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1 Introduction

The extraction of motion and shape information of three dimensional objects from
video sequences emerges in various applications especially within the framework
of the MPEG-4 and MPEG-7 standards. Particular attention has been given to
this problem within the scope of model-based coding and knowledge-based 3D
modeling. In this chapter, a novel algorithm is proposed for the 3D reconstruction
of a human face from 2D projections. The obtained results can contribute to
several fields with an emphasis on 3D modeling and characterization of human
faces.

The problem of modeling human faces from their projections has been tackled
before by several authors such as [1, 2]. However, the accuracy of the obtained
results is still far from the desirable. In [1] an algorithm is provided for the
estimation of 3D motion and structure from two orthographic projections (two
frames) having available a relatively accurate initial guess of the object structure,
for example a generic wireframe model for the case of human faces. In [2] a
modification to the above algorithm is proposed in order to increase its tolerance
to errors in the initial guess.

In the aforementioned approaches it is assumed that the human face is a gener-
ally rigid object. Local deformations of the face, such as mouth and eye movement,
are generally tackled separately as local motions. This constraint is also set in this
work, i.e. the human head is assumed to be globally rigid. Similarly to other
approaches, it is assumed that there is no camera movement and that the video is
obtained under orthographic projection. The latter, as it can be seen in [6], yields



satisfactory results and significantly reduces computational cost.

In the present work, the algorithm presented in [5] is utilized in order to obtain
an accurate solution for the object’s 3D motion and structure (without any initial
guess for the object’s 3D structure) employing three orthographic projections.
The algorithm exploits the information provided by the fact that the object is
a human head, in the sense that keypoints and keylines are extracted increasing
the accuracy of the 2D motion estimates. As it will be quoted in the sequel,
accuracy in the 2D motion estimates plays a significant role to the accuracy of
depth estimates.

2 Overview

The first step of the presented algorithm is to obtain 2D motion estimates of the
most characteristic face elements (iris and edges of the eyes, nasal points, lips
edges, etc.). Reliable estimation of these feature correspondences forms a crucial
presumption for 3D information extraction. In this work, reliable estimation of
corresponding points is obtained through the use of adjustable template matching
involving correlation coefficient calculations for 2D feature templates (see Section

The second step uses these 2D point correspondences in order to yield estimates
of the motion parameters corresponding to the actual 3D movement of the human
face. These include the rotation angles and axes as well as the translation vectors
that describe the movement of the object in 3D space (see Section 4).

The third step computes 3D shape information (depth and relative position)
of the initial characteristic points. Computation is based on the 2D point cor-
respondences obtained in the first step and the rotation/translation estimates of
the second step. A variant of block-based 2D motion estimation algorithms that
exploit the previously estimated motion parameters of the face are utilized for all
points on the image (see Section 5). The estimates that these algorithm yield
for the remaining - non characteristic - points of the face are next used for the
accurate extraction of 3D position information of the human face.

Simulated experiments illustrating the performance of the proposed algorithms
have been included.

3 Facial Feature Extraction

Research on face recognition has shown that some specific features of the face
can be easily detected. Among these, we choose to extract those that can be
considered as rigid points, throughout an arbitrary video sequence including the
face. The relative solidity of the feature points is a crucial issue, since it affects
the correct calculation of the rotation matrices. Such features can, for example,



be the eyes and nasal points. As it will be seen, the accuracy of computation of
motion parameters depends upon the reliability of the extraction of a sufficient
number of characteristic points (at least four) on the complex surface of the face.

Additionally, the above set is enriched by features that may deform along time,
so as to achieve 3D shape recovery by attaining a dense wireframe mask of the
human face. Thus, supplementary points may be placed, e.g. on the chin and
cheek contours and the lips outline.

A variety of techniques have been proposed for extracting characteristic points
in images containing faces. These techniques comprise simple or more elaborate
tools such as curvature extrema, Fourier descriptors, generalized symmetry op-
erators, the KL transform, the Hough transform, adjustable template matching,
Gabor wavelet decomposition and knowledge-based vision systems [9]. In our ap-
proach, a few variations of template matching techniques are adopted.

3.1 MATCHING 2D FEATURES

Firstly, some characteristic 3D regions of a generic head model are isolated and
projected onto the 2D space, in order to derive generic templates containing the
features to be tracked. In fact, 3D generic templates are utilized in order to obtain
a set of views (affine transformations) for each characteristic region of the face.
This task aims at finding the region in the 1st frame that matches best each generic
template. Since in the first frame we may not have a frontal view of the human face,
one element from each set is appropriate. In this way, each characteristic region is
derived in the first frame. In the remaining frames the characteristic regions can
be obtained similarly. Equivalently, the generic templates can be subsituted by
the ones matched in the 1st frame, after they are subjected to a number of affine
transformations forming new sets of characteristic templates.

