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Abstract

We propose a framework for inferring the focus of at-
tention of a person, utilizing information coming both from
head rotation and eye gaze estimation. To this aim, we use
fuzzy logic to estimate confidence on the gaze of a person to-
wards a specific point, and results are compared to human
annotation. For head pose we propose Bayesian modality
fusion of both local and holistic information, while for eye
gaze we propose a methodology that calculates eye gaze di-
rectionality, removing the influence of head rotation, using a
simple camera. For local information, feature positions are
used, while holistic information makes use of face region.
Holistic information uses Convolutional Neural Networks
which have been shown to be immune to small translations
and distortions of test data. This is vital for an application
in an unpretending environment, where background noise
should be expected. The ability of the system to estimate fo-
cus of attention towards specific areas, for unknown users,
is grounded at the end of the paper.

1. Introduction

Gaze directionality plays an important role since the very
early years of our life: By watching their care takers’ gaze
directionality, small children learn to distinguish between
important and less important events or objects [19]. Ob-
serving other people’s focus of attention during meetings or
social gatherings is a crucial factor for what is calledshared
attention[8]: People participating in events might be look-
ing at something that has limited information to give, only
because they want to declare their existence and attentive-
ness. A lot of works in recent bibliography have studied
the issue of relating gaze with attention. In [23] the au-
thors explore the correlation among one’s own statements
of attention towards an electronic material, the perception
of others regarding his levels of attention and data from his
gaze behavior. Gaze directionality has been the main fea-

ture for defining the levels of attentiveness of a person to-
wards electronic material based on the amount of time a
user spends looking at the object or, also, objects relativeto
the object of interest in [22]. More recent works regarding
attention estimation on a multitude of targets are presented
in [2] and [32]. In [2], the authors, using meeting events as
context information, propose DBN modelling for inferring
joint Visual Focus of Attention on a number of participants,
in order to make assumptions regarding most probable tar-
gets that should attract more attention. The authors in [32]
estimate focus of attention of participants in dynamic meet-
ing scenarios, taking advantage of information coming from
speech and motion activity of other participants.

In literature, various works exist for approaching the
problem of gaze estimation, varying in terms of applica-
tions, cues and hardware set-up they use. A lot of work
has been done for estimating the degree of concentration in
driving conditions [7], [25], [9]. For example, in [9], the
authors use stereoscopic techniques to estimate head and
eye directionality, in order to simulate attentiveness in driv-
ing conditions. Similar, the problem of gaze estimation in
conditions of Human-Agent interaction is under intense re-
search [23, 22], [3], [18], [24]. However, these works are
confined within certain bounds in terms of applicability or
flexibility to use both head rotation and eye gaze as indica-
tors, and suffer from the problem of multi-camera or intru-
sive systems.

In the proposed system, we describe a full-fledged
methodology for estimating degrees of confidence of at-
tention towards specific targets, using information coming
from head rotation and eye gaze estimation in a common
framework, with the usage of a single camera. Not a lot
of works exist in bibliography regarding the issue of com-
bining head pose and eye gaze, only with the usage of one
ordinary camera, due, mainly, to the challenging nature of
the problem. In the system described in [33], the authors
use elastic graphs for the estimate of the horizontal head ro-
tation. For eye gaze estimation, they employ gabor filters.
Based on training data, they build lookup tables that match
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the focus of attention with eye gaze and head pose calcula-
tions. Typical work on eye gaze and head pose estimation
is the one described in [29], where the authors model heads
with cylindrical models and, using the cylinder parameters,
estimate the location of the eyes. These positions are pro-
jected on a normalized model view and are compared to
reference positions in order to acquire eye gaze direction-
ality. Head pose estimation (with no eye gaze estimates) is
a more studied issue, however, and has been studied from
many aspects, with works employing techniques based on
holistic appearance [26], local information [17], [21], facial
motion recovery [4], non-rigid models [6] and fusion of the
above techniques for robust results [20].

