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ABSTRACT 
 

The systematic analysis of corrosion damage on cultural heritage objects is an aspect of 

multidisciplinary interest. The application of computer-aided approaches in corrosion control has 

recently become a challenging issue. However, the majority of researches attain to estimate the decay 

presence by evaluating colour and texture alterations. This work is geared towards investigating non-

destructive detection and quantification of stone degradation by using machine vision schemes. The 

contribution of the current work is 4-fold. Thus, (1) several detection schemes were developed; each 

handling in a different way the background in-homogeneity (2) Numerous statistical metrics were 

introduced to quantify corrosion damage. These metrics mainly consider the decay areas size, spatial 

distribution, shape and darkness. (3) The potential of several monitoring modalities in determining 

corrosion attributes is studied, and (4) the corroded areas’ shape features are considered in association 

with the cleaning and structural state that they represent.  

 

INTRODUCTION 
 

The most frequently observed corrosion phenomena encountered on sheltered surfaces is black 

crust. Black crust is mainly associated with the formation of gypsum (CaSO4.2H2O). Further to the 

discoloration of stonework, black crusts also accelerate degradation phenomena due to their 

catalyzing activity. The colour alterations, as well as the structural effects on the stone material, are 

dependent upon the duration of exposure and the chemical composition of the substrate. The most 

frequently encountered constituents in black crusts are carbonaceous particles, heavy metals, calcite, 

silicates, potassium nitrate and various organic compounds in lower concentrations [1]. 

Black crusts do not form homogeneous varnished layers, but are rather composed of small black 

particles sporadically located within the matrix of encrustation [1]. These black particles are 

responsible for the coloration of the crust. Small white particles, often observed in the body of black 

crusts, are mainly associated with the presence of gypsum crystals and recrystallized CaCO3. All 

these aspects indicate that chemical cleaning is important not only for the restoration of aesthetical 

damage but also for preventing further degradation, which may lead to structural disintegration and 

loss of stone material. In order to select the appropriate cleaning approach and the time of 

intervention, an accurate diagnosis process should be followed. The diagnostic procedures employed 

thus far involve ablation of the specimen under consideration and subsequent chemical analyses to 



assess the severity of degradation and the type (composition) of deposits. However, this process is 

destructive to the material, so that the development of non-destructive approaches able to provide 

reliable results on both the severity and the type of degradation is an issue of great importance. 

  

 Related Work 

 
Non-destructive analysis methodologies provide powerful tools in the fields of material science 

and artwork analysis. These techniques have been extensively used recently for characterizing the 

cleaning state and/or the structural integrity of aerospace materials. However, little work has been 

done in assessing corrosion damage on stonework. The intricacy of the problem stems from the 

specific features of corrosion phenomena i.e. influences of various pollutant factors along with the 

great diversity of litho-type and the corresponding variations on decay phenomenology. An early 

attempt to segment degraded areas on metals was performed in[2], where decay effects are inspected 

by eddy currents and infrared thermography. The information gathered is subsequently fused with the 

use of statistical and/or probabilistic algorithms. More recent researches [3] approach corrosion 

damage on metals by introducing morphological analysis of decay patterns to aid the characterization 

and classification of deterioration type. A related study reported in [4] is focused towards recognizing 

the various defects encountered on a cold mill strip. Several Image Processing (IP) techniques have 

been developed for identifying and reconstructing corrosion damage on old paintings [5]. IP 

approaches have been also partially employed to detect decay effects on stonework. In [6], back-

scattered electron images obtained with scanning electron microscopy-energy dispersive X-rays 

analysis were used to identify and quantify salts and porosity with depth in porous media. Moreover, 

methods for characterizing the stone structure and detecting regions of material loss were developed 

in the study of Moltedo et al. [7], while Boukouvalas et al. [8] introduced computer vision techniques 

for the detection and classification of mineral veins on ceramic tiles surfaces. 

Besides the comparison of several algorithmic approaches, we also investigate how exposure or 

even cleaning conditions are reflected in the size and the relative intensities of corroded areas (over 

the background). This aspect is approached by using statistical tests to assess the significance of 

differences observed in the decay characteristics of the examined structures. These tests also 

contribute in evaluating the efficiency of chemical cleaning as well as in understanding the procedures 

of decay evolution. The testing framework involves image data sets of degraded stone surfaces 

screened by the Fiber Optics Microscope (FOM), Reflectography in the visible spectral band and 

Digital Camera. Shape features of the segmented decay areas are also a significant characteristic, 

which has been studied throughout this work. The initial objective of our approach is to investigate 

whether the structural or cleaning state are reflected onto the decay areas shape. 

