
Progressive Semantic Query Answering

Giorgos Stamou, Despoina Trivela, and Alexandros Chortaras

School of Electrical and Computer Engineering,
National Technical University of Athens,

Zographou Campus, 15780, Athens, Greece
{gstam,achort}@cs.ntua.gr

despoina@image.ntua.gr

Abstract. Ontology-based semantic query answering algorithms suffer
from high computational complexity and become impractical in most
cases that OWL is used as a framework for data access in the Seman-
tic Web. For this reason, most semantic query answering systems prefer
to lose some possible correct answers of user queries rather than being
irresponsible. Here, we present a method that follows an alternative di-
rection that we call progressive semantic query answering. The idea is
to start giving the most relevant correct answers to the user query as
soon as possible and continue by giving additional answers with decreas-
ing relevance until you find all the correct answers. We first present a
systematic analysis that formalises the notion of answer relevance and
that of query answering sequences that we call strides, providing a formal
framework for progressive semantic query answering. Then, we describe
a practical algorithm performing sound and complete progressive query
answering for the W3C’s OWL 2 QL Profile.

Keywords: scalable query answering, tractable reasoning, approximate
query answering, semantic queries over relational data, OWL 2 Profiles

1 Introduction

The use of ontologies in data access is based on semantic query answering, in
particular on answering user queries expressed in terms of a terminology (that
is connected to the data) and usually represented in the form of conjunctive
queries (CQs) [6, 1]. The main restriction of the applicability of the specific
approach is that the problem of answering CQs in terms of ontologies represented
in description logics (the underlying framework of the W3C’s Web Ontology
Language -OWL) has been proved to be difficult, suffering from very high worst-
case complexity (higher than other standard reasoning problems) that is not
relaxed in practice [6]. This is the reason that methods and techniques targeting
the development of practical systems mainly follow two distinct directions. The
first suggests the reduction of the ontology language expressivity used for the
representation of CQs vocabulary, while the second sacrifices the completeness of
the CQ answering process, providing as much expressivity as possible. Methods
of the first approach mainly focus on decoupling CQ answering into (a) the

2 Progressive Semantic Query Answering

use of terminological knowledge provided by the ontology (the reasoning part
of query answering) and (b) the actual query execution (the data retrieval),
thus splitting the problem into two independent steps [1, 4, 10]. During the first
step (usually called query rewriting) the CQ is analysed with the aid of the
ontology and expanded into a (hopefully finite) set of conjunctive queries, using
all the constrains provided by the ontology. Then, the CQs of the above set
are processed with traditional query answering methods on databases or triple
stores, since terminological knowledge is no longer necessary. The main objective
is to reduce the expressivity of the ontology language until the point that the
procedure guarantees completeness. Late research in the area, introduced the
DL-Lite family of description logics, underpinning W3C’s OWL 2 QL Profile
[4, 3], in which the CQ answering problem can be solved in polynomial (over
the data) time. Despite the obvious advantage of using the mature technology
(more than 40 years research) of relational databases, there are also other major
technological advantages of the specific approach, most of them connected with
the use of first-order resolution-based reasoning algorithms [7][5, Ch.2]. The main
restriction is that in the presence of large terminologies, the algorithm becomes
rather impractical, since the exponential behaviour (caused by the exponential
query complexity) affects the efficiency of the system.

The attempts to provide scalable semantic query answering over ontologies
expressed in larger fragments of OWL introduced the notion of approxima-
tion. Approximate reasoning usually implies unsoundness and/or incomplete-
ness, however in the case of semantic query answering most systems are sound.
Typical examples of incomplete query answering systems are the well-known
triple stores (Sesame, OWLIM, Virtuoso, AllegroGraph, Mulgara etc). The two
main characteristics distinguishing incomplete semantic CQ answering systems
is how efficient and how incomplete they are. The efficiency of semantic query
answering is usually tested with the aid of real data of a specific application or
using standard benchmarks [8]. Lately, a systematic approach of the study of
incompleteness of semantic query answering systems has been also presented [9].
A major issue here is that the user should be aware of the type of lost correct
answers, i.e. there should be a general deterministic criterion expressing a type
of relevance, indicating how crucial is the loss of each correct answer.

Within the above framework, herein we present an alternative direction in
scalably solving the problem of semantic query answering ensuring a safe ap-
proximation process that hopefully converges to a complete solution. The idea is
to provide the user with correct answers as soon as they are derived and continue
until all the correct answers are found, ensuring that the relevant correct answers
will be first given. For example, in the case of the query rewriting approach this
means that instead of clearly splitting the steps of query rewriting and query
processing, whenever a new rewriting is found it can be evaluated against the
database and the results can be presented to the user. In order for this idea
to be successfully applied, several intuitive requirements should be fulfilled: the
first correct answers should be given very fast; an important amount of correct
answers should be found in a first small percentage of execution time; complete-

Progressive Semantic Query Answering 3

ness should be ideally reached (or at least approximated); correct answers should
be given following a degree of importance, according to a semantic preference
criterion; the results should not be widely replicated.