Template matching is being performed with the use of correlation coefficient.
Supposing that images are viewed as intensity matrices, the correlation coeffi-
cient between the prototype (matrix A) and the repeatedly audited blocks of an
appropriately selected area of the face (matrix B) is computed as follows:
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The template of each group that achieves maximum correlation coefficient with
its corresponding block of the image of interest, 1s the one used. If, however, the
maximum correlation coefficient for a specific group doesn’t exceed a confidence
threshold, the specific feature is considered as not tracked. The ease for each
feature’s detection has been determined through years of research by computer
engineers and neuro-physiologists [9]. The most reliable features are extracted



first. The knowledge of their position restricts the search area for the rest of the
features, making their tracking faster and more confident.

Subsequently, hierarchical filtering through ’steerable filters’ is used to detect
facial keypoints. The term ’steerable filters’ is used to describe the reconstruction
of deformed filter kernels that are created by superimposing a small number of
orthogonal basis functions, as described by the following formula:

Fo(x) = ) bi(a) Ax (x) (2)

where F denotes the kernel, Aj denote the basis functions, b; denote their
weights and « is a general multi-deformation [10]. In this way, more complex
filters are composed by simple ones, while filtering with more sophisticated filters
is reduced to convolving the image with a small number of basis functions. Addi-
tionally, any number of basis functions reconstructs all deformed kernels, affecting
only the reconstruction quality. In our case, low quality approximations are ade-
quate, a fact that results in a small number of basis functions. For the detection
of the iris, a model driven approach is used as in [10].

Alternatively, easier processing tools are being practiced, such as the integral
projections towards vertical and horizontal orientation, as shown by the following

relations respectively:
Y2
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Simple image processing tools proved adequate for plain detection, while the
more elaborate tool of hierarchical filtering is used for complex point extraction.
Thus, characteristic face points are detected accurately within the tracked tem-

plates.

3.2 LINE MATCHING

Adjustable templates consisting of parabolas [11] are used for representing features,
such as the chin contour. In this chapter, such features will be utilized in order
to restrict the search area during the motion estimation procedure for all (non-
characteristic) points on the face.

The area of the jaw that is visible in each frame can be automatically restricted,
since the blocks already detected are enough to indicate its approximate position.
By performing edge detection to this restricted area we find a set of points that are
candidates for the description of the jaw line. Given these points, the estimation



of the jaw line is provided by its approximation by a parabola or a second order
line. In the case of the second order line approximation, a line described by
y=az? + Bz + v isderived by computing the unknowns o, 3, v. Thus the
candidate points located by edge detection techniques are approximated with the
appropriate second order line. This is performed with a Least Squared distance
approximation of that set. By defining the distance of each point from the curve
asd; =y; — az? — B x; — 7, and by minimizing the squared sum for all the

candidate points, we get:
0rs = (XTX)" !XTy (5)

where X is the N x 3 table containing in line i the vector [#7 z; 1], y is the N x 1
vector containing in line ¢ the element y;, while s 1s the vector containing the
factors a, 3, 7.

The above procedure is performed two times. After the first iteration and
the determination of the unknown parameters, the points whose distance from
the curve exceeds a threshold are discarded. In the second iteration, the calcu-
lations are performed using only the remaining points. Thus, the curve is now
approximated precisely.

4 Computation of Motion Parameters

Earlier approaches in the problem of estimating 3D motion include [7, 8] in the case
of perspective projections, and [4, 1, 2, 5] in the orthographic case. In this paper,
the algorithm proposed in [5] is employed, since it provides an exact, computation-
ally attractive solution even in the presence of noise. It should be mentioned that
orthography poses no considerable limitation in the application of the proposed
algorithm, as it is a reasonable approximation to perspective projection, when the
object 1s relatively far away from the camera.

4.1 DEFINITIONS

The movement of a rigid object in 3D space can be seen as superposition of a 3D
rotation and a 3D translation. Concequently, when a point (z,y, z) on the object
moves to (¢/,y', z'), it holds:
! T
vy | =R |y |+T (6)
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where R, T are the rotation and translation matrices respectively. Generally:

T
R=|rn ro rma |, T=[TW T» T5] (7)



Assuming a rotation about an arbitrary axis, matrix R can be written in
. . . . . T
cartesian coordinates in terms of the rotation axis n = [ ny ns N3 ] and

rotation angle a, as:

n1? + (1 —n1?)eosa nins(l—cosa) — nzsina nying(l—cosa)+nzsina
R=| nina(l—cosa) + nzsina  ns? + (1 — nz?)cosa  nans(l—cosa)—nysina | (8)
nins(l—cosa)—nssina  nanz(l—cosa)tnisina  nz® + (1-n3?)cosa