 

PROBLEM SPECIFICATION 
 

Experimental Setup 
 
The studied images represent degraded stone regions monitored via a FOM, a reflectography 

system operating at the visible spectral band and a digital camera. The FOM images depict sheltered 

and unsheltered areas obtained from the columns of the National Archaeological Museum (Athens), 

while the digital camera images represent a stone specimen depicting adjacent cleaned and uncleaned 

stripes. The FOM images are further subdivided (due to their location) into reedings and flutings, to 

study the different degradation and structural effects encountered on surfaces of different exposure to 

weathering conditions. Thus, reedings represent areas more exposed to the rain and winds’ action and 

consequently the black crusts occurring on these areas tend to be thinner than the corresponding crusts 

encountered on the adjacent flutings surfaces. On the other hand, unsheltered surfaces tend to develop 

more lamellar texture and crusts thinner in thickness. The latter observation can be explained by 

taking into account the water activity that results in removing the deposited materials. In this work, 

the cleaning effects are evaluated in terms of 4 well-known cleaning interventions. Namely we have 

employed (a) an ion-exchange resin paste with de-ionized water (DS); (b) a biological paste (BP), (c) 



a WMB approach and an Nd:Yag laser cleaning system. The potential and the limitations of these 

methods have been investigated in greater detail in our previous works [11], [9], [10]. The severity of 

degradation is assessed in terms of the size of the detected decay areas and the alteration of the 

relative (over the background) intensities on areas of corrosion damage.  

Aiming at studying the effectiveness of the segmentation algorithms in detecting various types 

of corrosion defects we selected representative images, where we also extracted the Ground Truths 

(GTs). The images were selected with the aid of the experts, to reflect the deterioration encountered in 

a variety of environmental conditions [9].  

 

OVERVIEW OF THE DEVELOPED SYSTEM 

 
As it was stated in the introduction of the chapter, the detection problem is approached by developing 

several image segmentation schemes to determine accurately the exact location, size and shape of 

decay areas [9]. The implementation of an automated framework to derive the GTs and evaluate the 

efficiency of the detection approaches is also supported in our system. Finally a shape analysis 

methodology was implemented to investigate the associations between decay areas shape and the 

structural or cleaning state that they represent. Section 3 discusses briefly the operations supported in 

this work.  

 

Overview of the Detectors Architecture 
 
In an effort to design an effective detection scheme several aspects associated with the potential of the 

monitoring system and the structural features of the stone material should be considered. Thus, the 

detection scheme should be well adapted to the expected extent and shape features of the decay 

patterns. A further issue is the background structure on locations where decay patterns occur. The 

typically low contrast between decay areas and the background, which sometimes approximates the 

in-homogeneity contrast of the stone structure, itself, should also be carefully considered. 

Furthermore, due to the growth of the decay areas, there is no lower bound to this contrast. Obviously, 

the segmentation algorithm must be as sensitive as possible to the systematic variations caused by 

decay areas presence while suppressing all these random variations induced by noise and by the 

background stone structure. This means that the detection approach should take into account 

dynamically the intensity distribution of the local background. To provide robust segmentation 

results, the peculiarities of the problem must be thoroughly considered in the design of effective 

segmentation approaches. 

Based on the above specifications, we have developed several algorithmic schemes each of 

which considers in a different way the background in-homogeneity. Thus, the implemented 

algorithms can be classified into different categories depending on the way that they handle the 

background in-homogeneities [9]. The first step towards the implementation of an efficient spot 

detector is to decouple the detection of useful information from the background activity. This is 

achieved by the first algorithmic approach, which employs a broadband high-pass filter to enhance the 

decay areas location and remove the general structure of the background. The segmentation process in 

this first approach is conducted through a simple thresholding technique that sets a global threshold 

from the statistical analysis of the entire image. The disability of such methods to eliminate the 

induction of false positive and false negative spots leads to the employment of the next category that 

uses adaptive thresholding schemes. Thus, we tested algorithmic approaches that perform 

thresholding based on characteristics of the local background structure using also some knowledge of 

the extent and spatial arrangement of decay patterns. All the above methods, however, use 