In the present paper, we provide a systematic approach formalising the above
idea. We introduce progressive semantic query answering based on the notion
of CQ answering strides that are flows of correct answers with specific proper-
ties that formalise the intuitive meaning of the above criteria. We then provide a
practical progressive semantic CQ answering algorithm that has some nice prop-
erties and is complete in OWL 2 QL and present the results of its implementa-
tion and evaluation (we call the implemented system ProgRes). The algorithm is
based on a query rewriting resolution-based procedure that computes a sequence
of rewritings, the elements of which have a decreasing importance according to a
query similarity criterion (measuring the similarity of the rewriting with the user
CQ). The order is proved to be ensured under a specific resolution rule applica-
tion strategy that ProgRes follows. It is interesting that although the results are
ordered (ranked) and given during the execution, the efficiency of the algorithm
is not worse than other similar ones (like the one implemented in Requiem [7]).

2 Preliminaries

The most relevant with the problem of query answering OWL QL Profile is
based on DL-LiteR [1, 4]. A DL-LiteR ontology is a tuple ⟨T ,A⟩, where T is the
terminology (usually called TBox) representing the entities of the domain and A
is the assertional knowledge (usually called ABox) describing the objects of the
world in terms of the above entities. Formally, T is a set of terminological axioms
of the form C1 ⊑ C2 or R1 ⊑ R2, where C1, C2 are concept descriptions and R1,
R2 are role descriptions, employing atomic concepts, atomic roles and individuals
that are elements of the denumerable, disjoint sets C,R, I, respectively. The
ABox A is a finite set of assertions of the form A(a) or R(a, b), where a, b ∈
I, A ∈ C and R ∈ R. A DL-LiteR-concept can be either an atomic one or
∃R.⊤. Negations of DL-LiteR-concepts can be used only in the right part of
subsumption axioms. A DL-LiteR-role is either an atomic role R ∈ R or its
inverse R−. A conjunctive query (CQ) has the form q : Q(x) ←

∧n
i Ci(x;y),

where Q(x) is the answering predicate (the head of the CQ), employing a finite
set of variables, called distinguished, and the conjuncts Ci(x;y) (forming the
body of the CQ) are predicates possibly employing non-distinguished variables.
We say that a CQ q is posed over an ontology O iff all the conjuncts of its body
are concept or role names occurring in the ontology. A tuple of constants a is a
certain answer of a conjunctive query Q posed over the ontology O = ⟨T ,A⟩ iff
O ∪ q |= Q(a), considering q as a universally quantified implication under the
usual FOL semantics. The set containing all the answers of the query q over the
ontology O is denoted with cert(q,O). A CQ q′ is a rewriting of q over a TBox T
iff cert(q′,O) = cert(q,O), with O = ⟨T ,A⟩ and A any ABox. Finally, rewr(q, T)
is the set of all rewritings of q over the TBox T . With a little abuse of notation
we write rewr(q,O), meaning rewr(q, T) (T is the TBox of O).

4 Progressive Semantic Query Answering

3 Semantic query answering strides

Semantic CQ answering systems are based on sophisticated algorithms that try
to find as many certain answers of CQs as possible. Formally, any procedure
A(q,O) that computes a set of tuples a for a CQ q posed over an ontology O is
a CQ answering algorithm (CQA algorithm). A(q,O) is sound iff res(A(q,O)) ⊆
cert(q,O) and complete iff cert(q,O) ⊆ res(A(q,O)) (res(⋄) is the result of any al-
gorithm ⋄). Any procedure R(q, T) computing a set of rewritings of q over a TBox
T is a CQ rewriting algorithm. R(q, T) can be the basis of a CQ answering algo-
rithm A(q,O) with the aid of a procedure E(q,A) that evaluates the query and re-
trieves the data from the database. In this case, we write A(q,O) = [R | E] (q,O).
Obviously, it is res([R | E] (q,O)) = res (E(res (R(q, T)),A)). With a little abuse of
notation, we freely write A(U,O), R(U, T) and E(U,A) for procedures computing
answers to sets U of CQs. A natural question arising in cases where scalability is
a major requirement is how to split the execution of a CQ query answering algo-
rithm into parts enabling a progressive extraction of certain answers. Also, how
to control the progress of the algorithm ensuring that certain answers extracted
until any specific time have desirable characteristics. Let us now proceed to the
definitions that form the framework of progressive CQ answering, covering the
above intuition.

Definition 1. Progressive CQ answering (PCQA)
Any sequence P(q,O; i) = {Aj}i, i ∈ N, i > 1 where Aj are CQA algorithms for
a query q posed over an ontology O = ⟨T ,A⟩, is a progressive CQ answering
algorithm. The elements of P are its componets. If P is finite, we write P(q,O) =
[A1;A2; · · · ;An] (q,O).

It is important to notice that the components of PCQA algorithms can freely
change inputs and outputs in a forward manner, leaving the sequence P(i) to
possibly have a recursive character. The restriction is that any component should
be considered as a CQA algorithm meaning that, at any time point, we can ask
for the result of any subset of the components being able to compute it (possibly
using the output of the previous components). We say that P(q,O) is sound iff
res(P) ⊆ cert(q,O) and complete iff cert(q,O) ⊆ res(P). Since our intention is to
provide users with correct answers during the execution of P, we need refer to
the result set of a subset of components of P stratifying the desired answer flow.

