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Abstract Present work deals with the incorporation of

non-manual cues in automatic sign language recognition.

More specifically, eye gaze, head pose, and facial expres-

sions are discussed in relation to their grammatical and

syntactic function and means of including them in the

recognition phase are investigated. Computer vision issues

related to extracting facial features, eye gaze, and head

pose cues are presented and classification approaches for

incorporating these non-manual cues into the overall Sign

Language recognition architecture are introduced.
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1 Introduction

Non-manual cues are extremely crucial in Sign Language

(SL), but this importance is not depicted in Automatic Sign

Language Recognition (ASLR) approaches. These cues can

operate as indicators, provide additional information, as

intonation functions in spoken languages, add semantic

properties and many other grammatical or syntactical

functions. Although sign language recognition is some-

times considered similar, in terms of concepts and obsta-

cles to be tackled, to speech recognition and translation,

Dreuw [14] identifies a number of differences mainly

related to the linguistic and representation aspects of Sign

Language. More specifically, he mentions that, since there

is no complete and standardized written form for SLs, there

exists an inevitable trade-off between recognition accuracy

and generality. HamNoSys [26] is one of the reference

‘‘phonetic’’ transcription systems used to transform func-

tional characteristics of each sign (e.g. handshape, start,

and direction of motion) using a pre-defined set of symbols.

In theory, one can use the HamNoSys symbols to represent

the vast majority of individual signs in a reusable and

interoperable manner; however, support for non-manual

sign characteristics is still minimal in HamNoSys and by

no means covers all possible options (for example, there is

no support for facial expressions, which modify the mag-

nitude conveyed by a specific sign, for example, the speed

of a car passing by). In addition, this notation supports the

representation of atomic signs and not context or syntactic

features: for example, it is possible to encode the sign for

the verb form ‘‘I give’’ but there is no support for encoding

a phrase where ‘‘I give to person A’’, which is usually

noted by the signer gazing at a specific direction (where

‘‘person A’’ exists in the virtual signing space—[34]) or by

slightly turning his/her body to that point. In the latter case,

it is possible to notate a concept such as ‘‘movement of the

head 45� to the right,’’ but there is no connection to the

person or object that the signer ‘‘placed’’ at that particular

virtual position (Dreuw refers to that syntactic concept as

‘‘discourse entities’’). This brings up the issue of word
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flexion: in most Sign Languages, facial expressions [29]

and signer body stance and movement are used as modi-

fiers for a specific sign. Besides the previous example on

changing the context of a verb or action, the difference

between a ‘‘big’’ or ‘‘small’’ object is signed by puffing lips

or shrugging shoulders, possibly at the same time.

Although HamNoSys does cater for representing those

non-verbal signs, they are hardly ever annotated in context

(that is, with respect to a particular object or person that the

signer refers to—[12]). In that case, the ‘‘phonetic’’ tran-

scription approach of HamNoSys would prove ineffective

and a ‘‘tier’’ approach would have to be followed for

annotation and subsequent recognition: Crasborn effec-

tively divides all activity to different tiers, each repre-

senting one of the manual or non-manual characteristics of

the sign: repetition, which in the non-verbal case would

represent stress or magnitude, the eye brows, eye aperture,

and mouth tier which is useful when encoding facial

expressions and the head and eye gaze tiers for encoding

focus on specific objects or action/verb context.

The rest of the article is organized as follows: Sect. 2

introduces the research area discussing related work and

challenges, while the following sections present the pro-

posed architecture. Computer vision issues related to

extracting eye gaze, head pose cues, and facial features

are discussed in Sects. 3.1, 3.2, and 3.3, respectively.

Section 4 introduces the adopted classification approach

for recognizing facial expressions and methods to incor-

porate facial expressions and their syntactic and gram-

matical functions into the overall automatic sign language

recognition architecture. Finally, Sect. 5 concludes the

article and presents future directions of the presented

research work.

2 Automatic sign language recognition

2.1 Sign language definition

Sign language is the linguistic system used by the hearing-

disabled group in order to communicate between the

members of the group and also with non-impaired people.

