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Abstract— Semantic search of cultural content is of major
importance in current digital libraries, such as in Eu-
ropeana. Content metadata constitute the main features
of cultural items that are analysed, mapped and used to
interpret users’ queries, so that the most appropriate content
is selected and presented to the users. Multimedia, especially
visual, analysis, has not been a main component in these
developments. This paper presents a new semantic search
methodology, including a query answering mechanism which
meets the semantics of users’ queries and enriches the
answers by exploiting appropriate visual features, both
local and MPEG-7, through an interweaved knowledge and
machine learning based approach. An experimental study is
presented, using content from the Europeana digital library,
and involving both thematic knowledge and extracted visual
features from Europeana images, illustrating the improved
performance of the proposed semantic search approach.

Index Terms— semantic search, content based search, digital
libraries, multimedia analysis, europeana

I. Introduction

A large activity has been taking place in the field of
digital libraries the last few years, taking advantage of
new information technologies so as to make cultural her-
itage more accessible for all. In this framework, probably
the most significant achievement has been generation of
Europeana1 as a single reference point for European cul-
ture online. Europeana, Europe’s digital library, archive,
museum and gallery, is probably the most ambitious cul-
tural project ever undertaken at a European scale, bringing
together cultural institutions from different sectors and
from all the Member States. In the span of less than three
years, its collections have grown to more than 22 million
digitised objects. Large parts of the digitised works are in
the public domain, that is they are no longer covered by
intellectual property rights, thus they can in principle be
accessed and used for free by everyone.

Cultural institutions add considerable amounts of in-
formation (metadata) to digitised objects, describing for
example the author, the provenance and age of the work,
giving contextual information, as well as technical infor-
mation on the formats used and characteristics allowing
search engines to locate the object. An image of the
object, in low resolution, is also attached to its descrip-
tion that is normally good enough for private use, e.g.
schoolwork.

1http://www.europeana.eu

The services provided by digital libraries, and Euro-
peana, refer either to content providers, i.e., memory
institutions which digitise and place content and metadata
online, or to content consumers, such as researchers,
students, general users, enabling annotation, discussion
and user-generated content. Technologies and related ser-
vices which have received much attention in the field
are Interoperability and Semantic Search [15], [19], [20].
Interoperability may require transformation of metadata
to common standards, such as the Europeana Semantic
Element (ESE) and Europeana Data Model (EDM), or
creation of mappings between metadata used by different
content providers. Our ‘MINT’ platform2 has been used
in more than ten Europeana projects for mapping and
aggregating for Europeana more than 4 millions items; it
is currently studied by the evolving Digital Public Library
of America3 for mappings among heterogeneous sources
of cultural content.

Semantic search targets on answering user queries, by
exploiting both explicit and implicit related knowledge.
Reasoning on available knowledge bases [16], based on
appropriate representations and languages, such as de-
scription logics, RDF, Web Ontology Language (OWL)
[1], [5], [6] can be the means to move ahead in this di-
rection. The creation of linked data stores [22], [23] from
digital cultural heritage resources enables the linking of
multiple data, assisting efficiency by permitting combined
or linked searches.

Nevertheless, the usage of multimedia information, and
particularly of the - free from property rights - provided
images, for improving the search results has not been
investigated so far, apart from some aside developments
[21].

In this paper, we exploit both semantic metadata repre-
sentations and images included in a Digital Library such
as Europeana, using state-of-the-art knowledge-based rea-
soning and multimedia analysis. We show that improved
query answering can be obtained if we interweave seman-
tic technologies with machine learning paradigms [11]
applied on appropriate features extracted from the images
of the Digital Library.

A diagram of the proposed approach focusing on the
semantic based search and its interweaving with content-

2http://mint.image.ece.ntua.gr/redmine/projects/mint/wiki
3http://blogs.law.harvard.edu/dpla/
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Figure 1. The architecture of the proposed query answering system

based search for providing effective answers to users’
queries is presented and analysed in Section II. The
extraction of visual features, the design of the visual
vocabulary and their usage for describing the Digital
Library items are described in Section III. Section IV
presents a scheme in which the available knowledge
used in the semantic search is interweaved with machine
learning, the latter operating on the feature sets extracted
from the cultural images. An evaluation study illustrating
the theoretical developments is presented in Section V.
Conclusions and future work are given in Section VI.

II. Semantic and Content-based Search in Digital
Libraries

A. The proposed framework

Figure 1 presents a block diagram of the proposed sys-
tem which is able to semantically analyse users’ queries
and provide answers exploiting both the metadata and the
respective visual representations of the Digital Library
objects.