Definition 2. PCQA Strides
Let P(q,O) be a PCQA algorithm. A stride s(P; i : j), i, j ∈ N, i ≤ j of P (if it
is infinite j can be equal to ∞) is the result of the execution of its components
Ai to Aj, i.e. s(P; i : j) =

∪
[i,j] res(Ak).

Let Σ(P) denote the set of all strides of P. Obviously, res(A) ∈ Σ(P), for any
component A of P and also res(P) ∈ Σ(P). We will refer to the former as a single
stride and to the latter as the total stride. A stratification of P is a sequence
s1, s2, ..., sk of strides of P. Now, we turn our attention to the study of PCQA
algorithms the strides of which provide answers with decreasing relevance to the

Progressive Semantic Query Answering 5

user query posed. The first step is to rank the elements of the strides according
to the query posed by the user. Let σ(O;a, q) be a relevance measure expressing
the importance of the tuple a ∈ s, with s ∈ Σ(P), i.e. the degree in which the
specific tuple ideally fits to the user query. In the case of unsound CQ answering
algorithm this measure could, for instance, represent a possibility of correctness
of a specific answer. Similar measures play an important role in information
retrieval systems, in the process of ranking the results of query answering (see
for example [12]). The intuitive meaning of σ will be clarified later that we focus
to query rewriting PCQAs.

Definition 3. Stride Ordering
Let P(q,O) be a PCQA algorithm and Σ(P) the set of its strides after the execu-
tion of the query q over the ontology O. Let also σ(a, q) be a relevance measure
of the elements of the total stride and the CQs. We say that a stride s1(P; i : j)
σ-precedes a stride s2(P; i

′ : j′) for the query q and we write s1 ≼q
σ s2 iff for all

a1 ∈ s1, a2 ∈ s2 we have σ(a1, q) ≥ σ(a2, q). If σ(a1, q) > σ(a2, q), we say that
s1 strictly σ-precedes s2 and we write s1 ≺q

σ s2. If neither s1 ≼q
σ s2 nor s2 ≼q

σ s1,
we have s1 ⊀q

σ s2 (they are σ-irrelevant for q).

It is not difficult to see that Σ(P) forms a lattice under any ≺q
σ operator, where

∅ is its infimum and cert(q,O) is its supremum (supposing that P is sound and
complete). Now that we have an ordering of strides, we are ready to proceed
to the definition of progressive algorithms the strides of which are ordered. Al-
gorithms of this type ensure that the answer blocks are ordered according to a
specific relevance measure. Therefore, they can be considered as approximation
algorithms with deterministically controllable behaviour.

Definition 4. Sorted PCQA Algorithms
Let P(q,O) be a PCQA algorithm, ϵ = s1, s2, ..., sk a stratification of P and ≺q

σ

an ordering relation over Σ(P). We say that P is σ-sorted under ϵ iff for any
successive strides si, sj of ϵ it is si ≼q

σ sj. It is strictly σ-sorted iff si ≺q
σ sj

otherwise it is σ-unsorted for q.

Example 1. Consider the simple DL-LiteR ontology O = ⟨T ,A⟩ , with

T = {PhDStudent ⊑ Researcher,Professor ⊑ ResDirector,

SeniorResearcher ⊑ ResCoordinator,ResCoordinator ⊑ ∃advise.Researcher,
ResDirector ⊑ ∃advise.SeniorResearcher, supervise ⊑ advise}

A = {Mary : Researcher, Bill : ResCoordinator, John : ResDirector
Alan : Researcher, George : PhDSudent, Peter : SeniorResearcher,
Sofia : Professor, Ema : Professor, (Bill,Mary) : advise, (John,Bill) : advise,
(Peter,George) : supervise, (Alan,Peter) : advise}

A represents a materialisation of a relational database or a triple store. Let
q(x) ← advise(x, y) ∧ advise(y, z). It is not difficult to see that cert(q,O) =
{Alan, John, Sofia,Ema}. John is a direct result from the ABox, since it is explic-
itly given that he advises Bill, who advisesMary. It is a bit more difficult to derive

6 Progressive Semantic Query Answering

Alan since some of the knowledge should be employed. Specifically, we should
consider that Alan advises Peter that supervises George (who is a PhDStudent and
thus a Researcher), which means that Peter advises George. More complex de-
ductions lead to the conclusion that Sofia and Ema are also answers of the query.
PCQA algorithms ensure that the results are given in a specific order that the
user knows before the query answering process, according to a specific relevance
criterion. For example, we could develop P = A1;A2;A3;A4;A5 with a stratifi-
cation s1; s2; s3, where s1(P; 1 : 1)) = res(A1) = {John}, s2(P; 2 : 3) = res(A3) ∪
res(A4) = {John,Alan} and s3(P; 4 : 5) = res(A5 ∪ A5) = {John, Sofia,Ema}. Let
us now intuitively motivate and describe a specific relevance measure, formally
described in the next section. In typical web applications of semantic query an-
swering (Semantic Web information retrieval) the data is more strong than the
knowledge. In case of inconsistency, we should consider that there are possible
exceptions in some restrictions expressed as TBox axioms (please notice that
the representation of exceptions in the terminology cannot be done in tractable
ontology languages since disjunction should be used). Of course, this is not the
case in other applications, where the terminology should be rather considered as
a set of integrity constrains. Thus, an obvious solution here is that John should
be the first answer (explicitly given), Alan employs a bit more risk (some rea-
soning is needed), while Sofia and Ema are the most risky answers (for example
it could be the case that Sofia does not advise anyone for some reasons). It is
not difficult to see that P is sorted according to the above intuitive measure.