information from the histogram of the sub-regions in order to select an appropriate threshold. A 

fundamental limitation of such approaches is that they completely ignore information regarding the 

spatial relations of intensity values. In order to overcome this limitation, we also tested a local region 

growing segmentation approach. The basic goal here is to select local thresholds dynamically, based 

on an iterative evaluation of the labeling quality achieved by each threshold value. At each iteration, 

the initially selected area is grown according to a thresholding similarity predicate aiming at 

producing compact areas, while avoiding the merging of different regions. In an effort to further 



reduce the segmentation errors introduced due to the local background variations, we also 

implemented a more elaborate growing scheme that uses prior knowledge of the expected size of 

spots and the inter-spot distance. This procedure is quite reliable in detecting spot locations even in 

low contrast between the spot and its background. However,  the detected shape is distorted and the 

boundary of the individual spots is smoothed. In order to address the effective shape detection of 

decay spots, we tested a category of local morphological operators. This approach preserves the 

original spot shape, at the price of more false positive spots and merged spots that should be 

separated. In order to exploit the strength of both concepts (accurate topology detection and shape 

preservation) a morphological fusion algorithm was implemented that expands the areas detected by 

the local region growing approach up to the size derived by the morphological operators [9], [10], 

[11].  

 

Evaluate the Potential of the Detection Schemes 
 
Our work estimates the robust points and the drawbacks of each detection methodology through an 

automated framework, which was built to perform this task objectively. This framework guarantees 

reliable and objective estimation of segmentation algorithms’ performance while it allows informed 

experimental feedback for the design of improved segmentation schemes. As it could be expected, the 

responses of the tested detection schemes divert in their potential to approach the topology, extent and 

shape of decay areas [9]. More specifically, some of them tend to split segments into adjacent small in 

size spots. Others succeed in providing reliable information concerning the topology of decay 

patterns, while distorting their extent and shape. The objective of the performance evaluation stage is 

to assess the potential and the limitations of the recruited algorithmic schemes in segmenting 

degradation patterns, while exploiting individual features associated with the robust points and the 

drawbacks of each approach.  

 

Ground Truth Matrix Extraction 
 
The extraction of (GT) involves fusion of the areas segmented by all the algorithms. The fusion takes 

place by examining the implemented algorithms in pairs and extracting the overlapping segments. The 

non-overlapping segments obtained at each stage are subsequently checked towards the results of a 

consecutive algorithm. The process proceeds until all methods have been examined. Figure 2 shows 

that the Ground Truth stems from the union of the Non-Overlapping (obtained when the process 

terminates) and the total overlapping labels, derived at each step of the extraction approach. Through 

a brief visual inspection of the segmented degraded regions, it can be verified that the total 

overlapping patterns, correspond to areas larger in extent than the non-overlapping. However, the 

experts considered that the non-overlapping areas should also be present in the Ground Truth as these 

spots correspond to regions that are likely to represent decay effects. Figure 2 illustrates the steps 

followed to determine the Ground Truth Matrix. The process identified under the term “Manage 

Segmented Areas” corresponds to the procedure illustrated in figure 1. 

 
Figure 1: Check for overlap spots and processing the partially overlapping labels. 

 

Figure 2: Flowchart of the Ground Truth Extraction Approach. 

Performance Evaluation 

 
The segmentation of an image through an algorithmic approach (AS) is compared towards the Ground 

Truth (GT) specification of that image to count instances of correct segmentation, nder-segmentation, 

over-segmentation, missed regions, and noise regions. The algorithms’ performances and their 

potential are estimated, in this work, through studying the Receiver Operating Characteristic (ROC) 

curves [9]. The ROC curves are obtained by modifying the thresholds within meaningful ranges and 

subsequently calculating instances of correct and incorrect segmentation.  

 



Extraction of Shape Features 
 
Following to the detection of the areas of interest and the determination of their boundaries, we also 

extract boundary sequences as contour-based shape representations. The boundary sequences are 

defined as an ordered sequence of boundary pixel locations in clockwise order. The extraction method 

has proven to work well even if a shape has holes.  

In this section we provide an overview of the boundary sequence extraction approach employed to 

detect hole regions and nested areas within segments. According to the literature, if a region R 

includes holes H1, H2,   Hm, then it can be expressed as: 

m1 HBDHBDRBS:RBD   

The boundary sequence extraction method scans the image in a raster-scan manner as in TV. There 

are three different states of current scan pixel, p in a scan line as follows and the state transition 

diagram is presented in the figure below. 
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The state transition diagram is initialized when a new line starts and finishes at location of end-pixel 

in the scan line starts (state E). 