2. System Overview

The proposed system uses Head Pose and Eye Gaze Es-
timation as inputs to a neural-fuzzy inference system which
calculates the degree of visual attentiveness of a person to-
wards specific areas. To this aim, a commonly used dataset
[4] has been annotated regarding its participants’ overall
gaze towards the camera. In this work, we do not focus
on inferring exact gaze estimation, but rather, we are in-
terested in detecting degrees of confidence, through fuzzy
logic, regarding hypotheses that a person is looking towards
a specific point. A frame sequence dataset with clear anno-
tation referring to focus of attention values, coming from
both head rotation and eye gaze, to the authors’ knowledge,
is not publicly available and, thus, we chose to annotate ac-
cordingly a dataset taken under non-pretending conditions
in terms of lighting and user movements, asking from an-
notators to declare the degree to which they think partic-
ipants pay attention to the camera, positioned in front of
them. Furthermore, the BU dataset, apart from the already
available annotation regarding head pose, includes signifi-
cant variation in terms of both head and eye gaze patterns,
something that was expected - and, actually, desired - to be
taken into account during annotation. Thus, although spe-
cific gaze annotation is not offered, the study we set up is
a way to predict overall attentiveness towards the desired
focus of attention. Future extensions of our work shall in-
clude more specialized datasets, developed in specific con-
texts (e.g. game-playing or e-learning environments).

For estimating Head Pose, both local and holistic infor-
mation are used. Local information [1] consists in face and
facial feature tracking, and is based on geometrical relations
between facial features and face boundaries. Holistic in-
formation is extracted from the whole facial area and uses
a set Convolutional Neural Classifiers [14], whose outputs
are combined using linear regressors to estimate head pose.
Fusion of both modalities aims at alleviating drawbacks of
each of other: local techniques are highly dependent on cor-
rect tracking while holistic methods are sensitive to incor-
rect face segmentation. In this paper, we employ a Bayesian

Figure 1. Overview of proposed methodology

Modality Fusion [28] scheme in order to model context in-
formation and reliability, taking into account necessary in-
dicators.

In an attempt to estimate eye gaze, under head rotation,
in this work, eye gaze estimation is achieved by using cylin-
drical models. An area around the eyes is modelled as a
cylinder and it is distorted according to the head rotation
(only rotations around the vertical axis are considered), to-
wards the opposite direction. The positions of the eye cen-
ters in the new, rotated (yaw angle deprived) image are used
to infer eye gaze directionality.

As the system is re-initialized when necessary, error ac-
cumulation is avoided, and the algorithm is able to adjust to
scale changes, as all measurements are normalized with the
inter-ocular distance as estimated at the initialization step.
An overview of the proposed architecture is shown in Fig.
1.

The structure of the paper is as follows. In Section3 the
method for head pose estimation based on local features and
holistic information is presented, and the proposed scheme
for fusion is analyzed, while Section4 explains how eye
gaze information is extracted, even under head rotations. In
Section5 we discuss the methodology used for inference
regarding the focus of visual attention of annotated data, as
well as the experimental procedure we followed. Section6
concludes the paper.



3. Feature tracking and Head Pose Estimation

A very important cue for estimating the degree of atten-
tion of a person towards a task he/she has in front of him/her
is the rotation of his head. In bibliography, this problem is
referred to (together with the estimate of its 3D world coor-
dinates) as Head Pose Estimation. Here, we use a local tech-
nique based on DVFs [1] and we propose, as holistic infor-
mation, a Convolutional Neural Networks [14] architecture
and an inference scheme, adopting linear models between
subclassifiers’ outputs and head rotation space.