4 Practical progressive query answering

The problem of progressive query answering is more difficult than the non-
progressive one, since the extracted results should be ranked according to a
specific criterion and the ranking should be ensured during the query answering
process (without knowledge of all the results). Obviously, the difficulty strongly
depends on the expressivity of the ontology language and the specific relevance
measure. Here, we focus on query rewriting PCQA algorithms for DL-LiteR, i.e.
on cases where the components of P are based on query rewriting algorithms.
We follow a resolution-based FO rewriting strategy (more details can be found
in [7]). Intuitively, algorithms of this category are based on the translation of
the terminology into a set of FOL axioms and the repeated application of a set
of resolution rules employing the query and the FOL axioms until no rule can
be applied. It is ensured that when the algorithm stops it has produced all the
rewritings of the user query. The idea is to stratify the application of the reso-
lution rules in order to ensure that the rewritings will be extracted according to
a specific order, following a similarity criterion in comparison to the user query.
Thus, we can evaluate against the database the fresh queries (rewritings) as
they are derived and provide the user with a set of fresh answers. The proposed
algorithm remains sound and complete and, although it solves a more difficult
problem, in several cases it is more efficient than the respective non-progressive
algorithm proposed in [7].

Progressive Semantic Query Answering 7

We will use a graph representation of the CQs that is more convenient for
the definition of similarity measures. Let q : Q(x) ←

∧n
i Ci(x;y) posed over

an ontology O. Since the conjuncts of q are entities of the terminology, they
can only employ one (if they are concepts) or two (if they are roles) variables
(distinguished or not). A non-distinguished variable that appears only once in
the query body is called unbound, otherwise it is bound. We represent a CQ
as an undirected graph Gq(Vq, Eq,LVq ,LEq), where Vq is the set of nodes repre-
senting the variables of the query, Eq is the set of edges, LVq is the set of node
labels (representing the set of concept conjuncts employing each variable) and
LEq = ⟨L+

Eq
,L−

Eq
⟩ is the tuple of sets of edge labels (representing the set of role

conjuncts employing each variable pair in L+
Eq

and its inverse in L−
Eq
). The nodes

corresponding to unbound variables are called blank nodes. Moreover, let V(b)
q

(V(u)
q) denote the set of bound (unbound) variable nodes and E(b)q (E(u)q) denote

the set of edges employing two bound (at least one unbound) variable node(s).

Obviously, LVq (x) = ∅ and |L+
Eq
(x, y)∪L−

Eq
(x, y)| = 1, for each x ∈ V(u)

q , y ∈ Vq.
We can easily extend the above notations to represent general terms instead of
simple variables. The only issue that needs more attention is that in this case a
node is blank only if it represents a term employing functions and variables that
do not appear in any other term. For simplicity, we can delete the blank nodes
of the graph and add the role name that appears in L+

Eq
(x, y) (or its inverse if

it appears in L−
Eq
(x, y)) in the label of the node x that is connected with the

specific blank node. In this case, the node label sets can also include role names
(or inverse role names). We will make use of this simplifying convention in the
sequel, in the description of our algorithm. There are several graph similarity
measures (relations between graphs that are reflexive and symmetric) proposed
in the literature, especially in the framework of ontology matching [11, 13]. Here,
we will introduce a new measure that captures the intuitive meaning of the query
similarity that is useful in query rewriting PCQA algorithms.

Definition 5. Query Similarity
Let q1 and q2 be two non-empty conjunctive queries and Gq1(Vq1 , Eq1 ,LVq1

,LEq1
),

Gq2(Vq2 , Eq2 ,LVq2
,LEq2

) their graph representations. Their similarity can be de-
fined as follows (up to variable renaming):

σ(q1, q2) = 1−
λv+λϵ

vmin+ϵmin
+ (δv + δϵ)

|V(b)
q1 |+ |V

(b)
q2 |+ |E

(b)
q1 |+ |E

(b)
q2 |+ 1

(1)

where vmin = min (|V(b)
q1 |, |V

(b)
q2 |), ϵmin = min (|E(b)q1 |, |E

(b)
q2 |), δv = |V(b)

q1 △V
(b)
q2 |,

δϵ = |E(b)q1 △E
(b)
q2 | (△ computes the non-common elements of the two sets), λv =

|
{
x : x ∈ V(b)

q1 ∧ x ∈ V(b)
q2 ∧

(
LVq1

(x) ̸= LVq2
(x) ∨ L(u)

q1 (x, y) ̸= L(u)
q2 (x, y)

)}
| and

λϵ = |{(x, y) : (x, y) ∈ E(b)q1 ∧ (x, y) ∈ E(b)q2 ∧ LEq1
(x, y) ̸= LEq2

(x, y)}|.