The Digital Library may consist of a single portal, as
in the case of Europeana, or of a network of content
providers, as will probably be the case of the evolving
Digital Public library of America. In the case of Euro-
peana, interoperability during users’ searches is achieved
by developing and using a common metadata model

(Europeana Data Model) that is compatible with the
Dublin Core or METS standard used by libraries, as well
as with LIDO that is used by museums, EAD used by
archives and EBU Core used by audiovisual archives. The
metadata model elements are descriptions of the objects
providing basic and advanced information about them,
starting from the answers to ’Who?’, ’What?’, ’When?’
and ’Where?’. Moreover, the location (url) of the image of
each digital object is normally given together with a low
resolution version of it. When users submit a query for an
object, the respective metadata of the objects are searched
and whenever a match is achieved the object is included in
the results returned to the user, using some answer ranking
scheme4. In our system, the metadata are aggregated and
represented as RDF triples (forming the formal assertional
knowledge) in terms of the EDM ontology. They are then
stored in the Semantic Repository.

If, however, we want to let users ask complex queries
and receive appropriate answers, we need a more detailed
description of cultural content in the form of termino-
logical knowledge in various domains (Thematic Termi-
nologies). In this paper, we show that, whenever such
knowledge is available, we can develop semantic search
and semantic query answering, i.e., construct answers
to queries posed by users, based not only on string
matching over the digital library metadata, but also on
the implicit meaning that can be extracted by reasoning
using the terminological knowledge [2], [3], providing
details about species, categories, properties, interrelations
(e.g., brooches are made of copper or gold). The latter
knowledge (the Thematic Terminologies) is developed by
experts or the content providers, and is stored in the
Formal Knowledge Subsystem. The metadata elements in
the Semantic Repository are represented as descriptions of
individuals, i.e., connections of individuals with entities
of the terminological knowledge.

The creation of global axioms that hold over all items
of the digital library is, however, very difficult. One
approach to deal with this is to use only axioms containing
constraints that are known to hold over all data and leave
out of the formal knowledge any constraint that holds over
most (but not all) of the data. In either case, the inherent,
or resulting, incompleteness of the formal knowledge
poses limitations to its usage in semantically searching
and answering queries over cultural heritage content.

In the proposed approach we show that this prob-
lem can be partially overcome if we also use content-
based search of the Digital Library images. Content-based
search over the images included in the digital library can
provide another source of results to users’ queries. This
has not been exploited so far in the development of digital
libraries, such as Europeana, which have been evolving
by extending the metadata-based description, search and
access methodology used by libraries, archives and muse-
ums so far. In Figure 1, an image feature extraction and
visual repository generation stage runs in parallel with
metadata aggregation. Appropriate visual vocabularies are

4http://www.europeana.eu
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then generated and exploited by machine learning tech-
niques; the target being to improve the semantic search
of cultural heritage content. Effective extraction of visual
features and generation of visual vocabularies is presented
in the next section.

B. The Semantic Search Algorithm

The representation formalism used for the termino-
logical descriptions is OWL 2 (the W3C Standard for
Ontology representation on the web) [6]. The theoretical
framework underpinning the OWL 2 ontology represen-
tation language is Description Logics (DL) [1]. The DL
language underpinning OWL 2 is SROIQ.

The building blocks of DL knowledge bases are atomic
concepts, atomic roles and individuals that are elements of
the denumerable, disjoint sets C,R,I, respectively. A DL
knowledge base (KB) is denoted by K=〈T ,A〉, where T
is the terminology (usually called TBox) representing the
entities of the domain and A is the assertional knowledge
(usually called ABox) describing the objects of the world
in terms of the above entities. Formally, T is a set
of terminological axioms of the form C1 v C2 or R1 v

R2, where C1, C2 are SROIQ-concept descriptions and
R1, R2 are SROIQ-role descriptions. SROIQ-concept
expressivity employs conjunction (C1 uC2), disjunction
(C1 tC2), universal and existential quantification (∀R.C,
∃R.C), qualified number restrictions (≥ R.C, ≤ R.C) and
nominals ({a}), while SROIQ-role expressivity allows for
the definition of role inverse (R−) and role compositions
(R1 ◦ R2) in the left part of the role inclusion axioms.
T describes the restrictions of the modeled domain. The
ABox A is a finite set of assertions of the form A(a) or
R(a,b), where a,b ∈ I, A ∈ C and R ∈ R.

An interpretation I maps concepts to subsets of the
object domain, roles to pairs of elements from the object
domain and individuals to elements of the object domain.
For an interpretation to be a model of a knowledge base
several conditions have to be satisfied [7]. If an axiom ax
is satisfied in every model of a knowledge base K we say
that K entails ax, written K |= ax. Entailment checks are
performed by appropriate tools called Reasoners.