3.1. Feature tracking and Head Pose estimation us-
ing DVFs

Initially, the face and facial features are detected using
the frontal Viola-Jones [31] face detection scheme followed
by an ellipse fitting algorithm. Subsequently, the face re-
gion is tracked [1] based on each user’s face chrominance
model, learnt online, and his expected face size, as calcu-
lated at the face detection step. Learning personalized face
chrominance models, in conjunction with expected facial
area size constitute face tracking immune to color and light-
ing variations, as well as different scales at which a person
can appear. Furthermore, these models can be learnt on-
line and be re-trained each time the system re-initializes,so
that error accumulation is avoided. The face bounding box
is used so that facial characteristics are constrained within
it, and provides input to the holistic technique described in
the next section. The eyes and the mouth are detected and
tracked using Distance Vector Fields (DVF), as was done
in [1]. Distance Vector Fields assign a vector to every pixel
of candidate feature areas, pointing to the closest edge pixel.
In this way, each feature’s geometry is encoded and tracking
follows on this transform, instead of the image itself. Facial
Feature tracking by comparing the Distance Vector Fields
of successive images has given robust results for large and
rapid head movements, while features’ positions with re-
gards to face boundaries have been used efficiently to esti-
mate theyawangle of the head [1], achieving accuracy on
the Boston University dataset [4], equal to4.4◦ (mean ab-
solute error).

3.2. Head Pose estimation using CNNs

The architecture of a typical Convolutional Neural Net-
work (CNN) is similar to that of a typical Neural Network,
in the sense that it consists of layers of transformed versions
of the input. More precisely, in a generic image recog-
nition problem, anN × N image is used as input in the
first layer. The image is convolved with a series of train-
able filters of sizep × p in the second layer (C1), resulting
in feature maps of sizeN − p + 1 × N − p + 1. In the
third layer (S2), the feature maps are subsampled by a co-
efficient. The above characteristics of layersC1 and S2
guarantee the following: first, the ability of the network to

learn robustly from a small amount of training data, within
reasonable time, is feasible, as the number of the free pa-
rameters is significantly reduced, since feature maps’ units
share the same weights. Second, subsampling renders the
network more resisting to small distortions or translations
of the input image. Also, alternating convolutional and sub-
sampling layers, makes it easy to form layers that start with
detecting simple features (e.g edges, corners) and end up
to combining features with each other in subsequent layers,
to achieve information coming from spatial combination of
them.

The ability of Convolutional Neural Networks for char-
acter recognition has been shown in [14] and it is enforced
by the fact that they can learn, efficiently, spatial relations
among characteristics, in contrast to typical Neural Net-
works. Furthermore, they do not require very precise align-
ment between training and test data, which is essential for
situations where the user is moving freely in a scene with
complex background. In this case, the boundaries of the
face are usually not precisely tracked and the input to the
Neural Network would not be exactly aligned with the train-
ing data.

In the proposed architecture (Fig.3), training is done
using stochastic Levenberg-Marquardt [15], and the hyper-
bolic tangent sigmoid function is used as activation function
throughout the network. For training, the face dataset in
[10] was used. The proposed inference scheme can be seen,
schematically, in Fig.2: Here, we have used the dataset
in [10] to train 38 CNN classifiers of adjacent classes in
the pose space, which was created using pairs of images
centered to angles{−90o,−45o, 0, 45o, 90o} of horizontal
(yaw) rotation and{−60o, 0, 60o} of vertical (pitch) rota-
tion. The target values for training each CNN are the pairs
{−1, 1} or {1,−1}, depending on which class each train-
ing image belongs to. Face patches in training dataset were
translated from 1 until 3 pixels towards all directions, and
were mirrored around the vertical axis, in order to increase
variability. Also, as face patches for testing originate from
skin segmentation, there is usually a high degree of variabil-
ity regarding the lower limits of the face (and neck) region.
For this reason, all face patches for training and testing have
been cropped in a way that face length is 1.3 times the face
width. Furthermore, the effect ofroll angle has been elim-
inated by rotating the face patch in a way that both eyes
(see previous section) lay on the same horizontal level. The
proposed CNN architecture can be seen in Fig.3. Convo-
lutional layersC1 andC3 consist of 6 feature maps, and
layerS2 consists of 6 maps of dimensions half the size of
C1. LayerC4 has 80 feature maps, whileF5 consists of
10 neurons ending up to the output which gives two val-
ues within the range{-1,1}. For training, all images were
normalized and were brought to32× 32 pixels. The convo-
lutional layers use7 × 7 kernels.
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Figure 2. Head Pose classes used for training the Convolutional NeuralNetworks. Each trained CNN is denoted with a dashed line
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Figure 3. Convolutional Neural Network Architecture for Head Pose Estimation.C1, S2, C3 consist of 6 feature maps andC4 consists of
80, whileF5 consists of 10 neurons