Unlike spoken languages, sign languages are heavily based

on iconicity to convey meaning. A morphosyntactic

structure is employed to express linguistic relations in 3D

space and is organized much differently than orally artic-

ulated languages. Concepts are represented by signs, the

basic grammatical unit of a sign language, forming a visual

natural language.

With only a few, mostly situation-dependent exceptions,

signs are articulated in a notional cube in front of the

signer’s head and body, the so-called signing space. By

exploring the possibilities of signing space and iconicity as

well as the productive use of sublexical features such as

classifiers, many meanings can be conveyed without rely-

ing on established lexemes. Sign languages can therefore

cope satisfactorily with much smaller numbers of lexemes

in their lexicons than in most spoken languages. Conse-

quently, sign language models and sign language grammars

must be able to adequately account for the pronominal

systems of sign language based upon positioning in three-

dimensional space around a signer and, thus, intelligently

inform avatar synthesis and sign recognition components of

this unique aspect of signing.

Although sign languages have emerged naturally in deaf

communities, they are unrelated to national spoken lan-

guages but culturally close communities or countries

influence their respective SLs. For example, the British SL

has influenced greatly Australian and New Zealand SL and

is now considered as one known as BANZSL (BSL,

Auslan, and NZSL). The case of the Scandinavian SLs is

quite similar. Additionally, as in spoken languages, dialects

from different parts of a country may also appear.

Language-specific sign components entail a close set of

attribute-value pairs, which comprise the language’s pho-

nology. Various combinations of sign components may

generate every possible existing or new sign. Thus, it is

essential that phonetic/morphological notations are suffi-

ciently rich in features appropriate to sign language to

sufficiently inform and assist virtual human animation and

image processing technologies. A distinctive feature of

sign languages is the extensive use they make of classifiers,

a set of markers for the indication of class, shape, order,

etc. (e.g., human, animal, vehicle, round, square), which

complete or modify the concept conveyed by a sign.

Classifiers provide a powerful mechanism for generating

new concept representations (lexical items) or for modi-

fying the meaning of existing ones. Signs are further

formed either with one or with two hands.

2.2 Automatic SL recognition challenges

Gestures used for sign languages are often considered

independent of other gesture styles since they are based on

linguistics and are performed using a series of individual

signs or gestures that combine to form grammatical struc-

tures for conversational style interfaces. In some instances

such as finger spelling, sign languages can be considered

semaphoric in nature. However, the gestures in sign lan-

guages are based on their linguistic components, and

although they are communicative in nature, they differ

from gesticulation in that the gestures correspond to sym-

bols stored in the recognition system. Sign languages are

grammatically and lexically complete, and are often com-

pared to speech in terms of the processing required for their

recognition.
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Signs vary in time and space. Even if a person tries to

perform the same sign twice, slight changes of speed and

position of the hands will occur between instances of the

same sign. Each sign varies in time and space and the

signing speed and duration may differ significantly.

Movements of the signer, like shifting in one direction or

rotating around the body axis, must be considered. Addi-

tionally, signing fingers can be occluded, as they are hidden

behind other parts of the hands or arms. Unlike the rec-

ognition of isolated signs, where the start and endpoint of

the signs are known, the system also has to detect the

transitions between the signs when recognizing connected

signs. For a sequence of connected signs, the performance

of each sign is affected by the preceding and the sub-

sequent sign (coarticulation). The structure of a sentence in

spoken language is linear, one word followed by another,

whereas in sign language, a simultaneous structure exists

with a parallel temporal and spatial configuration. The sign

can begin and end at any instance of an observed sequence,

since a temporal restriction in the execution of a sign does

not exist and the number of the signs in a phrase is not

fixed. The processing of a large amount of data is time-

consuming, so real-time recognition is difficult. Addition-

ally, in the case of frontal monocular vision systems which

uses only a single camera, 3D space is projected on a 2D

plane, resulting in the loss of depth information and

reconstruction of the 3D trajectory of the hand is not

always possible. Finally, the position of the signer in front

of the camera may vary.

2.3 Vocabulary

Another important issue in the wide research area of

automatic sign language recognition is the vocabulary size

of the experimental corpora used to verify the robustness

and generalization capabilities of the proposed systems.