The computation of motion parameters involves the estimation of matrices R,
T. In fact, as far as the rotation matrix R 1s concerned, the estimation of the
rotation axis n and rotation angle a is necessary. It must be noticed that under
orthography, the component 75 of the translation matrix, which is perpendicular
to the projection plane, cannot be estimated by any scheme. The computation
of the structure parameters involves estimation of the z, 2z’ coordinates for each
point in (6), given the point correspondences (given in fact coordinates ', z, ¢, y)
and having computed the motion parameters. However, absolute depth cannot be
estimated by any scheme under orthographic projections, as in this case absolute
depth information is lost due to the type of projection. In fact, relative point
depth is estimated, providing 3D shape information.

4.2 REVIEW OF THE ALGORITHM

In this subsection, we will follow the notations used in [5] for compatibility matters.

Ullman in his classical work [3] proved that four point correspondences over
three frames are sufficient to yield a unique solution to motion and structure up to
a reflection. The latter is verified in all proposed algorithms [4, 5]. In this sense, a
small set of at least four relatively exact point correspondences, as described in the
previous section, are needed for computing the rotation and translation matrices.

According to Stokes assertion, any movement such as (6) can be described by
a translation T equal to the point correspondence of an arbitrarily chosen point P
on the object, and a rotation R about an appropriate axis and considering point
P as the rotation origin. Concequently, by picking a point P and assigning P to
the world origin (0,0, 0), translation T is computed as the point correspondence
of P. In this sense, the computation of T 1s straightforward.

The estimation of matrix R is achieved through the use of the so-called 2x2
matrices K which can be expressed in terms of the differential reference and motion
vectors for every three points as,

Av = K Ar (9)

where Ar = [r3—1r1 r2 —r1], and Av = [vz — vy vy —vq]. Vectors v, 13
are the motion and the reference vectors respectively for a point on 1st frame.



Similarly, matrix K can be used, defined as:
Ar = K Ar (10)

where Ar’ = [r§ —r) ry —ry]. Vector r} is the reference vector of the correspond-
ing point on the 2nd frame. It can be seen that matrices K, K are the same for
any three points on the same 3D planar surface. The rotation matrices can then
be obtained using some manipulations, in terms of eigenvalues and eigenvectors,
as it will be quoted in the sequel. In order to simplify the following equations, let
matrix L be the adjoint matrix:

L = adj(K+1I) = adjK (11)

where I denotes the 2x2 identity matrix. Since L also characterizes the projection
of a 3D planar surface to the projection plane, let Lg; be the L-matrix that
corresponds to rotation R of the plane j. In accordance to Ullman’s assertion,
four L-matrices contain sufficient information, in order to estimate the motion and
structure parameters. In fact, employing four point correspondences over 3 frames,
two L-matrices are derived corresponding to movement frame 1-2 and another two
corresponding to movement from frame 1-3. Without loss of generality, let for
simplicity matrix R correspond to movement frame 1-2 and matrix S correspond to
movement frame 1-3. Using more than four L-matrices, a Weihgted Least Squares
scheme is provided in [5] to improve the estimation of the motion parameters.
Let the rotation matrix R be written as:

R=| oM (12)
ri1 iz ]T

T
where rg = [ ],1‘1 = [ ri3  Tos ] and ro = [ r3;  rso
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Let matrix ALpgg be the difference between two arbitrary L-matrices corre-

sponding to the same rotation.
ALgr = Lpg; — LR]' (13)

Then, the unknown vector r; is computed within a scalar ambiguity p as the
unit-norm eigenvector of the summation of matrices:

M
1 T
Yr = o > ALp" ALp (14)
k=1
corresponding to its smallest eigenvalue. In this sense, let r1 = p ¢1. Subse-

quently, rs is estimated within the same scalar ambiguity p as

1 X 1 &
]:

j=1



In the above equations notice that N,M are the numbers of L,AL matrices in-

volved in the computations respectively. Generally M = % Let also Ar denote

the larger eigenvalue of matrix Y. Notice as well that r337 = 1 — p?, since
norm(c;) = norm(cz) = 1. Similar equations hold for rotation matrix S. Let
similarly Ag denote the respective eigenvalue and s; = ¢ dy, 85 = o ds. It can

be proved that the ratio % can be estimated up to a sign ambiguity as

2 .2 As
(G = 2 (19)
where one of the solutions can be easily rejected. Finally, r33 and s33 are computed
from:
N
r 1 Jd
[ wle, —sz][ :]:—NZ[LSj LR]»][ ! ] (17)
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of ry, ro, r33, 81, S2, sz3. Thus all the motion parameters are obtained.

where J = [

_01 ] . The rotation matrices R, S are estimated on the basis

4.3 ESTIMATION IN THE PRESENCE OF NOISE

In order to tackle the problem of noisy motion vector estimates, the proposed
algorithm is extended in [5] to employ a large number of projected points. However,
in this work only a small number of facial points 1s used. Moreover, these point
correspondences are given great confidence, so the employment of the solution in
noisy environments is not necessary. In fact, in order to take into consideration the
respective confidence with which each facial characteristic is estimated, confidence
weights are incorporated in the sums of (14) and (15).