 
Figure 3: State Transition Diagram 

 

When a new object region or a new hole region is extracted, pixels of extracted boundary sequence 

are marked with appropriate label that is assigned differently to each object region and each hole 

region. The boundary sequence can be extracted by a boundary following operation [12]. A nested 

hole counter is used to determine which state is the next one when a background pixel is found in S1. 

The transition conditions are summarized as follows. 

 

a, d: When a foreground or a labelled pixel is met. 

b: When a background pixel is met and the nested count is zero. 

c: When a background pixel is met and the nested count is not zero. 

e: When there remain only the background pixels in the current scan line. 

f: When no background pixel is found. In each state, following operations are performed. 

 

S0: When a foreground pixel is found, a new boundary descriptor for the new object region is 

generated through boundary following. 

S1: When a background pixel is found, a new hole boundary sequence for the hole region is generated 

through boundary following. The hole boundary sequence is attached to appropriate boundary 

descriptor. 

S2: When a foreground pixel is found, a new boundary descriptor for the new object region in a hole is 

generated 

 

When the segments’ boundary sequence is extracted the perimeter, compactness and moments can be 

easily computed. The Euler number is defined as the number of components minus the number of 

holes in region R.  

E =1- N(H) (1)  

The presented results summarize our system’s response when dealing with surfaces of different 

degradation state. Subsequently, we investigate the algorithms’ potential to detect decay on images 

acquired through various monitoring modalities capturing decay characteristics at various scales. A 

further issue approached through statistical evaluation is the cleaning state and/or the conditions of 

exposure and whether they are reflected on the size of corroded areas and their relative intensities 

over the background. Due to their stochastic distributions, the alterations on the darkness of decay 

spots are investigated through t-tests, while alterations on decay patterns’ sizes are examined through 

non-parametric rank sum tests (Mann Whitney U-test). Finally, at the end of the results section we 



briefly discuss the associations between the degradation state and the corresponding decay areas 

shape. 

 

RESULTS 
 
Through this work, the evaluation of the algorithmic results is performed by both qualitative and 

quantitative means. Visual evaluation implies inspection of the segmentation results by the experts. 

The examined properties are the existence of true decay spots as well as their size and shape. The 

visual evaluation has been performed on the basis of 45 FOM images. Statistical evaluation is 

performed using several statistical metrics to assess the severity and extent of degradation. 

 

Visual Inspection and Quantification of Decay 
 
This section presents and discusses several results, demonstrating the performance of the employed 

detection schemes. Figures 4 and 5 depict black crust located on a sheltered and unsheltered fluting 

respectively. It is readily observed that the algorithms sufficiently distinguish the deterioration 

patterns related to the presence of black and white particles. According to the experts, the detected 

areas (number and size) are in good accordance with their own judgment of deterioration patterns 

prevalence in the image [11]. Even the spatial distribution of small black particles, which are derived 

by the algorithm in the vicinity of polished sections of black crusts, are expected in such formations. 

A further study of the detection results illustrated on figures 4 and 5 reveals that larger number of 

decay patterns is segmented on sheltered untreated flutings.  

 

Figure 4: (a) Sheltered untreated Fluting monitored by FOM, (b) black particles detected on (a), (c) 

white particles detected on (a). 
 

Such assessments are in accordance with the experts’ judgments [11]. The detection results derived 

when studying treated surfaces are also visually inspected by the experts and is evidenced that that the 

deterioration patterns are eliminated after the application of chemical cleaning methods [10]. At this 

point we should state that the images presenting deterioration state after chemical cleaning illustrate 

areas adjacent to the untreated black crust shown in figures 5 and 6. 

 

Figure 5: (a) Unsheltered untreated Fluting monitored by FOM, (b) black particles detected on (a), 

(c) white particles detected on (a). 

 
The degradation phenomena on the studied images are quantified by measuring the number of spots, 

the percentage of area covered by such spots and their average size and spatial distribution. In order to 

increase the reliability of statistical measures concerning the spatial distribution of spots prior and 

after cleaning with various methods, we adopt a statistics consideration on many image sub-regions. 

