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ABSTRACT 
In this paper we present a new approach towards the extraction of 

affine image regions based on detecting shape-stable boundaries 

from a multi-scale image representation. We construct an affine 

morphological scale space (AMSS) representation [1], which 

performs anisotropic diffusion while preserving boundaries and 

being invariant to affine transformations. We extract the transition 

boundaries of the diffusivity velocity map and track their 

evolution at each level of the scale-space. We then determine the 

stability of the boundary shape through a minimization process 

over different scales. Unlike most state of the art detectors which 

use the Gaussian scale space for multi-scale image representation, 

our approach is intrinsically affine invariant. We evaluate our 

detector by measuring repeatability of regions in transformed 

images of the same scene and comparing it to the state-of-the-art 

region detectors [2]. 

1. INTRODUCTION 
In many object recognition tasks, within-class changes in pose, 

lighting, colour, and texture can cause considerable variation in 

local intensities. Consequently, local intensity no longer provides 

a stable detection cue. As such, intensity-based interest operators 

(e.g., Harris, Kadir [3][4])–and the object recognition systems 

based on them–often fail to identify discriminative features. An 

alternative to local intensity cues is to capture semi-local 

structural cues such as edges and curvilinear shapes [5]. These 

structural cues tend to be more robust to intensity, colour, and 

pose variations. As such, they provide the basis for a more stable 

interest operator, which in turn improves object recognition 

accuracy. This paper proposes a region detector based on affine 

image representation. The method introduces a new region 

extraction scheme that exploits curvilinear structures to reliably 

detect salient areas. The proposed Shape Stable Region 

Boundaries (SSRB) detector identifies structures of stable shape 

within the affine invariant image representation.  

Curvilinear structures are lines (either curved or straight) such as 

roads in aerial or satellite images or blood vessels in medical 

scans. These curvilinear structures can be detected over a range of 

viewpoints, scales, and illumination changes. We develop a 

process that detects structural regions efficiently and robustly 

across the levels of the Affine Morphological Scale Space 

(AMSS). The basic idea of the approach is to exploit topology of 

transition boundaries between neighbouring image structures.  In 

order to provide sufficient determination of these regions we use a 

mathematical formalization that utilizes the fundamental property 

of the AMSS which associates scale-space diffusivity velocity .to 

boundary occurrence. Intra-region smoothing is favored towards 

inter-region smoothing which means that points close to inter-

region boundaries are evolved with higher velocities. The basic 

idea of the approach is to track the evolution of significant image 

structures across the pyramid scales and select the structures of 

interest in terms of shape stability criteria. Thus, the transition 

boundaries between neighbouring image structures are indicated 

by locating the maxima of diffusivity velocity. Subsequently, 

shape features of the extracted boundaries are evaluated. Scale 

selection is associated to finding shape stable structures, and the 

stability is determined through the minimization of Euclidean 

distance regarding structures shape features along consequent 

pyramid levels.  

This work makes two contributions. First, we develop a new 

operator based on morphological representation for estimating 

transition boundaries between different structures while we also 

utilise scale space properties to enhance boundaries’ connectivity. 

Second, we introduce an extended definition of structure stability 

which is based on estimating the variation of shape features. The 

latter contribution is employed in order to take advantage of the 

morphological scale space representation that we have embodied 

in the extraction scheme and which in turn respects image 

structures, without disturbing their shape. 

Section 2 presents related work, while the proposed method is 

described in Section 3. An experimental study is presented in 

Section 4, comparing our approach to the best state-of-the-art 

methods. Conclusions and description of further work are given in 

Section 5.  

 

2. RELATED WORK 
Interest operators can typically be classified into two categories: 

intensity-based detectors and structure-based detectors [2]. 

Intensity-based detectors depend on analyzing local differential 



geometry or intensity patterns to find points or regions that satisfy 

some uniqueness and stability criteria. The Harris-affine and 

Hessian-affine detectors [3][6][7] compute maximum 

determinants of the second moment matrix and the Hessian matrix 

respectively across scale space and then apply Laplacian-based 

characteristic scale selection[8]and second-moment-matrix-based 

shape adaptation [9]. Maximally Stable Extremal Regions 

(MSER) [11] uses a threshold selection process to detect stable 

regions that are either brighter or darker than the surrounding 

region. Shift Invariant Feature Transform [12] (SIFT) (i.e., the 

Difference of Gaussians (DoG) extrema detector used by Lowe in 

[11]) finds local extrema across three consecutive difference-of-

Gaussian scales and then removes spurious detections via a DoG-

response threshold followed by a Harris-like metric to eliminate 

edge detections. Kadir’s salient region detector [4] calculates the 

entropy of the probability density function (PDF) of intensity 

values over various scales to find regions with entropy extrema. 