Most articles construct their experimental dataset using a

quite restricted number of signs, varying from 10 to 65,

while others extend their vocabulary, to what would be a

more representative sample of the respective sign language,

but still use between 164 and 274 signs. The articles that

approximate a universal recognizer are those who reach

impressive vocabulary sizes that enumerate up to more

than 5,000 signs. Publications belonging to the last group

focus mainly on large vocabulary recognition and issues

related to a complete real-time system that could support

automatic sign language recognition. The number of rep-

etitions performed for each vocabulary entry is also

important, as is the training/testing sample ratio. Typically,

each sign is repeated 5–10 times, for example, [5, 10, 20,

32, 39], while there are cases where more [16, 17, 21] or

less [1, 15, 18, 28, 33] repetitions are performed for each

lemma in the restricted, experimental vocabulary.

2.4 Signer dependence

Signer dependence is a decisive aspect of sign language

recognition, in the perspective of generalization of the

proposed architecture into an actual system. Many articles

[5, 10, 20, 33, 38, 37] propose approaches that have only

been tested on the same signer as the one used for training

or modeling. This, single signer-dependant constraint,

cannot be the case for a generic automatic sign language

recognizer since it is not possible to obtain training data

from all the candidate users of the system. Signer inde-

pendence, and ways to tackle intersigner variation in the

performance of the signs or grammatical idioms of signer

groups, is vital to achieve good recognition rates in an

arbitrary setting by an unregistered user. Several works [11,

16, 27, 36] have tested their classification schemes on

multiple signers, but this is not adequate since the system

needs to be tested against signs performed by signers that

have not been included in the training dataset, to achieve

true signer independence.

2.5 Corpora

A corpus is a collection of pieces of language that are

selected and ordered according to explicit linguistic criteria

in order to be used as a sample of the language. Further-

more, the definition of computer corpus is a corpus which

is encoded in a standardized and homogenous way for

open-ended retrieval tasks. The design and construction of

sign language corpora, as is the case for most corpora, is

not a trivial issue. Design aspects have to be taken under

consideration in order for the final database to be useful for

analysis and drawing conclusions on the sign language

itself. Applicability and reusability, independently of the

feature extraction or recognition scheme used, has to be

ensured. Suitable transcription and annotation is crucial

since it is a prerequisite for supervised classification or a

multilayer approach.

Recognition rates of several classifiers can be consid-

ered as a reliable comparative quantitative measurement

only under the restriction that the experiments were per-

formed by testing recognition architectures against uniform

and multiple datasets and corpora. Such an approach

ensures that classification rates truly reflect the robustness

and generalization capabilities of each system being eval-

uated. Most databases used in sign language processing so

far do not provide or include what is important for the

evaluation of sign language processing algorithms [35].

The need for creation of benchmark databases that can be

used for investigating linguistic problems, and evaluating

automatic sign language recognition systems or statistical

machine translation systems including individual utter-

ances, narratives, and dialogues pronunciation information
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is crucial. Other features that are a prerequisite for facial

expression analysis and 3D depth estimation is that signing

is performed from multiple angles, including a close-up of

the face. Databases so far have not been produced with sign

language recognition primarily in mind [13]; thai is, no

suitable transcription is available. To use these data for the

training or for performance evaluation in sign language

recognition systems, the necessary transcriptions have to be

created, which is a costly process mainly in terms of human

resources.

2.6 Isolated versus continuous recognition

While the majority of articles address isolated word rec-

ognition, there is still a fair number of work focused on

continuous, sentence recognition. Additionally some

researchers explore both isolated and continuous recogni-

tion, extending their word-level methodologies to sentence-

level sign language recognition. The latter is significantly

more complex and challenging, since sign boundaries have

to be detected automatically and each sign, composing the

sentence, is affected by the preceding and the subsequent

sign, which consists the coarticulation phenomenon. There

are also some works [21, 25] that deal with static letter

recognition for fingerspelling scenarios. The simplistic

approach to tackle the problem of continuous signing is to

extend isolated recognition with sign boundary recognition,

thus, enabling the system to recognize sentences as a

sequence of signs.

