F

road 0.22 0.40 0.28 0.25 0.37 0.30 0.39 0.32 0.35 0.43 0.35 0.39 0.34 0.37 0.35 0.42 0.35 0.38
sand 0.38 0.50 0.43 0.40 0.46 0.43 0.50 0.41 0.45 0.55 0.44 0.49 0.47 0.46 0.46 0.52 0.45 0.48
sea 0.72 0.85 0.78 0.71 0.81 0.76 0.81 0.78 0.79 0.89 0.80 0.84 0.77 0.83 0.80 0.80 0.82 0.81
sky 0.81 0.88 0.84 0.79 0.80 0.79 0.77 0.81 0.79 0.88 0.82 0.85 0.86 0.85 0.85 0.88 0.83 0.85
snow 0.48 0.68 0.56 0.51 0.62 0.56 0.62 0.57 0.59 0.72 0.57 0.64 0.58 0.61 0.59 0.64 0.57 0.60
vegetation 0.67 0.81 0.73 0.67 0.76 0.71 0.67 0.71 0.69 0.81 0.74 0.77 0.73 0.76 0.74 0.76 0.73 0.74

Total: 0.55 0.69 0.61 0.56 0.64 0.59 0.63 0.60 0.61 0.71 0.62 0.57 0.62 0.65 0.54 0.67 0.63 0.55

TABLE 12.6
Comparative precision P, recall R, and F-measure scores per concept for six different concept detection methodologies applied on the TRECVID dataset.

RT SC RTC UC LIPs [88] RLSA [42]

Concepts P R F P R F P R F P R F P R F P R F

vegetation 0.50 0.64 0.56 0.50 0.60 0.55 0.68 0.49 0.57 0.78 0.45 0.57 0.50 0.59 0.54 0.52 0.55 0.54
road 0.22 0.31 0.26 0.25 0.30 0.27 0.41 0.27 0.33 0.43 0.24 0.31 0.30 0.30 0.30 0.37 0.27 0.31
sand 0.83 0.82 0.81 0.87 0.80 0.83 0.93 0.69 0.79 1.00 0.76 0.86 0.93 0.76 0.84 0.94 0.71 0.81
water 0.60 0.67 0.63 0.57 0.68 0.62 0.70 0.58 0.63 0.81 0.57 0.67 0.60 0.66 0.63 0.61 0.64 0.63
sky 0.60 0.79 0.68 0.62 0.77 0.69 0.74 0.68 0.71 0.90 0.57 0.70 0.59 0.79 0.67 0.60 0.76 0.67
snow 0.43 0.50 0.46 0.40 0.44 0.42 0.51 0.38 0.44 0.57 0.37 0.44 0.50 0.44 0.47 0.56 0.40 0.47
fire 0.30 0.47 0.37 0.22 0.44 0.29 0.46 0.37 0.41 0.55 0.36 0.43 0.38 0.45 0.41 0.45 0.43 0.44

Total: 0.50 0.60 0.55 0.49 0.58 0.54 0.63 0.50 0.56 0.72 0.47 0.57 0.54 0.57 0.55 0.58 0.54 0.55
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Experimental results presented above show that existing relationships between concepts
improve the precision of results, not only for the well trained, but also for weak SVM
classifiers. The proposed unified context algorithm uses and exploits these relations and
provides an expanded view of the research problem, which is based on a set of meaningful
semantic relations. The interpretation of presented experimental results depicts that the
proposed contextualization approach will favor rather certain degrees of confidence for the
detection of a concept that exists within an image. On the contrary, it will also discourage
rather uncertain or misleading degrees. It will strengthen the concepts’ differences, but
it will treat smoothly almost certain concepts’ confidence values. Finally, based on the
constructed knowledge, the algorithm is able to disambiguate cases of similar concepts or
concepts being difficult to be detected from the simple low-level analysis steps.

12.8 Conclusion

Research effort summarized in this chapter clearly indicates that high-level concepts can
be efficiently detected when an image is represented by a model vector with the aid of
a visual thesaurus and visual context. The role of the latter is crucial and significantly
aids the image analysis process. The core contributions of this work include, among oth-
ers, the implementation of a novel threefold visual context interpretation utilizing a fuzzy,
ontology-based representation of knowledge. Experimental results presented in this chap-
ter indicate significant high-level concept detection optimization over the entire datasets.
Although the improvement is not considered to be impressive, it is believed that the pro-
posed approach successfully incorporates the underlying contextual knowledge and further
exploits visual context in the multimedia analysis value chain. Moreover, minor enhance-
ments of the implemented contextual model, for example, in terms of additional spatial,
temporal, or semantic relationships exploitation, would further boost its performance.
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