For inference, we propose a technique that uses informa-
tion from the previous frame, by firing only those networks
that included in their training data the classCc whose center
is closer to theyawandpitch values of the previous frame.
In this way, only a subset of CNNs are used at each frame,
constituting the system faster and more reliable, as the pos-
sibility of erroneous classification is reduced. For the final
estimate of the yaw (or pitch) angle, we adopt a linear re-
lation between subclassifiers’ output and actual difference
from Cc. Thus, we propose regression models including
the differences of CNN outputs, as well as the centre of class
Cc. Considering the two outputs aso1 ando2, the difference
o1− o2 is a means of comparing classCc against neighbor-
ing classes. Consequently, for each frame, we can have an
overall output as a an 8-element vector consisting of such
differences (oup, odown, oleft, oright, oup,left, oup,right,
odown,left, odown,right), with each element signifying the
topological relation between the classes compared against

Cc
1. Horizontal (or vertical) rotation is calculated utilizing

regression models on the above elements2

The method has been tested on the Boston University
Face dataset and mean absolute error regardingyaw angle
was5.63◦(MAE).

3.3. Fusion of holistic with local approach using
Bayesian Modality Fusion

Based on the observation that our local and holistic tech-
niques have different levels of reliability, depending on the
context of the interaction, in this paper, we take this param-

1If Cc is at the boundaries of the pose space, dummy classifiers giving
output equal to 2 are hypothesized (settingo1=1 ando2=-1 for the exist-
ing Cc and non-existing class, respectively) for the missing hypothesized
classes

2At estimating the horizontal rotation,oup andodown have been re-
moved from the model. In a similar manner,oleft andoright were omit-
ted at estimating the pitch angle, thus, giving 6-element vectors (as well as
the centre of classCc) at the regression model



Figure 4. Bayesian Network Architecture used for fusing local
with holistic technique.

eter into account during fusion. For this reason, we used
Bayesian modality fusion, so that reliability of each cue is
modelled, according to the phase of the interaction. The
proposed architecture is explained in the next subsection.

3.3.1 Bayesian Networks for Head Rotation Estima-
tion

In literature, the termBayesian Networkrefers to a direc-
tional acyclic graph that represents the joint probabilitydis-
tribution for a set of random variables [11],[13]. In such
networks, nodes are random variables and arcs stand for the
statistical dependencies among pairs of nodes. Such depen-
dencies, in a bayesian network model deterministic influ-
ences among the variables.

In this paper, estimated head horizontal rotation (yaw)
has been considered to be a random, observable variable.
On a second level, true head rotation affects visual systems’
outputs (observable variables), which are also affected by
each modality’s reliability (hidden node). Reliability varies
depending on the context of the interaction. As modality
reliability cannot be observed during the sequence, an indi-
rect way to infer it, is through measurable variables, corre-
lated with it, namely modality reliability indicators. Figure
4 shows a schematic representation of the employed net-
work, which is an adaptation of the scheme proposed in
[28]. Graph nodes represent variables of interest, with the
white ones corresponding to observable quantities and those
with grey color corresponding to hidden variables. Node
Head rotation at framei is the final output variable (target
node). The mean of the integral of the probability distri-
bution of the target node gives the final estimate of head
rotation.