Table 1 depicts the percentage of surface covered by black particles. Several conclusions can be 

drawn from the results of Table 1. Sheltered surfaces and flutings show more severe degradation 

phenomena than their unsheltered counterparts. These results can reasonably well be interpreted by 

the fact that sheltered areas and column flutings accumulate the atmospheric deposition, while 

unsheltered areas and column reedings, being more exposed to rain and wind action, show lower 

amounts of decay effects. The qualitative (visual) and quantitative measures extracted from our 

analysis methodology can be further used to assess the capability of chemical intervention methods 

[11]. 

 
Table 1: Percentage of stone surfaces covered by black crusts 

 Diagn. BP DS (30 min) DS (60 min) WMB 

Shelt. Flut. 3.75 0.04  0.45 0.04 

Shelt. Reed 1.73 0.05  0.06  

Unshelt. Flut. 0.53  0.04   

Unshelt. Reed 0.29  0.04  0.02 

 



Inspection by Various Monitoring Modalities 
 

As it was stated previously, one of the objectives of this work was to assess the effectiveness of the 

implemented algorithms under different monitoring systems [11]. Figure 6(a) illustrates a stone 

surface depicted by the digital camera, while (b) and (c) shows the segmented black and white spots. 

Figures 7 (a) through (c) depict the same surface monitored under the reflectography in the visible 

spectral band and the black and white particles detected on it. As it can be seen, treated and untreated 

stripes co-exist on the stone specimen.  

 
Figure 6: (a) Stone material (monitored by a digital camera) demonstrating cleaned and un-cleaned 

stripes, (b) Black particles detected, (c) white particles detected. 
 

Optical inspection by the experts on Figures 6 and 7 verifies that the topology of the detected black 

particles, their spatial distribution as well as their shape and size closely resemble to their own 

judgment of sporadic particle presence. A more dissect inspection of Figures 6(c) and 7(c) though, 

reveals the detection of white decay spots even on treated regions. According to the experts’ 

assessment, these spots are associated to regions of material loss. The above false positive induction 

illustrates the inability of the monitoring systems to distinguish between areas where gypsum prevails 

and other areas where material loss occurs. This limitation arises from its low magnification rate as it 

becomes difficult to view the inter particle area between adjacent black spots and thus to accurately 

locate areas of gypsum or CaCO3 presence. A further explanation of the false positive detection is 

associated to the operation of the reflectography screening system and is discussed in more detail in 

[11]. 
 

Figure 7: (a) Stone material (monitored by a refectography system (vis)) demonstrating cleaned and 

un-cleaned stripes, (b) Black particles detected,(c) white particles detected. 
 

Tests of Statistical Significance 
 

Visual evaluation of the segmentation results verified that the main attributes of corrosion that are 

significantly altered due to cleaning or exposure conditions are the sizes of the decay areas and their 

relative darkness over the background. More specifically, it was revealed that more severe 

degradation phenomena are basically associated with the presence of larger in extent and darker 

corrosion patterns. To establish the occurrence of such associations, we employ tests of statistical 

significance to prove or disprove the existence of alterations. The significance of alterations on the 

sizes of decay patterns is assessed through the Mann Whitney U-test, while intensity variations are 

considered through t-tests. In both the parametric and the non-parametric tests we always consider as 

null hypothesis that the first of the two populations has a distribution of intensities or area sizes laid 

on lower levels, while the alternative hypotheses claims the opposite. To prove or disprove the tested 

hypotheses we use one-sided statistical test. Thus, when the t-value or the U-value is larger than the 

critical values, then the null hypothesis is rejected in favor of the alternative hypothesis, supporting 

the claim of different distributions. Tables 2 and 3 summarize the results derived after the application 

of the T-test and the Mann-Whitney U-test respectively. The results presented in tables 2 and 3, reveal 

that the cleaning methods attain to eliminate significantly the size of corrosion patterns and their 

relative darkness over the background. This observation is valid for almost all tests (cleaning 

strategies), except for the case where unsheltered reedings are cleaned by the DS method. This 

supports the conclusions derived by the chemical analysis [11], according to which DS performs only 

mild cleaning and minimizes material loss. Furthermore, according to the results, the black particles 

detected on sheltered flutings are always larger in size and darker than the corresponding spots 

detected on any other of the studied surfaces. Moreover, table 2 reveals that decay patterns segmented 

on sheltered flutings are darker than the corresponding patterns detected on sheltered reedings. An 

effort to investigate whether a similar observation is also valid for the unsheltered areas revealed that 

the observed differences on the relative intensity values among unsheltered flutings and reedings is 

marginally significant (test 10, table 2). This conclusion also agrees to the chemical reports [11].  