The first term of the numerator of the similarity measure (Eq. 1) captures
the node and edge labeling differences, the second term the structure difference,

8 Progressive Semantic Query Answering

while the denominator normalises the values between 0 and 1. The main intuition
behind Eq. 1 is that the labeling differences should be counted as a secondary
dissimilarity cause, while the primer one should be the difference in structure.
Thus, the maximum value of the first term of the fraction should not exceed the
value of the second term (cannot exceed the value 1, which is the lowest structural
difference). The computation of differences ignores all the unbound variables
(the blank nodes of the graph), that are only involved in the computation of
λv (summarising the node label differences). The intuition behind this is that
blank nodes are introduced only by unqualified existentials (∃R.⊤) and thus
the specific unbound variable could be rejected without any problem if we just
remember the role of the existential. It is important to notice that in the presence
of role inverse, the bound variable could be either in the subject or in the filler

part of the role; this is the reason why we consider undirected graphs and L(u)
q

(considering both L(u)+
q and L(u)−

q) is involved in the computation of λv. Finally,
we should notice that with a little abuse of notation, we introduced the similarity
between two queries and not between queries and answers (as imposed in the
previous section), implicitly meaning that the similarity is between the first
query and the answers of the second one. In this way, we significantly simplified
the notation in the case of query rewriting based PCQA algorithms.

Table 1. Translation of DL-LiteR axioms into clauses of Ξ(O). (Note: A different
function f must be used for each axiom involving an existential quantifier.)

Axiom Clause Type Axiom Clause

A ⊑ B B(x)← A(x) (1)

P ⊑ R
S(x, y)← P (x, y) (2)

P ⊑ R−
S(x, y)← P (y, x)

R ⊑ P R− ⊑ P

∃P ⊑ A A(x)← P (x, y) (3) ∃P− ⊑ A A(x)← P (y, x)

A ⊑ ∃P P (x, f(x))← A(x) (4) A ⊑ ∃P− P (f(x), x)← A(x)

A ⊑ ∃P.B P (x, f(x))← A(x) (4)
A ⊑ ∃P−.B

P (f(x), x)← A(x)
B(f(x))← A(x) (5) B(f(x))← A(x)

We are now ready to introduce a PCQA algorithm, which we call ProgResAns
and is sorted according to σ(q1, q2). In order to compute the query rewritings
of a user query q, the algorithm employs a set of resolution rules. The main
premise is always a query (q or a subsequently computed query rewriting) and
the side premise a clause of Ξ ′(O). Ξ(O) is obtained from ontology O as de-
scribed in Table 1 [7], and Ξ ′(O) is the saturation of Ξ(O) w.r.t. all clauses that
have a role P with a skolemized term in their head, so that there is a clause
with the skolemized term in its head for all super-roles of P . The idea of the
algorithm is the following: start from the user query; apply the resolution rule
using side premises that preserve the structure of the query (we call this step
structure preserving resolution or sp-resolution); apply the resolution rule using
side premises that minimally change the structure of the query (we call this step

Progressive Semantic Query Answering 9

structure reducing resolution or sr-resolution); apply anew sp-resolution to the
query rewritings produced by sr-resolution, and so on; at each step evaluate the
queries against the database and provide the user with the results. sp- and sr-
resolution are performed by procedures sp-Resolve and sr-Resolve, respectively.
sp-Resolve takes as input a query q and an element s of Gq (i.e. either a node
or an edge), and computes all possible rewritings of q, by iteratively applying
the resolution rule using as side premises the clauses of Ξ ′(O) that are of type
(1)-(4) (see Table 1). Initially, the main premise is q and the resolution rule is
applied for all atoms in q that correspond to s. The same process is iteratively
applied to all the resulting rewritings, until no more rewritings can be obtained.
The clauses of type (4) are used only if the skolemized term f(x) unifies with an
unbound variable of the main premise. sp-Resolve preserves the query structure,
since resolution with clauses of type (1) or (2) affects only the sets LV and LE ,
respectively. Clauses of type (3) and (4) introduce and eliminate blank nodes.

sr-Resolve takes as input a query q and an element s of Gq (i.e. either a node
or an edge)and computes all possible rewritings of q, by iteratively applying the
resolution rule using as side premises the clauses of Ξ ′(O) that are of type (4) and
(5). Clauses of type (4) are used only if f(x) unifies with a bound variable of the
query. In terms of graphs, sr-Resolve deletes a node together with the edges that
connect it to the rest of the graph. ProgResAns applies sr-Resolve only on selected
atoms (the atoms that correspond to the elements s of Gq mentioned above) of
q, called sink node atoms of q. Sink nodes s correspond to non distinguished
terms and are determined by the following condition concerning their labels:
L±
E (s, y) = ∅ and L∓

E (s, y) ≥ 1. The selective application of the resolution rule
only to the sink node atoms is proved to suffice for the production of eventually
all the possible query rewritings which can be evaluated against the database
(i.e. query rewritings that do not contain functional terms).