Other intensity-based detectors include SUSAN (acronym of the 

method defined by the term Smallest Univalue Segment 

Assimilating Nucleus) [4] [12][13], Intensity (extrema-)Based 

Regions (IBR) [12][15], and the work of Moravec[12][15]and 

Beaudet [12][16].  

Structure-based detectors depend on structural image features 

such as lines, edges, curves, etc. to define interest points or 

regions. Early structure-based detectors analyze various 2D curves 

such as the curvature primal sketch or B-splines extracted from 

edges, ridges, troughs, etc. and then selected high curvature 

points, line or curve intersections, corners, ends, bumps, and dents 

as interest points [12][13]. Tuytelaar’s Edge-Based Region (EBR) 

detector [9] fits a parallelogram defined by Harris corner point 

and points on two adjacent edge contours (extracted by the Canny 

detector). Scale-Invariant Shape Features (SISF) detects circles at 

different locations and scales by evaluating salient convex 

arrangements of canny edges based on a measure that maximizes 

how well a circle is supported by surrounding edges.  
 

3. SHAPE STABLE REGION BOUNDARY 
 

As discussed above, we aim at detecting covariant regions along 

the multi-scale representation. The first difference with the other 

state-of-the-art methods  is that we consider a truly affine 

invariant scale-space instead of adapting the linear scale-space. 

The affine invariant scale space is defined through the following 

partial differential equation presented below:  
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The implied notation in the above equation is: Du  denotes the 

gradient u  and ucurv  denotes the curvature of the level u. 

The evolution scheme is based on diffusive interpretation of the 

equation. Indeed, if ξ is unit vector such that 0u  and u the 

second derivative of u in the direction ξ we have: u
t

u . This 

formulation yields an anisotropic operation, in the sense that  

diffusion takes place only in the ξ direction depending on the 

gradient (compare with the isotropic diffusion
u

t

u  i.e., the 

heat equation). Equation (2) can be rewritten as 
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u  denotes the speed of diffusion. The latter evolution 

term is considered here as the diffusivity velocity and it is used to 

discern adjacent structures within the same image. Exploiting the 

mathematical properties of the diffusivity velocity operator we can 

conclude that it highlights regions belonging to transition 

boundaries while smoothing intra-region structures. The 

operability of our Shape-Stable-Region-Boundary extraction 

approach can be summarized through the following steps: 

1. The AMSS Scale Space representation is constructed. 
 

2. The Diffusivity Velocity Map is extracted at each stage of 

the Scale-Space (regions of high velocity levels correspond 

to transition boundaries) 
 

3. Broken boundaries are resolved by a twin thresholding 

scheme which considers the velocity direction in adjacent 

points. According to the anisotropic diffusion theory, each 

image point  
t

P  is evolved with a velocity factor normal to 

the tangent at the specific point. Thus, velocity vectors at 

two adjacent points of the same curve form an angle of 00. 

Based on the above property we resolve connectivity issues 

by considering the minimization of the velocities internal 

vectors at two adjacent image locations. 
 

4. Boundary shape features (moments) are extracted at each 

stage of the scale-space and a feature vector is constructed, 

that should be invariant across a range of geometrical 

transformations. To achieve this, normalized moments are 

employed in this approach. Assuming that the shape 

boundary has been represented as a shape feature signature 

z(i), the rth  moment mr and central moment μr can be 

estimated as: 
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Where N is the number of boundary points. The normalized 

moments 
23
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invariant to shape translation, rotation and scaling 
 

5. The Euclidean distance between feature vectors of the 

corresponding areas is measured. 
 

6. A region is considered to be stable when its feature vector 

does not change significantly along consecutive levels of the 

scale space (the 3 bottom stages of the extraction process 

will be referred to as propagation stage…) 
 

4 EVALUATION 
We first summarize the framework for evaluating distinguished 

region repeatability. A description of the experiments and a 

discussion of the results follow.  
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(d) 

Figure 1: Part of the evaluation dataset. (a) Viewpoint change, (b) 

viewpoint change, (c), (d) Zoom + rotation 

4.1 Evaluation Framework 

Repeatability measures the extent to which regions detected in 

transformed images of the same scene overlap. We use the 

evaluation framework presented in [2]. The framework consists of 

eight images, where each image is subjected to five 

transformations, resulting in sets of six images. Examples from 

the image sets are shown in Figure 1. The homographies between 

the reference images and the other images for each set have been 

computed, allowing the overlap between distinguished regions in 

the reference and another image to be evaluated.  

In [2], only elliptical distinguished regions are considered, as 

these are intrinsically produced by four of the six algorithms 

tested in [2]. For the other algorithms, ellipses approximating the 

regions are chosen. To be compatible with the framework, we also 

fit ellipses to the edges of the regions produced by the proposed 

methods, using the ellipse fitting algorithm in [9].  