 



Table 2: Comparative study on the significance of intensity alterations 
  Algorithmic Response 
1. Shelt. Flut. (Ds) (vs) Shelt. Flut. (Diag.) Df= 34  Crit t (1-tail)=1.691    t= 25.76 

2. Shelt. Flut. (WMB) (vs) Shelt. Flut. (Diag.) Df= 33  Crit t (1-tail)=1.692    t= 62.41 

3. Shelt. Flut. (BP) (vs) Shelt. Flut. (Diag.) Df= 27  Crit t (1-tail)=1.703    t= 33.90 

4. Shelt. Reed. (Ds) (vs) Shelt. Reed. (Diag.) Df= 9    Crit t (1-tail)=1.833    t= 12.59 

5. Shelt. Reed. (BP) (vs) Shelt. Reed. (Diag.) Df= 8    Crit t (1-tail)=1.860    t= 12.72 

6. Shelt. Reed. (Diag.) (vs) Shelt. Flut. (Diag.) Df= 28   Crit t (1-tail)=1.701   t= 13.44 

7. Unshel. Flut. (Diag.) (vs) Shelt. Flut. (Diag.) Df= 34   Crit t (1-tail)=1.691   t= 47.96 

8. Unshelt. Flut. (DS) (vs) Unshelt. Flut. (Diag) Df= 22   Crit t (1-tail)=1.717   t= 7.75 

9. Unshel. Flut. (Diag.) (vs) Shelt. Reed. (Diag.) Df= 16   Crit t (1-tail)=1.746   t= 16.35 

10. Unshel.Reed. (Diag) (vs) Unshelt. Flut. (Diag.) Df= 22   Crit t (1-tail)=1.717   t= 4.57 

11. Unshelt. Reed. (Ds) (vs) Unshelt. Reed. (Diag.) Df= 9     Crit t (1-tail)=1.833    t= 7.57 

12. Unshel.Reed.(WMB)(vs) Unshelt. Reed. (Diag.) Df= 9     Crit t (1-tail)=1.833    t= 8.42 
 

 

 

 

 

 

 

 
 

Table 3: Comparative study on the significance of decay areas size alterations 
  Algorithmic Response 

1 Shelt. Flut. (Diag) (vs) Shelt. Flut. (Ds) N1 =24    N2 =12   (U=252 Ucrit =74) 

P= 5.92*10-5 

2 Shelt. Flut. (Diag) (vs) Shelt. Flut. (WMB) N1= 24   N2=6    (U=144 Ucrit = 27) 

P=1.6x10-6 

3 Shelt. Flut. (Diag) (vs) Shelt. Flut. (BP) N1=24    N2=6    (U=144 Ucrit = 27) 

P= 1.6x10-6 

4 Shelt. Reed. (Diag) (vs) Shelt. Reed. (DS) N1= 6    N2=6    (U= 36 Ucrit = 3)  

P= 10.8x10-4 

5 Shelt. Reed. (Diag) (vs) Shelt. Reed. (BP) N1= 6    N2=6     (U= 36 Ucrit = 3) 

P= 10.8x10-4 

6 Shelt. Flut. (Diag) (vs) Shelt. Reed. (Diag) N1= 24  N2= 6     (U= 0 Ucrit = 27) 

P= 1.6x10-6 

7 Shelt. Flut. (Diag) (vs) Unshelt. Flut. (Diag) N1= 24    N2=12      (U=218 Ucrit = 74) 

P= 7.9x10-10 

8 Unshel. Flut. (Diag) (vs) Unshelt. Flut. (Ds) N1= 12    N2=12      (U=144 Ucrit = 31) 

P=3.6x10-7 

9 Shelt. Reed. (Diag) (vs) Unshelt. Flut. (Diag) N1= 6    N2=12      (U= 62 Ucrit = 9) 

P= 6.7x10-3 

10 Unshel. Flut.(Diag) (vs) Unshel. Reed. (Diag) N1= 12 N2= 6        (U= 72 Ucrit = 9) 

P= 5.3x10-5 

11 Unshel.Reed. (Diag) (vs) Unshel. Reed. (Ds) N1= 6    N2= 6       (U= 24 Ucrit = 3) 

P= 0.19 

12 Unsh. Reed.(Diag) (vs) Unshel. Reed.(WMB) N1= 6    N2= 6      (U= 36 Ucrit = 3) 

P= 10.8x10-4 

13 Shelt. Reed. (Diag) (vs) UnShelt. Reed.(Diag) N1= 6     N2= 6      (U= 36 Ucrit = 3) 

P= 10.8x10-4 

 