We now provide the full definition of ProgResAns. Its components are the
query rewriting procedures (sp-Rewrite and sr-Rewrite) and the procedure Eval,
which evaluates a set of rewritings against the database:

ProgResAns = Eval ; {{[sp-Rewrite | Eval]}nj

i=1 ; [sr-Rewrite | Eval]}mj=1

sp-Rewrite and sr-Rewrite are defined by algorithms 1 and 2. sp-Rewrite em-
ploys sp-Resolve to perform exhaustive sp-resolution for all queries in the input
set Qsp

in. Therefore, the queries in res(sp-Resolve) have the same structure (up to
blank nodes) with the queries in Qsp

in, but each one of them is the result of the ex-
haustive application of sp-resolution on a single node or edge. The node or edge
whose label is modified is annotated, so that by recursively applying sp-Resolve
we can compute all possible rewritings that have the same number of different
labels. In particular, the queries computed by the k-th recursive application of
sp-Resolve differ in k labels w.r.t the queries Qsp

in of the first application. Finally,
sr-Rewrite uses sr-Resolve to compute the rewritings that have a single structural
change w.r.t. Qsr

in.
ProgResAns, after evaluating first the user query, enters an (outer) loop, part

of which is the (inner) loop [sp-Rewrite | Eval]. The outer loop is executed (let’s

10 Progressive Semantic Query Answering

Data: Set of annotated conjunctive queries Qsp
in, ontology O

Result: Set of annotated query rewritings
Q := {};
foreach query q in Qsp

in do
foreach s in Vq ∪ Eq that is not annotated do

Q := Q
∪

sp-Resolve(q, s, Ξ ′(O));
end

end
return Q;

Algorithm 1: Procedure sp-Rewrite

Data: Set of conjunctive queries Qsr
in, ontology O

Result: Set of query rewritings
Qsr

in := filter(Qsr
in); Q := {};

foreach query q in Qsr
in do

X := sink-nodes(q);
foreach x in X do

if L(x) = {A1, . . . , An} (L(x) is a set of concepts) then
forall the concepts C such that ∀i = 1 . . . n Ξ ′(O) |= Ai ← C do

Q := Q
∪

sr-Resolve(q, C(x), Ξ ′(O));
end

else if R ∈ L±(x, y) then
Q := Q

∪
sr-Resolve(q, R(x, y), Ξ ′(O));

end

end

end
return Q;

Algorithm 2: Procedure sr-Rewrite

say m times) until sr-Rewrite can make no further structural change to the query.
The j-th time the outer loop is executed, the inner loop is executed nj times,
where nj is the number of nodes and edges of the queries in Qsp

inj
(all have the

structure and m ≤ n1) and Qsp
inj

is the input of the first application of sp-Rewrite

at the j-th iteration of the outer loop. Qsp
inj

contains only the user query when

j = 1, otherwise it is equal to res(sp-Rewrite) obtained at iteration j − 1. The
input Qsr

inj
of sr-Rewrite contains only the rewritings that are computed by the

first execution of sp-Rewrite in the inner loop (i.e. queries that have only one of
their labels modified). Before entering its main body, sr-Rewrite calls procedure
filter on Qsr

inj
, which keeps only the rewritings in which sp-Rewrite has changed

only sink nodes atoms, so that, as mentioned before, sr-resolution is applied
only on these atoms. As soon as sp-Rewrite or sr-Rewrite return, Eval computes
cert(res(sp-Rewrite),O) and cert(res(sr-Rewrite),O), respectively. The following
theorem can be proved (we omit the proof due to restricted space):

Theorem 1. ProgResAns terminates and it is sound, complete and σ-sorted.

Example 2. (continued) Table 2 summarises the results of applying ProgResAns
to the input of Example 1 (all the single strides are shown).

Progressive Semantic Query Answering 11

Table 2. Results of ProgRes in the data of Example 1

Stride Query rewritings Similarity Answers

1 Q(x)← advise(x, y) ∧ advise(y, z) 1.000 John

2

Q(x)← supervise(x, y) ∧ advise(y, z) 0.952
Q(x)← advise(x, y) ∧ ResCoordinator(y) 0.952 John
Q(x)← advise(x, y) ∧ ResDirector(y) 0.952
Q(x)← advise(x, y) ∧ supervise(y, z) 0.952 Alan
Q(x)← advise(x, y) ∧ SeniorResearcher(y) 0.952 Alan
Q(x)← advise(x, y) ∧ Professor(y) 0.952

3

Q(x)← supervise(x, y) ∧ ResCoordinator(y) 0.905
Q(x)← supervise(x, y) ∧ ResDirector(y) 0.905
Q(x)← supervise(x, y) ∧ supervise(y, z) 0.905
Q(x)← supervise(x, y) ∧ SeniorResearcher(y) 0.905
Q(x)← supervise(x, y) ∧ Professor(y) 0.905

4 Q(x)← ResDirector(x) 0.400 John

5 Q(x)← Professor(x) 0.400 Sofia, Emma

5 System evaluation

We now present an empirical evaluation of ProgRes, which implements the
ProgResAns algorithm, assuming that ABoxes are stored in a relational database.
Our goal is to evaluate the performance of ProgRes and investigate whether the
ranked computation of the answers introduces a significant time overhead. Given
the progressive nature ProgRes, meaning that each rewriting should be evalu-
ated against the database upon its computation, our implementation follows a
producer/consumer approach: A thread computes the rewritings and adds them
to an execution queue, while another thread implementing the Eval procedure,
retrieves the rewritings from the queue, translates them into SQL, dispatches
them to the database, and collects the answers. We compare ProgRes with Re-
quiem (implementation of the algorithm in [7]), which is the most similar non-
progressive DL-LiteR query answering system. We should point out, however,
that a fair comparison is not possible since we are comparing a ranking, pro-
gressive algorithm with a non-ranking, non-progressive one. Since it is obvious
that ProgRes provides a lot of results before Requiem due to its progressive type,
we implemented a more progressive version of Requiem. For an as fair as pos-
sible comparison, we reimplemented a slightly modified version of the greedy
unfolding strategy of Requiem within our programming framework. Apart from
the more progressive character and the optimizations that are mentioned below,
the reimplementation was done for the performance comparison to be done on
equal terms and did not affect in any way the Requiem algorithm. Nevertheless,
we should notice that the results should be interpreted only as indicative of the
relative performance of the two systems.