2.7 Classification schemes

Residing in the heart of each recognition attempt, the

classification architecture is considered the most decisive

among the other architecture aspects and in many cases it

decides on or influences in a major degree the design

decisions of the other components. Although a plethora of

articles propose an established, off the shelf classifier (e.g.,

HMM), there is also a significant number of approaches

that utilize a combination of classification schemes either

by pre/postprocessing the input/output of each classifier in

the sequential architecture of the overall classifier or by

modifying and/or enhancing the internal operation of one

type of learning and/or evaluation process of a classifica-

tion architecture.

Architectures for classifying an unknown sign language

lemma or sentence into one of the predefined candidate

categories are:

– Neural networks

– HMM and variants

– Linear models

– Tree structures

– Clustering

– State sequence comparison

2.8 Incorporation of non-manual cues

Besides the basic sign language components of location,

movement, handshape, and palm orientation, sign language

is enriched with non-manual features and a complete

grammatical structure. Both aspects are very sparsely dealt

with and certainly not fully investigated in the recognition

chain. For some sign languages, this is the case also for

linguistic studies, since grammatical analysis is incomplete

and facial expressions used in conjunction with manual

features are not fully recorded and analyzed.

Grammatical phenomena are usually dealt as noise or

signer variation and are not separately processed. Of course,

incorporating grammatical models into the recognition

chain would have to be assisted by some Natural Language

Processing module adding another discipline in the already

multidisciplinary area of automatic sign language recogni-

tion. To date, sign language recognition research has also

mostly ignored facial expressions that arise as part of a

natural sign language discourse, even though they carry

important grammatical and prosodic information. The clear

correspondence between the head angles and the head

rotation and tilt labels holds great promise for future sys-

tems that recognize the non-manual markings of signed

languages [6]. The ability to extract and plot the trajectories

of various facial parameters may well prove invaluable for

research into sign language prosody [29].

Non-manual cues related to present’s research work

scope could be summarized as:

• Temporal inflections

– Frequency

– Duration

– Recurrence

– Permanence

• Trajectory modifications

– Shape

– Rate

– Rhythm

– Tension

• Grammatical

– Movement epenthesis

– Emphatic inflections

– Derivation of nouns from verbs

– Numerical incorporation

– Compound signs

– Non-manual signals
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3 Feature extraction

The gaze detector employs facial feature analysis of images

captured from a standard web camera in order to determine

the direction of the user’s gaze. The purpose of the gaze

module is to detect the raw user gaze direction details from

the web camera in real time. It is based on facial feature

detection and tracking, as reported in [4], and follows a

variant of this method for head pose and eye gaze esti-

mation. More specifically, starting from the eye centers,

which are easy to be detected [3], eye corners and eyelids

are detected, as well as two points on each eyebrow, the

nostrils’ midpoint, and four points on the mouth. These

features are subsequently tracked using an iterative,

3-pyramid Lucas-Kanade tracker [22]. Lucas-Kanade

tracking is one of the most widespread and used trackers in

bibliography, and the choice of this tracker was based on

the fact that it can accurately and effectively track features

under a large variety of circumstances. However, as is the

case in real life conditions, a series of rules has to be

adopted in order to tackle constraints imposed by natural

lighting and motion conditions: By assuming an ortho-

graphic projection at successive frames, the motion vectors

of all features for such small periods of time can be con-

sidered to be almost equal. Features whose motion vector

length mi at frame i is much larger or smaller than the mean

motion of all features mmean (mi [ t1 9 mmean, mi \ t2 9

mmean; here, we considered t1 = 1.5 and t2 = 0.5) are

considered as outliers, and their position is re-calculated

based on their previous position and the re-calculated mean

motion of the other features. The above step proved to be

very important at improving the tracker’s performance

under difficult lighting conditions and occlusions.

3.1 Eye gaze estimation

For eye gaze estimation, relative displacements of the iris

center with regard to the points around the eyes give a good

indication of the directionality of the eyes with regard to a

frame where the user faces the agent frontally. These dis-

placements correspond to the eye gaze vectors (see Fig. 1).