3.3.2 Local information reliability indicator

As reliability indicator for local information, here is consid-
ered the fraction between vertical distance between mouth
and eyes with eye distance:

relDV F,y,i =
‖ Eyesmiddle,i − Mouthmiddle,i ‖

‖ Eyesright,i − Eyesleft,i ‖
(1)

3.3.3 Holistic information reliability indicator

For each instance of the estimate of horizontal rotation with
Convolutional Neural Networks, at framei, yCNN,i, the
confidence value modelled as reliability indicator derives
from equation2:

relCNN,y,i = 1 −
|yCNN,i − my,i:i−n+1|

stdy,i:i−n+1

(2)

with my,i:i−n andstdy,i:i−n being average values and
standard deviation for horizontal rotation for temporal win-
dows of then previous frames (here, we usedn=5). The
values of reliability indicators, under normal circumstances,
are within specific values but, when the corresponding
modality reliability is low, they can take arbitrary values
[16].

3.3.4 Network parameters

Network training was based on learning conditional proba-
bility tables for the nodes which were learnt by quantizing
variables into bins. The discretization that gave the opti-
mum trade-off between variance and bias can be seen in
Fig. 4. Tables parameters are learnt by simply counting
(and normalizing) those frames where two events co-occur.

4. Eye Gaze Estimation

For estimating eye gaze, we propose a technique that
models the face area around the eyes (Fig.5) by a
cylindrical shape, with pose parameters equal top =
[ωχ, ωy, ωz, tχ, ty, tz], whereωχ, ωy, ωz the cylinder ro-
tation angles andtχ, ty, tz the translation parameters. As
the input image is solely the area around the eyes, we con-
sideredtχ andty to be equal to zero, whiletz is considered
to be 80cm. Similar,ωχ (pitch angle) is considered zero
here, andωz (roll angle) is also considered to be null, since
it can be eliminated by rotating the image, as the eye posi-
tions are known (the image is rotated so that both eyes lay
on the same level).ωy is the horizontal angle (yaw), as cal-
culated in Section3. Here, we considered that the camera
focal length isf=500 (in pixels). Subsequently, the input
image is warped so thatωy is zero (Fig.5). From the two
new positions of the eye centers, the one used is that of the
eye that is closer to the camera, as the error caused by per-
spective projection is smaller. Its position on the horizontal
axis is then compared to that of a frame when the person is
looking frontally, in order to estimate the gaze vector. The
resulting value is normalized with the inter-ocular distance,



Figure 5. Extraction of Eye Gaze Vector. The eye position in the
warped image (bottom) is compared to that of the frontal position,
after yaw angle has been removed

as calculated at a frame when the person faces the camera
frontally, in order to tackle scale variation.

5. Experimental procedure

5.1. Dataset Annotation

The Boston University dataset has been used here, and
was annotated regarding the degree at which its participants
are focused on the camera. For each sequence, we used
14 images, taken at intervals of 15 frames resulting to a
total of 630 images (the dataset contains 45 sequences of
200 frames each). The extracted images were uploaded on
a server and 102 people were asked to annotate up to 60
randomly selected images, each, regarding the degree of at-
tention towards the camera they think the person in each
image has (at a scale of 0-1, with 0 standing for complete
distraction and 1 for gaze in the camera). In this way, each
image has been annotated 8.75 times on average, and has
been assigned the average of its annotations. Examples of
images can be seen in Fig.6. The use of the Boston Univer-
sity dataset, here, as our workbench, is due to the dataset’s
nature: the lighting conditions are normal and participants
move freely, with high degree of spontaneity, changing both
head rotations and their eye directionality. Thus, although
the dataset offers ground truth regarding head pose only (by
employing bayesian logic for fusion, the achieved overall
head pose error on the Boston University dataset was4.29◦

MAE/5.66◦ RMS, with the authors in [20] achieving an
overall MAE error equal to4.97◦ on the same dataset and
the authors in [30] RMS error equal to6.1◦ for horizon-
tal head rotation), here, during the annotation set up for the
current work, volunteers were expected to take into account
eye gaze directionality as well for declaring their degree of
confidence that someone is facing the camera or not.