We next consider concept queries. A concept query
q is of the form q : Q(x) ←

∧n
i=1 Ci(x), where x is

a variable and Ci(x) are predicates-concept atoms. An
example of a concept query is Q(x) ← OpenVase(x)∧
VaseWithTwoHandles(x) consisting of two concept
atoms. An individual a is an answer/instance of a concept
query q posed over the DL knowledge base K iff K |=
Q(a). The procedure we follow to find the answers to
concept queries is shown in Algorithm 1

The algorithm takes as input the system’s formal
knowledge base K and a user’s query q and returns
the results, i.e., the individuals of the knowledge base
that satisfy the query. This is done by iterating over the
concept atoms C j of the query q and over the individuals
a appearing in the knowledge base K and by checking
whether K entails that a is an instance of C j. If the
instantiated concept atom is entailed we add the individual

Algorithm 1 Query Evaluation Procedure using the high
level knowledge
Input: K 〈T ,A〉: the SROIQ knowledge base DL on-

tology
q: a concept query

Output: Ans: the set of answers to query q
1: Ans := ∅
2: C1, . . . ,Cn:=queryAtomsO f (q)
3: for j=1, . . . , n do
4: for all individual a ∈ A do
5: if K |= C j(a) then
6: Ans := Ans∪a
7: else
8: if a ∈ Ans then
9: Ans := Ans \a

10: end if
11: end if
12: end for
13: end for
14: return Ans

to the set of answers Ans else, if it is not, we have to
check whether a is already contained in Ans. In this case
we remove it from the set or else we leave the set as it
is.

III. Image Feature Extraction and Visual Vocabulary
Generation

A. MPEG-7 Visual Feature Extraction

The need for extracting descriptors in a standardized
way has led to the MPEG-7 standard [31] that focuses on
the description of multimedia documents. It is composed
of a set of audio, color, texture and shape descriptors
that have been used for image classification, high-level
concept detection and image/video retrieval.

The visual descriptors, which have been considered in
our analysis are color, shape and texture ones, including
the Dominant Color Descriptor (DCD - a set of dominant
colors in a region or in the image), the Color Structure
Descriptor (CSD - capturing both global color features
of the image and local color spatial structure), the Color
Layout Descriptor (CLD - a resolution-invariant visual
descriptor designed to represent the spatial distribution
of color in the YCbCr color space), the Scalable Color
Descriptor (SCD - a Haar-transform based transformation
applied across values of the image’s color histogram),
the Region-Based Shape descriptor (RSD - expressing
the 2-D pixel distribution within an object or a region of
interest based both on the contour and inner pixels), the
Homogeneous Texture Descriptor (HTD - a quantitative
characterization of texture based on oriented filters) and
the Edge Histogram Descriptor (EHD - capturing the
edges’ spatial distribution).

Figure 2 presents some images from Europeana, which
are among the answers to a user query asking for ‘Jewelry
of the Late Byzantine period’; they include crosses and
mosaics. The corresponding segmentation masks are also
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shown, produced by thresholding and median filtering.
MPEG-7 shape descriptors have been extracted from the
segmented images. Distance values of the Region Shape
descriptor for similar and non-similar images (of Figure
2) are shown in the confusion matrix of Table I. It
can be easily seen that Distance is high for non-similar
images and low for similar ones. This permits usage of
an SVM classifier to discern the two different categories.
Moreover, if a user makes a search within a study on
religion, objects that are known in the knowledge base
to be related to religion, such as crosses, should be first
searched for, followed, if necessary, by more searches in a
scalable way. In this case, if an image of a cross, such as
the ones shown in Figure 2 is selected due to its thematic
annotation, then the two other crosses shown in the same
Figure can also be selected, irrespectively of whether their
thematic annotation is complete or not, since their feature
sets match that of the already selected image.

Figure 3 shows the Color Structure and Homogeneous
Texture descriptor histograms for three of the images
shown in Figure 2. Two of them refer to similar images
(562, 558) with the last (3535) being different. It is
evident that color and texture histograms can also be used
to distinguish between the different categories. Figure 4
presents images of items belonging to the ‘brooch’ cate-
gory, that are made either of gold or copper. The binary
masks of the foreground objects are also computed and
used to extract color descriptors from the corresponding
regions, while discarding the background. Items made
of copper share similar color distributions, with these
distributions being different from the item made of gold,
as shown in Figure 5. Based on this, an SVM classifier
can separate brooches such as the ones shown in Figure 4
(h,i), that are made of copper, from brooches as the one in
Figure 4 (g) that are made of gold. It should be mentioned
that, in fact, the annotation of the images shown in Figure
2 (a,b) do not include the material which they are made
of, while the annotation of the, very similar, image shown
in Figure 2 (c) indicates that it is made of the material
lazourite. Categorization of the images can, therefore, be
used for content enrichment, where incomplete annotation
exists, leading to improved search and answers to users’
queries.

TABLE I.
Confusion matrix (L1 distance) of Region ShapeMPEG-7 descriptor

image id (e) (f) (a) (b)
(e) 0 85 181 171
(f) 85 0 154 148
(a) 181 154 0 120
(b) 171 148 120 0

B. Local Feature Extraction and Visual Vocabulary Gen-
eration

Among the most popular local features and descriptors
are the Affine-covariant regions [48], i.e., regions that
follow the affine transformations of the underlying im-
age structure and are robust to occlusion and viewpoint

(a) (b) (c)

(d) (e) (f)
Figure 2. Sample images and corresponding segmentation masks.

changes. According to the early study by Mikolajczyk
et al. [39], the best performing detectors have been the
Maximally Stable Extremal Region (MSER) [38] and
Hessian-affine [39] detectors.