Evaluating the Algorithms’ Performance 
 
In this work, we consider the ROC curves as robust measures for evaluating the algorithms’ 

performance [9]. Throughout this subsection, we briefly discuss the performance curves derived for 

the most representative case of corrosion damage occurrence (sheltered untreated fluting). This case 

corresponds to a surface demonstrating a rapidly varying background structure. Figure 8 depicts the 

algorithms’ performance through the ROC curves and reveals that the Conditional Thickening and the 

Region Growing algorithms perform generally better than the others. This characteristic reflects the 

algorithms’ potential to perform efficient detection irrespective of noise levels and variations over the 

background.  

 



Figure 8: ROC curves depicting the performance of the implemented algorithms in the case of the 

 

Shape Features Analysis 
 
As it was discussed earlier, an objective of the current work is to examine how the cleaning and 

structural conditions are reflected onto the shape of the segmented decay areas. An important feature 

revealed through our analysis, is the occurrence of hole-regions within segments. According to the 

experts this is a remarkable characteristic, which reflects the prevalence of discontinuities in the body 

of black crusts. More specifically humidity affects the structure of black crusts due to the dissolution 

of the gypsum. This phenomenon can be observed (in the micro-scopical scale) by the occurrence of 

white spots within the body of black crusts. Through this subsection we attempt to investigate 

associations between the occurrence of hole-regions and the exposure of the stone material/or its 

cleaning state. Thus, table 4 presents the fraction of decay areas including hole-regions. This measure 

provides an initial general view of the phenomenon.  
 

Table 4: Percentage of the segmented decay patterns containing holes into their areas 
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4.97 2.29 0 0.88 0 

 
Direction of the segmented decay areas, as an attribute of the corrosion state, is also evaluated. Thus, 

the decay areas orientation is considered through measuring the direction of their axis of least inertia 

[12]. Through this study, we attempt to estimate whether the decay patterns tend to be oriented 

towards specific directions. To investigate the occurrence of directionality we measure the standard 

deviation on the distributions of orientations. The derived results indicate that decay patterns 

prevailing on unsheltered areas tend to be more oriented than the corresponding patterns segmented 

on sheltered areas. This may reflect the effect of water’s fluency.  

 

 CONCLUSIONS 

 
This work is geared towards investigating aspects of non-destructive detection and quantification of 

corrosion damage on stonework. The studied surfaces are monitored via the aid of several imaging 

modalities. More specifically, we use a Fiber Optics Microscope (FOM), a Digital Camera, and a 

reflectography system operating at the visible spectral band. Several algorithms are tested to detect 

decay patterns. Thus, one of the initial objectives of this work is to study the efficiency of the 

implemented algorithms in accurately determining the exact location of decay patterns, as well as 

their size and shape features. The performance of the algorithmic schemes is assessed through 

studying the ROC curves. From the performance evaluation [9] it is revealed that the efficiency of 

each algorithm is closely related to the background structure. Further to validating the algorithms’ 

performance, this work also investigates the efficiency of the cleaning interventions. Several 

statistical tests are employed to estimate whether the cleaning approaches attain to reduce the crusts’ 

thickness and the extent of corroded areas. The results derived from the statistical tests indicate that 

all the cleaning methods attain to reduce the crusts thickness and the extent of the corroded areas. 

Furthermore, it is revealed that thicker crusts are encountered on sheltered untreated flutings. This 

conclusion is also in accordance to the experts’ opinion. Finally, we study whether the structural or 



cleaning effects are reflected onto the decay patterns shape. Our analysis revealed that corroded areas 

segmented on unsheltered areas tend to be oriented towards specific directions. Moreover, the 

occurrence of hole-regions in the segmented degradation patterns is also investigated. This work 

indicated that decay areas with more hole-regions prevail on areas of more severe degradation. 

According to the experts, this effect is closely related to the discontinuities encountered in black 

crusts and arises due to the dissolution of gypsum by the walls’ humidity. 
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