Repeatability is measured between the reference image and 

another image from the set. The distinguished regions are detected 

in both images and those from the second image are projected 

onto the reference image by using the known homography. Two 

regions are said to form a region-to-region correspondence if the 

overlap error is sufficiently small— in this paper we use a value 

of 0.4 as was done for the experiments in [2]. The overlap error is 

defined as [2] 
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where 
u

R is the region enclosed by the ellipse defined by 

1xx
T  and H is the homography relating the images. The 

repeatability score for a pair of images is the ratio between the 

number of region-to-region correspondences and the smaller 

number of regions in the pair of images. Only regions located in 

the part of the scene present in both images are counted. In 

addition, the regions are transformed to have a normalised size 

before calculating the overlap, to avoid the problems with regions 

of different sizes discussed in [2]. 
 

4.2 Experiments & Discussion 
The results of the repeatability and – number of correspondences - 

tests for the four groups of six images in the dataset are shown in 

Figures 2(a)-(h). Curves corresponding to six methods are shown 

in each graph. The curves labelled MSER and Hessian-affine 

correspond to the two best performing methods of the six tested in 

the evaluation of affine covariant region detectors in [2] 

    
(a) Graf Repeatability         (b) Wall Repeatability 

 
(c) Boat Repeatability,          (d) Bark Repeatability 

  
(e)Graff Correspodences,        (f) Wall Correspodences 

 
(g)Boat Correspondences             (h) Bark Correspondences 

 

Figure 2: The repeatability and number of correspondences (a, b, 

e, f) viewpoint angle variation, (c, d, g, h) variation of scale 

change 

As has already been pointed out in [2], different algorithms 

perform better for different transformations, as can be seen by the 

repeatability results for the MSER and Hessian-affine detectors. 

The problem of comparing detectors producing different densities 

of regions is discussed in [2]. They point out that for detectors 

that produce few regions, the thresholds can be set so that the 

performance is often better than average. For detectors that 

produce many regions, the image may be so cluttered with regions 



that some get matched by accident. The Hessian-affine detector 

produces the largest number of correspondences for each image 

sequence except Wall, indicating that the density of the 

distinguished regions is higher. 

For the viewpoint changes (Figure 2(a),(b)), the MSER detector 

has the highest repeatability. For the Graffiti, Bark and Boat 

images the SSBR algorithm provided good repeatability scores 

which are comparable to MSER ones, while for the case of the 

boat sequence, SSBR outperforms MSER. In an effort to explain 

the characteristics of SSBR response we should initially exploit its 

potential to extract reliable structures in images presenting 

significant edge structures. (graffiti, boat sequence). A further 

issue regards the SSBR invariance towards viewpoint angle 

change. The experimental results show that the method provides 

quite considerable repeatability scores when larger image 

structures are encountered in the image. One of the drawbacks of 

the evaluation framework used is that the difference in the number 

of regions (region density) extracted by each algorithm is not 

taken into account, which could affect the repeatability results  

In an effort to provide visual evaluation of our proposed region 

extraction approach we illustrate SSBR detected in some images 

obtained from the Caltech database. Figure 3 shows the 

symmetrical detections is several images. We can see that the 

detected regions are quite accurate and distinctive, providing a 

valuable cue for the detection and recognition of symmetrical 

objects. 
 

     

    

           
Figure 3: Salient region extraction using SSBR 

5. CONCLUSIONS AND FURTHER WORK 
 

This paper has presented a new structure-based interest region 

detector called Shape Stable Region Boundaries (SSBR) and has 

demonstrated its successful application to several tasks. The 

SSBR interest operator detects stable region boundaries within the 

affine morphological scale space representation that describes 

both edge and curvilinear structures. Anisotropic diffusion 

properties to track the evolution and enhance the connectivity of 

shape stable boundaries along with a new shape stability 

estimation scheme are introduced in this work. Further, SSBR 

achieves robust detection across multiple scales by selecting 

stable regions across consecutive scales.  

Experiments measuring the repeatability of the extracted regions 

for different types of image transformations are presented. The 

obtained repeatability falls into the range of the repeatability of 

the 2 most effective algorithms tested in [2], without surpassing 

them but providing quite comparable results. One of the 

drawbacks of the evaluation framework used is that the difference 

in the number of regions (region density) extracted by each 

algorithm is not taken into account, which could affect the 

repeatability results. 

We have so far used shape features to measure the stability of the 

extracted regions. However, the derived results could be enhanced 

by re-considering some other image structures characteristics such 

as region extent or entropy. A further direction that could benefit 

the extraction of stable regions is to associate region tracking to 

image evolution as the latter could be derived by the AMSS 

evolution law.  
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