The need to tackle the trade-off between computa-
tional complexity and performance led to a variety of
local feature detectors mainly based on intensity/gradient
distribution. Hence, in an attempt to promote precision,
Rapantzikos et al. proposed an edge-based detector [45]
that detects composite regions from single-scale edges.
Furthermore, Avrithis et al. [28] proposed the Medial
Feature Detector (MFD), which is based on a weighted
distance map on image gradient. On the side of compu-
tational efficiency, several detectors have been proposed,
like CenSurE [50], FAST [53], BRIEF [49], with SURF
(Speeded-Up Robust Features) [29] being still the most
popular one. The SURF detector is based on integral
images for fast image convolutions (scale-space) and
a resulting approximation of the Hessian matrix. Since
large-scale visual similarity with small computational
complexity is the aim of the proposed in this paper
system, we use SURF features and descriptors for the
representation of the Digital Library images.

An example of the extracted SURF features is shown in
Figure 6, where sample images of vessels and the associ-
ated features are depicted. Local features are detected on
the foreground object only, where corner-like and blob-
like structures are present.

Towards robust image representation from local fea-
tures, computer vision researchers have adopted the Bag-
of-Words (BoW) model, or -synonymously- visual vocab-
ulary as an equivalent to a typical language vocabulary,
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Figure 3. Histogram comparisons for MPEG descriptors (CST: top, HT:
bottom.). Two histograms correspond to two similar images, while the
third one is an irrelevant one. (better shown in color)

g h i
Figure 4. Sample images and corresponding segmentation masks. g:
made of gold, h-i: made of copper.

with an image corresponding to a text document. De-
scriptors are extracted on local features and are quantized
in order to build the vocabulary, which is then used
to describe each image by the set of visual words it
contains [47], [32]. We adopt this model for describing
the cultural heritage images.

To obtain the visual vocabulary for representing the
image, we create clusters in the space of descriptors and
assign each feature to the closest centroid (i.e., visual
word). We should note here that due to their polysemy,
visual words cannot be as accurate as natural language
words. This means that a given visual word cannot be
directly assigned to a concept, but it can represent a part of
a significantly large number of concepts. Generally, these
errors can be adequately compensated for by employing

Figure 5. Histogram comparison for CST MPEG descriptor extracted
from the regions defined by the binary masks of Figure 4.

Figure 6. Sample vessel images and corresponding SURF local features
extracted. Local shape of features is shown in yellow circles with scale
and dominant orientation.

a spatial verification stage of matched features.
Typically, the visual vocabulary creation is performed

using the k-means clustering algorithm [37]. However, if
the number of the points to be clustered is significantly
large, clustering using the k-means algorithm becomes
a very slow task. We use a fast variant of the k-means
algorithm that uses approximate nearest neighbor search,
i.e. nearest cluster centers at each iteration are assigned
using randomized kd-trees [46]. Specifically, we use the
FLANN library of Muja and Lowe [42] both in vocab-
ulary creation and in assigning visual words to image
features.

Having each local feature assigned to a visual word,
we can represent each image in terms of the visual
words it contains. A histogram of constant-length can be
constructed for each image, containing the appearance fre-
quencies of each visual word. This is the BoW histogram,
a Nv-dimensional vector Hv(I) of an image I:

Hv(I) =
[
t fI(0), t fI(1), . . . , t fI(Nv)

]
(1)

where t fI(i) denotes the number of times that the visual
word i was selected as a nearest neighbor of one of the
interest points extracted from image I.

An example with cultural heritage images is shown
in Figure 7. Pairwise image similarity is higher when
many common visual words appear in the images and the
histogram bins have similar values, i.e., in similar images
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(a) (b)
Figure 7. Local features correspondences based on visual word assign-
ments. (a) Matching features between two similar images. Similar im-
ages share many common visual words. (b) Matching features between
two non-similar images

and lower in non-similar ones.
Vector Hv(I) constitutes the first part of the input

provided to the SVM in Figure 1; the second part comes
from the above-mentioned MPEG-7 features.

IV. Interweaving Semantic Search withMachine
Learning of Visual Features

In Figure 1 we use machine learning techniques, in
particular support vector machines, to learn from the
extracted visual features to classify the digital Library
items in various concepts that can appear in queries.
As a consequence, these techniques can determine the
items that satisfy the corresponding query concept atoms,
irrespectively of whether these items have been identified
by the Reasoner that exploits the formal knowledge of
the system. This results in bridging the gap between
restrictions imposed by ontologies and actual restrictions
(visual features) that each cultural heritage item possesses.