5 Computation of Structure Parameters

Given the rotation matrices, the relative depth of the points on each of the three
frames, can be estimated employing Equation (6). The z, z’ coordinates are sub-
sequently computed. In fact, it is possible to recover depth only for points whose
correspondences are known, while accuracy in depth estimation, in general, re-
quires accuracy in the estimation of all respective point correspondences. Thus,
in order to recover depth for all points on the human face, a block-based motion
estimation scheme is performed for all points on the images. To achieve faster
and more accurate motion estimation, we have to exploit all information gained in
the first step, which involves relatively precise detection of certain facial keypoints
and keylines. For example, to confine the area of the cheeks -which is generally
smooth, and 1s therefore very sensitive as far as motion estimation is concerned-



we used the limits of the neighbouring blocks tracked during the first step of the
algorithm. At the same time, the rotation matrices obtained in the second step
yield an a-priori estimation of the dense motion field and impose a constraint to
the orientation of motion vector estimates. The acquired motion field, although
not perfectly accurate, is appropriate for 3D reconstruction of the human face. In
order to improve the reconstructed mask, the latter can then be compared to a
generic wireframe model.

6 Simulations

The model depicted in the figures is the model ’Conor’ found in Headus (http:
//www.headus.com.au/ vrml/conor10.wrl). Tt is a scanned face of a child mapped
with its texture. The model itself was not available, so it was rotated on-line
in the vrml environment and grabbed. For this reason, the following results are
not arithmetically verified. However, the efficiency of the algorithm is visually
apparent.

In Figures 1(a) —(c), the three input frames are depicted with the tracked tem-
plates indicated. As it was mentioned in Section 3, 3D templates are employed
for the production of sets of affine-transformed 2D templates. Such a generic tem-
plate (eye template) is depicted in Figure 2(d). Localization of specific points on
the human face with the use of hierarchical filtering and simple tools is performed.
The derived point correspondences between frames 1 and 2 are depicted in Figure
1(d).

Using the aforementioned methodology for the computation of rotation pa-
rameters, we obtain angles a = 37.8°, b = 39.7° and rotation axes n, =
[0.54 0.84 0.07 |7 and n, = [ 0.27 0.96 0.03 17 respectively. The obtained motion
parameters were experimentally verified subjecting a generic wireframe model to
the same rotations.

In the sequel a block matching technique is employed in order to obtain the
final structure parameters. Significant help for this scheme is provided by the
previously described line-matching scheme as well as by the tracked templates and
the 3D motion parameters. Results of the line-matching scheme for the jaw line are
depicted in Figure 2(a). The restricted search area for the cheek points is depicted
in Figure 2(b). The motion field derived through the motion estimation procedure
between frames 1 and 2 is illustrated in Figure 2(c), where only an indicative
set of motion vectors is depicted. The reconstructed human mask is depicted in
Figure 2(e). Since the motion parameters were estimated in accurate fashion, the
reconstructed model resembles well the human face apart from an amount of noise.
This noise in depth coordinates is due to the noise in the motion field estimates.
Using some heuristical smoothing techniques, the model is slightly improved in
Figure 2(f). Study and development of more systematic 3D smoothing techniques



is currently in progress.

7 Conclusions - Future Work

In the current work, the problem of 3D motion and structure extraction is treated
in the case of human faces. This is achieved using a generalized algorihtm for the
estimation of 31 motion and structure parameters of rigid objects under orthog-
raphy. In the particular case of human faces, the algorithm performance is aided
by facial feature extraction schemes that employ adjustable template matching
techniques. 2D point correspondences of reliably tracked facial feature points is
applied to determine the rotation matrices, whereas the obtained 2D structure
information of the human face is used for the extraction of 3D structure through
a variant block-based motion estimation technique. Relevant experimental results
were presented using views of a head model.

Study and development of systematic 3D smoothing and texture-mapping tech-
niques is currently in progress in order to obtain realistic presentations of the
obtained results.
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Figure 2: (a) Detected left chin line (frame 2), (b) Detected left cheek region (frame
2), (c) Indicative Motion Estimates, (d) 3D eye template, (e) 3D Reconstructed
Human Face, (f)Reconstructed after 3D smoothing