An important issue our system had to face is the fact that, due to the real-
time orientation of ProgRes, many redundant rewritings (i.e. rewritings that
are structurally subsumed by subsequent, not yet computed rewritings) may be

12 Progressive Semantic Query Answering

0 500 1000 1500
0

50

100

150

200

Time (msec)

N
um

be
r

of
 a

ns
w

er
s

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Answer number

S
im

ila
rit

y

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

Time (msec)

N
um

be
r

of
 a

ns
w

er
s

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Answer number

S
im

ila
rit

y

0 200 400 600 800 1000
0

200

400

600

800

1000

Time (msec)

N
um

be
r

of
 a

ns
w

er
s

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Answer number

S
im

ila
rit

y

0 5 10 15 20 25
0

20

40

60

80

100

120

Time (sec)

N
um

be
r

of
 a

ns
w

er
s

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Answer number

S
im

ila
rit

y

Fig. 1. Execution time and similarity. From top to bottom the graphs in each row
correspond to the ontology-query pairs A-AQ4, A-AQ5, S-SQ5 and P5S-PQ5.

Progressive Semantic Query Answering 13

obtained. If all of them are dispatched to the database, performance may be
significantly compromised. For this reason we slightly delay the addition of the
new rewritings to the execution queue, by computing first all the rewritings of
a stride, check for redundancies and add only the non-redundant ones to the
queue. The structure of the Requiem algorithm does not allow for a directly
comparable optimization strategy. Therefore, in our implementation of Requiem
we add the rewritings to the queue upon their computation only during sat-
uration (which corresponds roughly to sr-resolution). During unfolding (which
corresponds roughly to sp-resolution), we compute the rewritings, checking in
parallel for redundancies. The resulting rewritings are added to the queue all
together, at the end of the unfolding. The redundancy check was incorporated
in an optimized way, which reduced significantly the number of inferences of the
original implementation.

We present the results for the A and S ontologies [7], as well as for P5S,
a modified version of P5, in which we have included some subconcepts for the
PathX concepts of P5. We evaluate ontology A with queries AQ4, AQ5, and
ontologies S and P5S with queries SQ5 and PQ5 respectively (due to restricted
space we do not present the results of all ontologies and queries in [7], we choose
the particular combinations as most representative of several diverse cases). We
populated the ABoxes according to [9]. The results are shown in Fig. 1. In each
row, the lhs graphs present the total number of retrieved answers vs time and
the rhs graphs the evolution of similarity as new answers are retrieved. We use
thick and light lines to present the results for ProgRes and Requiem, respec-
tively. Execution time is total time, including both rewriting computation and
answer retrieval time. The small vertical bars at the two horizontal dotted lines
on the top of the lhs graphs indicate the time points a new rewriting becomes
available. The upper line corresponds to ProgRes, the lower to Requiem. Table 3
presents the number of rewritings and inferences. We give the no. of rewritings
dispatched to the database both with and without the redundant check opti-
mization (within square brackets). The min column shows the no. of minimal
non-redundant rewritings. The inference columns show the total no. of inferences.
Within parentheses are the no. of inferences during sp-resolution (unfolding) and
the no. of inferences during sr-resolution (saturation). Wtihin square brackets
are the total no. of inferences without the optimization. Note that some of the
inferences that ProgRes performs during sp-resolution, in Requiem are performed
during saturation.

Ontology A is to a large extent taxonomic. Both queries AQ4 and AQ5 pro-
duce many non-redundant rewritings, after a long sp-resolution/unfolding phase.
ProgRes performs more sp-resolutions than Requiem, because the optimization
introduced in the unfolding phase of Requiem removes early some redundant
intermediate results and so subsequent redundant inferences are avoided. In
ProgRes the respective optimization is done at the end of each stride, it is more
local in nature and hence cannot always prevent a large number of redundant
inferences at a global level. This is more obvious in ontology S, where ProgRes
produces a lot of redundant queries. This is however an extreme degenerate case:

14 Progressive Semantic Query Answering

SQ5 is a bad query as half of its atoms are redundant. Back to ontology A, we
note that although ProgRes needs slightly more time to compute the rewritings,
it terminates faster. This is due to the progressive nature of ProgRes. While the
producer thread computes the query rewritings, the consumer thread executes
the already available ones, so there is no significant idle time for the consumer
thread. In contrast, in Requiem most rewritings are obtained at the end of the
unique unfolding phase. This demonstrates the significant benefit from progres-
sively computing and evaluating the query rewritings. The situation is quite
different in ontology P5S, in which the inference procedure consist mainly of a
chain of sr-reduction/saturation steps. Here, the strategy of ProgRes is much
more efficient and scalable. It avoids a very large number of inference sequences
that are guaranteed to give no new queries, by applying sr-resolution only on
sink atoms. As a result, it finishes almost instantly, while Requiem needs signif-
icantly more time and inferences. It is important to note, that in this case the
performance of Requiem is not scalable in the size of the query. In contrast to Re-
quiem, almost the entire execution time of ProgRes is answer retrieval time. The
synthetic nature of P5S allows us to comment also on the evolution of the simi-
larity of the answers. In (the original) ontology P5, only sr-resolution/saturation
steps are involved, hence we expect ProgRes and Requiem to compute the rewrit-
ings in the same order (but not the same fast). In ontology P5S, however, for
each rewriting produced at a sr-reduction step, ProgRes computes immediately
all its sp-resolutions, and so the progressive decrease of similarity is achieved.
Requiem computes first all the rewritings resulting from the saturation step and
then all the unfoldings, hence no ranking of the answers is possible. Similar is
the situation for query AQ4. In the case of AQ5, all the rewritings have the same
graph structure, so the slight fluctuations in the similarity graph for Requiem
are due to the non-ordered computation of the unfoldings. A steep decrease in
the similarity measure occurs only when the structure of a rewriting w.r.t the
original query changes.

Table 3. Number of rewritings and inferences for ProgRes and Requiem.

ontology/ no. of rewritings no. of inferences
query ProgRes Requiem min ProgRes Requiem

A AQ4 320 [322] 228 [256] 224 575 (507/68) [585] 453 (322/131) [767]
A AQ5 624 [624] 624 [624] 624 1443 (1324/119) [1482] 1013 (811/202) [1013]
S SQ5 128 [910] 9 [840] 8 906 (900/6) [4422] 295 (271/24) [2291]

P5S PQ5 76 [76] 76 [76] 76 95 (75/20) [95] 11424 (74/11350) [11424]

6 Conclusions and future work

We have presented a systematic approach to the problem of stratifying over
time the execution of CQA algorithms. We introduced the notions of progressive

Progressive Semantic Query Answering 15

CQA algorithms (sequences of CQAs - its components), of strides (result sets
of subsets of the components), of ordering of strides measuring the relevance
of the answers with the user query and of sorted progressive CQAs ensuring a
controllable approximation of the correct answer set. We have also presented a
practical algorithm for progressive CQA in DL-LiteR that implements the above
ideas and showed that it is possible to develop progressive algorithms that are
efficient. Actually, it has been found that in the presence of large queries and
TBoxes that are not simple taxonomies of atomic concepts the proposed algo-
rithm is much more efficient than the similar non-progressive ones (overcoming
a strong limitation of some DL-LiteR CQA systems). An obvious advantage
of the specific approach is the ability to be responsive even in cases of huge
databases under a predetermined approximation strategy. A second advantage
is that in case of inconsistency and considering data as stronger than theory (in
information retrieval this is reasonable), PCQAs ensure a decreased possibility
of incorrect answers. Finally, PCQA have ideal structure for parallel processing.
The main disadvantage is that it is difficult to reduce the redundancies, since the
complete set of answers is not available before the output. The present work can
be extended in several directions. We could take advantage of the ideas presented
in [10] and dramatically improved the performance of DL-LiteR CQAs. Also, we
could develop PCQA algorithms and systems for more expressive DLs. Finally,
we could try to stratify smaller strides in ProgRes avoiding wide replications by
applying sophisticated redundancy checking.

References

1. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. on Data Semantics, pp. 133–173 (2008)

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2007)

3. B. Motik et al (editors). OWL 2 web ontology language profiles. W3C Recommen-
dation, 27 October (2009)

4. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family
and relations. Journal of Artificial Intelligence Research, pp. 36–69 (2009).

5. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press (2001)

6. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for
the description logic SHIQ. J. of Artificial Intelligence Research, 31:157–204 (2008)

7. H. Perez-Urbina, I. Horrocks, and B. Motik. Efficient query answering for OWL 2.
In: 8th International Semantic Web Conference (ISWC 2009), vol. 5823 of Lecture
Notes in Computer Science, pp. 489–504. Springer (2009)

8. Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems for Large
OWL Datasets. Third International Semantic Web Conference, Hiroshima, Japan,
LNCS 3298, Spinger (c), pp. 274-288 (2004)

9. G. Stoilos, B. Cuenca Grau, and I. Horrocks. How Incomplete is your Semantic Web
Reasoner? In: 20th Nat. Conf. on Artificial Intelligence (AAAI) (2010)

16 Progressive Semantic Query Answering

10. Riccardo Rosati and Alessandro Almatelli, Improving Query Answering over DL-
Lite Ontologies. In: Twelfth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2010) (2010)

11. H. Bunke, Graph matching: theoretical foundations, algorithms, and applications.
In: Vision Interface 2000, pp. 82–88. Montreal/Canada (2000)

12. M. Dehmer, F. Emmert-Streib, A. Mehler and J. Kilian, Measuring the structural
similarity of web-based documents: a novel approach, J. Comp. Intell., pp. 1-7 (2006)

13. J. Euzenat and P. Shvaiko, Ontology Matching, Springer-Verlag (2007)