Support Vector Machines (SVMs) constitute a well
known method which is based on kernel functions to effi-
ciently induce classifiers that work by mapping the visual
features, and the corresponding items, onto an embedding
space, where they can be discriminated by means of a
linear classifier. As such, they can be used for effectively
exploiting the extracted features and classify the cultural
heritage items in the different concept categories that are
included in the formal knowledge. We use one SVM
for each concept. The input vector of the SVM includes
N1 + N2 elements, N1 of which are the SURF of the
visual vocabulary and N2 the selected MPEG-7 features.
Each type of features is appropriately normalized. Hence,
MPEG-7 descriptors are normalized using L1 or L2 norm
(depending on their type [31]) and SURF using the L1
norm. Finally, all features are normalized according to L1
norm and are fed to the SVM.

In the proposed approach the visual based search aims
at improving the accuracy of the semantic search. For
this reason we use the successful responses provided by
the reasoner exploiting the formal knowledge as training
samples for each SVM, which is then used to test its
performance to new inputs. This is shown by a dotted
arrow from the reasoner towards the SVM in Figure 1.

The kernel used in the SVM to encode the visual
knowledge through similarity between different images is

a normalized linear kernel defined as follows [9]:

kl(x,y) :=
xT y + c
‖x‖‖y‖

(2)

where x,y are vectors of features, ‖ · ‖ is the Euclidean
norm and c is considered zero.

The Query Answering Subsystem merges the outputs of
the two modules, i.e, the reasoner and the SVM module.

It is, however, possible to extend the SVM kernel so as
to include the knowledge referring to the individuals that
contribute to the Formal Knowledge Ontologies [12], [14]
and consequently let only the output of the SVM module
feed the Query Answering subsystem.

The extension comes from a family of kernel functions
defined as kF

p : Ind(A)× Ind(A)→ [0,1], for a knowledge
base K = 〈T ,A〉. Ind(A) indicates the set of individuals
appearing in A, and F = {F1,F2, . . . ,Fm} is a set of concept
descriptions. These functions are defined as the Lp mean
of the, say m, simple concept kernel functions κi , i =

1, . . . ,m, where, for every two individuals a,b, and p > 0,

κi(a,b) =



1
(Fi(a) ∈ A ∧ Fi(b) ∈ A) ∨
(¬Fi(a) ∈ A∧¬Fi(b) ∈ A);

0
(Fi(a) ∈ A ∧ ¬Fi(b) ∈ A) ∨
(¬Fi(a) ∈ A∧Fi(b) ∈ A);

1
2 otherwise.

(3)

∀a,b ∈ Ind(A) kF
p (a,b) :=

[ m∑
i=1

∣∣∣∣κi(a,b)
m

p∣∣∣∣]1/p
(4)

The above kernel encodes the formal knowledge for
the problem under analysis through the similarity of pairs
of individuals with respect to high level features, i.e.
concepts of the knowledge base.

The rationale of these kernels is that similarity between
items is determined by their similarity with respect to each
concept Fi , i.e., if two items are instances of the concept
or of its negation. Because of the OpenWorld Assumption
for the underlying semantics, a possible uncertainty in
concept membership is represented by an intermediate
value of the kernel. A value of p = 1 is generally used
for implementing (4).

The extension we can use is a combined SVM kernel,
computed as the mean value of the above described two
kernels, i.e., kc(a,b) = kF

p (a,b) + kl(a,b) where kF
p is the

above knowledge driven kernel and kl is the normalized
linear kernel.

Let us now sketch the way that queries are evaluated
using SVMs that have already been trained to classify
cultural heritage items to concepts.

Algorithm 2 shows the procedure. The algorithm takes
as input the data we want to query together with their
visual features and uses trained SVMs to check which
items simultaneously belong to all concepts appearing in
the query. S V Mpredict predicts the label of an item w.r.t.
a concept C j using the SVM trained to classify items to
this concept.
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Algorithm 2 Query Evaluation Procedure using the low
level visual features
Input: trainedS V M : a vector of trained SVM
Input: data : the queried data
Input: f eatures : the features of the data

q: a concept query
Output: Ans: the set of answers to query q

1: Ans := ∅
2: C1, . . . ,Cn:=queryAtomsO f (q)
3: for j=1, . . . , n do
4: for all a ∈ data do
5: output(a) := S V Mpredict( f eatures(a), trainedS V M j)
6: if output(a) = 1 then
7: Ans := Ans∪a
8: else
9: if output(a) = 0 then

10: Ans := Ans \a
11: end if
12: end if
13: end for
14: end for
15: return Ans

Algorithm 3 Combined Query Evaluation Procedure
Input: KB : the SROIQ knowledge base
Input: S V M : the vector of trained SVM
Input: data : the queried data

q: a concept query q
Output: Ans: the set of answers to query q

1: Ans := ∅
2: AnsKB := EvaluateKB(KB,q)
3: f eatures := ExtractFeatures(data)
4: AnsS V M := EvaluateS V M(S V M,data, f eatures,q)
5: Ans := AnsKB∪AnsS V M
6: return Ans

Algorithm 3 shows how we interweave the two ap-
proaches, the knowledge based and the kernel based
approach to enrich in this way the search results. The
method extractFeatures extracts the features of the im-
ages, while methods evaluateKB and evaluateS V M perform
Algorithms 1 and 2 to extract the query answers from the
two methods which are then disjuncted and given to the
user.