5.2. Description of Inference System

Head pose and eye gaze are used as inputs to a Sugeno-
type [27] fuzzy inference system to infer confidence values
regarding focus of attention towards the camera, utilizing

(a) (b)

Figure 6. Examples of annotated images with annotations equal to
0.53 and 0.6, respectively.

the annotation described above, as ground truth data. Prior
to training, our data were clustered using the sub-cluster al-
gorithm described in [5]. This algorithm, instead of using a
grid partition of the data, clusters them and, thus, leads to
fuzzy systems deprived of the curse of dimensionality. For
clustering, many radius values for the clusters were tried
and the ones that gave the best trade-off between complex-
ity and accuracy were25◦ for head horizontal rotation, 0.15
for gaze vectors, and 0.40 for the output variable. The num-
ber of clusters created by the algorithm determines the op-
timum number of the fuzzy rules. After defining the fuzzy
inference system architecture, its parameters (membership
function centers and widths), are acquired by applying a
least squares and back-propagation gradient descent method
[12].

5.3. Experimental results on focus of attention esti-
mation

Training of the bayesian network, as well as the Fuzzy
Inference System was done by following a leave-one-out
cross-validation method for each user, exempting all video
sequences corresponding to him and using only those be-
longing to the rest of the participants. In this way, our sys-
tem’s aim is to be able to generalize and be used in appli-
cations where a user-specific calibration phase is supposed
to be avoided. Taking into account that the overall settings
of the dataset are non-pretending (every user moves in a
personalized manner and lighting is normal), experimental
performance shows that the system’s ability to generalize to
unknown users is promising. Testing for each user showed
that the overall system was capable to estimate ground truth,
as it was annotated by the users on the dataset of subsection
5.1, with an absolute error equal to 0.16.

To get a more precise picture of the system’s ability to
estimate those moments when the user is looking at spe-
cific points, raters’ annotation, when larger than a certain
threshold was considered to correspond to gaze patterns
on the camera. When annotations were smaller than this
threshold, it was considered that users were looking away
from the camera. Visual inspection of the annotations and
the corresponding images revealed that there was high vari-
ance when head would pose a high rotation with regards
to the camera plane, but the eyes were actually looking at
it. In such images, qualitative assessment of the annotation
showed that raters would consider users looking at the cam-



era at a degree around∼ 0.5 out of 1 (see Fig.6). Thus,
setting a threshold at the fuzzy system’s output, equal to
T=0.5 for declaring a user aslooking at the camera, overall
recall and precision were 89% and 75%, respectively (f -
measure=0.79).

In terms of speed, although the algorithm was developed
using MATLAB, and no code optimization took place, on a
Dual Core 2.26Ghz processor, DVF transform and feature
tracking necessitate less than 100ms/frame, while a CNN
subclassifier’s output needs, on average,10−4 sec to be es-
timated.

6. Conclusions and Future work

In this paper, the ability of a system to infer focus of at-
tention of a user, towards a task in front of her or him, based
on a combination of head pose and eye gaze directionality
has been examined. For head pose estimation, we propose
a hybrid technique, taking advantage of both holistic and
local information, while eye gaze has been estimated using
information from the same camera. Through experiments,
it was shown that the estimates are reliable, indicating that
the proposed methodology on head pose and eye gaze com-
bination for a cumulative estimate of user focus of attention
estimation is promising, especially taking into account that
not a lot of work has been done on fusing these two cues
in a non-calibrated, mono-camera environment. Current re-
search is focusing on modelling user focus of attention on
more than one areas or objects (in this paper, the camera),
exploiting the possibilities of fuzzy logic towards that di-
rection. Using raw instances of eye gaze and head pose,
for estimating the exact gaze vector, and evaluation on ap-
propriate frame sequences, is also within the aims of our
current research. Our work is expected to support human-
robot interaction environments, where the notions of shared
attention and imitation are vital for natural dialogues, and
adaptation to human preferences.
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