V. Evaluation Study : Improving Semantic Search
through Visual Analysis

A. Setting Up the Experimental Study

The experimental study presented in this section aims
at illustrating the improvement which is achieved by
exploiting both semantic and content-based search of a
Digital Library, while answering users’ queries. We focus
on Europeana, because it is a real environment, easily
accessible by everyone through the Europeana portal.5

The content we consider is, on the one hand, Hellenic

5http://www.europeana.eu

TABLE II.
Excerpt of the used thematic ontology in description logic syntax

Bowl v OpenVase
Beetle v OpenVase
Cup v OpenVase
Crater v OpenVase
BasintLekanis v OpenVase
Crate v OpenVase
Crate ,Crater
Amphora v VaseWithTwoHandles
Beetle v VaseWithTwoHandles
Bowl v VaseWthTwoHandles
Crater v VaseWithTwoHandles
Pelike v VaseWithTwoHandles
Amphora v BigVaseuCloseVase
Alabaster v VaseWithoutHandles
Amphora , Alabaster
CloseVase , OpenVase
VaseWithTwoHandles , VaseWithOneHandle
VaseWithTwoHandles , VaseWithoutHandles

content, consisting of about 40,000 items and, on the
other hand, museum content aggregated by the ATHENA
project [27], consisting of about 3,600,000 Europeana
objects. The metadata of this content was transformed to
EDM OWL. The experiments presented are based on the
Hellenic content, since for this content we also possess
thematic knowledge; we make reference to the ATHENA
content when dealing with scalability issues.

The thematic knowledge we used for Hellenic mon-
uments, particularly for vases (for which metadata and
images are provided) has been created in the framework
of the Polemon and ‘Digitalisation of the Collections of
Movable Monuments of the Hellenic Ministry of Culture’
Projects of the Directorate of the National Archive of
Monuments6 and which has been included in the Polyde-
fkis terminology Thesaurus of Archaeological Collections
and Monuments [25], [26]. This knowledge contains
axioms about vases in ancient Greece, i.e., class hierarchy
axioms referring to the different types of vases, such as
amphora, alabaster, crater, as well as axioms regarding
the appearance, usage, creation period and the material
vases were made of. It contains 55 categories of cultural
objects (such as pottery, jewelry, stamps, wall paintings,
engravings, coins) and more than 300 types. An excerpt
of the used terminological knowledge referring to types
of vases is shown in Table II.

Based on this knowledge and the analysis of the related
images, our target is to answer user queries asking,
e.g., for Pottery of Mycenaean period, Minoan pottery
with sea pace decoration, Jewellery of Hellenistic period,
Molyvdovoula (king’s stamps) of the Middle and Late
Byzantine period, Coins of the Late Byzantine period,
Open vases, Vases with two handles, Open vases with
two handles.

As a consequence, the TBox of the formal knowledge
of our system consists of the EDM ontology together
with the thematic ontology. The ABox consists of the
EDM instances (Europeana items) each one of which is
described by its type, its creation date, its material, the

6http://nam.culture.gr
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museum it can be found at. About 1,000,000 RDF triples
have been generated from the 40,000 Europeana items
and stored in a Sesame repository.

Apart from the metadata, the visual features of the cul-
tural objects were extracted according to the methodology
presented in Section III. Implementing the methodology
for SURF feature extraction and visual vocabulary gen-
eration requires tuning of some parameters used in it.
Specifically, the approximate number of features (tuned
through a threshold) has been selected to be 500, while
the number of visual words has been set as a tuning
parameter, varying in the range of 100-4,000, according
to the related literature. Regarding the MPEG-7 features,
either both color and texture features were used, providing
a vector with 666 elements, or only the texture (color)
features were used, providing a vector with 142 (524)
elements respectively.

B. The Query Answering Results

In the following we applied the Query Answering
approach shown in Figure 1, focusing on the techniques
described in Sections II and IV for semantic query an-
swering and its interweaving with the extracted visual
information on the above mentioned Europeana items. In
our implementation we used the HermiT reasoner [3],
[4] and the LIBSVM library7 for reasoning over the
knowledge base and for learning the visual descriptors
respectively.

Let us consider three of the user queries mentioned in
the former subsection, in particular the ones shown in
the first column of Table III, i.e., queries for ‘vases with
two handles’, or ‘open vases’, or ‘open vases with two
handles’.

The second column reports the accuracy of the query
answering task, defined as the number of true positives
and true negatives over all test data, when the Algorithm
1 of Section II is used. The knowledge base that this
algorithm takes as input includes both the terminological
knowledge described in the previous subsection and the
Europeana instance data. About 4,000 items out of the
40,000 ones belonged to the concept Vase, with about
2,200 being open vases, 1,800 being vases with two
handles and with around 900 belonging to both categories.
Ground truth for all these items has been created by
experts from the cultural sector.

It can be easily verified that in all three queries, the
knowledge used for the definition of open vases and/or
vases with two handles accounted for about 85% of the
cases, resulting in an error from 10 to 15%.

Let us now consider the usage of content-based search
as a means to improve the above-derived query answering
accuracy. In particular, we first train SVMs (one for each
of the two different concepts of the queries) using the
extracted visual features of the items which are returned
as query answers by the knowledge base. In particular,
the SVMs are trained using the normalized linear kernel

7http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Figure 8. Obtained Accuracy with respect to the size of visual
vocabulary

described in Section IV, based on the visual features and
the annotated labels of the images, for all items that have
been correctly returned from the reasoner used above
in Algorithm 1. In all three cases the SVMs learned to
classify correctly all provided training data.

Various combinations of the visual inputs mentioned
above were considered as inputs to the SVMs: a) only
the MPEG-7 features, resulting in an input vector with
666 elements, b) only the SURF-based visual vocabulary,
with the number of visual words varying between 100 and
4,000, c) all MPEG-7 and visual worlds, d) a combination
of the texture MPEG-7 features (with 142 elements) and
visual words, that was identified to provide the best
results.

Following training, we tested - according to Algorithm
2 - the performance of the SVMs to the remaining data
(about 10-15% in all three cases), which, erroneously,
have not been returned as query answers based on the
knowledge.

We made a variety of experiments with the cases (a)-
(d) mentioned above and analysed the performance of
the SVMs in terms of: i) accuracy, ii) precision (defined
as the ratio of true positives over the returned, by the
SVM, answers) and iii) recall (defined as the ratio of true
positives over the theoretical correct answer).

Figure 8 presents the obtained accuracy in all three
queries for the above-mentioned (d) case, when varying
the number of visual words, which show that the best
results were obtained using a vocabulary of 500 visual
words. Accuracy is higher in the open vase category and
lower in the two-handle vase one. Figure 9 shows the
corresponding precision and recall values for a vocab-
ulary size between 100 and 4,000 words, which verify
the results derived from Figure 8. For this number of
visual words (500), Table IV shows a comparison of
the performance obtained by each one of the (a)-(d)
test experiments, verifying that the combination of visual
words and MPEG-7 texture features provides the best
results as measured by all criteria.

The third column of Table III summarises the accuracy
of query answering when we use Algorithm 2 of Section
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TABLE III.
Accuracy (%) of Query Answering

Query Accuracy(Algorithm 1) Accuracy(Algorithm 2) Accuracy(Algorithm 3)
1. Q(x)← OpenVase(x) 85.5 78.4 96.9
2. Q(x)← VaseWithTwoHandles(x) 84.6 52.7 92.1
3. Q(x)← OpenVase(x)∧VaseWithTwoHandles(x) 90.2 42.4 93.2

TABLE IV.
Comparison of SVM performance for Different Visual Input Vectors

Visual Features Accuracy Precision Recall
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

SURF-based only 55.68 51.61 42.37 93.48 71.79 100 54.43 43.08 26.15
MPEG-7 only 67.05 48.39 30.51 93.1 71.79 100 68.35 43.08 14.58
SURF-based + MPEG-7 64.77 49.46 30.51 92.86 72.5 100 65.82 41.54 14.58
SURF-based + MPEG-7 texture 78.41 52.69 42.37 96.88 73.68 100 78.48 43.08 25
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Figure 9. Obtained Precision and Recall in each of the three queries

IV. The above means that column 3 shows the percentage
of the data that the SVMs ‘correctly’ predicted as query
answers among those that were not predicted as such by
the knowledge.

The fourth column of Table III refers to the accuracy
of query answering when Algorithm 3 is used to combine
the results of the knowledge based and visual kernel based
approaches. We see that the accuracy of the algorithm,
computed as the number of generated query answers that
are true has been increased in all cases. This illustrates the
improved performance of the semantic search when visual
information is taken into account based on the procedures
of Sections II, III and IV.

For example, vases with two handles are defined in the
knowledge base to comprise the categories of amphora,
beetle, bowl, crater, pelike. Nevertheless, there are also
some vases in other categories, such as in jug or basin,
which may have two handles. These items will not be
among the results that knowledge based query answering
(Algorithm 1) will return to the user. It is in such cases,
that the interweaving with visual feature based machine
learning (Algorithms 2 and 3) improves the performance
of the semantic search service offered to the users. In
Table III, the former method achieves a performance of
85.5%, 84.6% and 90.2% in the queries. The proposed
combined knowledge and machine learning approach rises
the performance to 96.9% , 92.1% and 93.2% respectively.

C. Scalability Issues: A Visual Search Engine for Euro-
peana (VIEU)

An issue that deserves special attention in the imple-
mentation of the proposed approach is scalability.

It can be shown that query answering over OWL 2
knowledge bases is computationally intensive, suffering
from high worst-case complexity. This is certainly a
serious issue, if we want to apply the proposed method
to a large Digital Library, such as Europeana, where the
number of triples will be in the order of millions or bil-
lions. The methodology we can follow in order to face this
problem is: a) to use the ability of the triple store system
to provide approximate answers based on the materiali-
sation method [8], thus reducing the computational load,
b) to take advantage of the highly modular form of the
metadata and of the terminologies, so as to partition them
in a set of much smaller independent knowledge bases.
This modular character is mainly a result of the different
metadata origination (libraries, archives, museums) and
the respective thematic diversity.

Let us also focus on the visual feature extraction,
visual vocabulary generation and linking of different
images based on their visual characteristics. As shown
in the former subsection, implementing the procedure
for feature extraction and visual vocabulary generation
requires tuning of some parameters used in it. Specifically,
the approximate number of features (tuned through a
threshold) and the number of visual words should be
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defined. To be able to use the proposed procedure in
the large scale environment of a Digital Library, we
performed a large-scale retrieval experiment based solely
on images included in the ATHENA content provided
to Europeana. The developed tool, namely the Visual
Search Engine for Europeana, can be evaluated on-line
at http://vieu.image.ntua.gr, including about 10% of the
ATHENA items’ images, i.e., around 375,000 images
retrieved from the Europeana portal.

Local feature extraction, visual vocabulary construction
and the assignment of visual words have been performed
in an offline step for all the images. Following this, visual
representation of all images has been organized in an
index structure. The visual vocabulary has been extracted,
using a set of ∼10,000 images and its size has been chosen
after a trial-and-test procedure, during which the best
performing vocabulary has been selected. In particular,
for this database size we selected a visual vocabulary of
30,000 clusters (with the number of local features being
∼500 per image). Top-ranked images were passed to a re-
ranking stage where they have been checked for spatial
verification. Finally, spatial matching is performed with
Fast Spatial Matching (FSM) [51] and/or Hough Pyramid
Matching (HPM) [52].

The outcome of this procedure, which the VIEU system
offers, is the ability to obtain links among as many
items’ images as possible based on their visual similarity.
This can assist and speed up the content-based query
answering proposed in this paper, especially if linked
through the extended SVM kernel with the available
formal knowledge, when dealing with large Digital Li-
brary sizes. Moreover, the VIEU system can be extended
using tags in a straightforward way. Similarly to the
Visual Image Retrieval and Localization (VIRaL) system
found in http://viral.image.ntua.gr, tags related to visually
similar images can be transferred to the query image.
These tags are usually aggregated from the images’ source
site or enriched by exploiting links to external sites, e.g.,
the Wikipedia.

VI. Conclusions

The current state-of- the-art in Digital Libraries, includ-
ing Europeana, targets towards effective access to content,
taking advantage of semantic technologies, such as knowl-
edge representations, metadata standards and mappings,
linked data and user modeling. Searching for information
over all content repositories and semantically processing
the associated content has been one of the main goals
in this evolution. Content metadata constitute the main
feature of cultural items that are analysed, mapped and
used to interpret users’ queries, so that the most appro-
priate content is presented to them. In this framework
the research and development focus is on generating ef-
fective and efficient advanced search mechanisms. Taking
advantage of multimedia information, mainly visual, that
is offered to the users in digital library records, has not
gained much attention so far (especially in formation of
the Europeana portal). This is due to problems, on the one

hand, with intellectual property rights of the associated
cultural objects and, on the other hand, with the inherent
difficulty of analysing images, especially in the usually
offered low resolution version of them. The current paper
presents a new semantic search methodology, including a
query answering mechanism that can meet the semantics
of users’ queries and at the same time enriches these
answers by exploiting appropriate visual features, both
local and MPEG-7, through an extended knowledge and
machine learning based approach. We have shown that by
visual feature extraction, clustering, machine learning and
interweaving with knowledge driven answering to users’
queries, improved semantic search can be achieved in
digital libraries. In July 2012 Europeana fully adopts the
CC0 Creative Commons Model for Intellectual Property
Rights regarding content metadata. This will permit free
usage of the Europeana content metadata and items’
images. Our plan is to extend the generated VIEU system
so as to include all Europeana images, thus facilitating
access and content-based queries to the whole Europeana
content. Moreover, applying the improved semantic search
in a variety of subareas, such as archaeology, photogra-
phy, modern arts, fashion, where specific, and modular,
thematic knowledge can be derived and used, as well as
combining it with the evolving field of linked open data
for cultural heritage are future extensions of the presented
work.
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