To re-enforce correct eye center tracking, the tracked eye

centers’ positions are updated by searching for the darkest

neighborhoods around them and placing the eye center in

the midpoint of this neighborhood, which helps tackle

blinking and saccadic eye movements. Again, these dis-

placements are normalized by the interocular distance at

start-up and, thus, are scale independent. The computational

complexity of the method permits real-time applications

and requires only a simple web camera to operate. Tracking

the features takes 13 ms per frame on average for a

resolution 288 9 352 pixels of the input video, using a

Pentium 4 CPU, running at 2.80 GHz, while re-initializations,

whenever occurring, require 330 ms. Further details on the

architecture and experimental results of the adopted eye

gaze estimation module can be found in [2].

3.2 Head pose

Head pose is estimated by calculating the displacement of the

eye centers’ midpoint, with regard to its position at a frame

where the user faces the camera frontally. This displacement

produces the head pose vector which is a good index of where

the user’s head is turned toward (see Fig. 1). Normalization

with the interocular distance at start-up (in pixels) guarantees

that the head pose vector is scale independent. In order to

distinguish between displacements caused by head rotations

and by translations, the triangle formed by the triplet of the

eyes and the mouth is monitored and head pose vector is only

calculated when the fraction of the interocular distance to the

eyes-mouth vertical distance changes significantly with

regard to a frame where the person is looking frontally. To

further suppress error accumulation, the system re-initializes

when certain conditions regarding head pose vector length

are met: In cases of rapid head rotations that may cause some

features to be occluded, when the person comes back to a

frontal position, one of the two eye centers might be erro-

neously tracked, while the other follows the movement of the

head. In such cases, the head pose reduces in length and stays

fixed when the person is facing the camera frontally. In this

case, the system can re-initialize by re-detecting the facial

features and restart the tracker. The above step can be seen in

Fig. 2, with khpvik being the head pose vector length at

current frame i, a = 0.7, b = 0.07, n = 10. As face

detection and facial feature detection run slower than the

tracker, video streaming continues normally and the second

frame to be processed is the one caught by the camera at real

time. However, initialization normally runs at *3 fps and,

thus, pose and expressions practically do not change signif-

icantly after initialization.

Fig. 1 Gaze direction detection is based on a number of tracked

features (shown here as black dots) in order to calculate a final head

pose (white line) and eye gaze (black line) vector
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The head pose vector coordinates are further smoothed

using Kalman filtering. The state variables of the filter are

the horizontal and vertical coordinates hpvi = (hpvx,i,

hpvy,i) of head pose vector, as well as the corresponding

first derivative components (velocity), ui = (ux,i, uy,i).

Consequently, the state vector at frame i will be xi =

(hpvx,i, hpvy,i, ux,i, uy,i). According to Kalman theory [23],

the state vector xi?1 corresponding to frame i ? 1 is line-

arly related with the current state xi, with the system model

defined in 1.

xiþ1 ¼ Uxi þ wi ð1Þ

where U is the state transition matrix and wi system noise,

of gaussian distribution wi*(0,Q).

Considering very small state changes between consec-

utive frames, a linear model can be adapted, and the state

transition matrix can be parameterized as follows:

U ¼

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BB@

1
CCA

Considering that the system’s observable variables are the

first two state variables (head pose vector components), and

that the observation model is described in Eq. 2

zi ¼ Hxi þ vi ð2Þ

then

H ¼ 1 0 0 0

0 1 0 0

� �

where H is the matrix correlating current state with

observation vector and vi being measurements noise, which

is considered to be of gaussian distribution vi*(0,R).

Adopting that state variables and transition probabilities

follow gaussian distributions, Kalman algorithm offers the

capability to adapt iterative formulas for estimating state

vectors from observations. Initial values for the first two

state vectors are zero-valued head pose components and, as

velocity state variables, initial values are set to their values

at the second frame (the algorithm is launched at the second

frame of each sequence): hpvx,0 = 0, hpvy,0 = 0, ux,0 =

hpvx,1 - hpvx,0, uy,0 = hpvy,1 - hpvy,0.

As the error covariance matrix of the state vector has no

significant impact on the results, initially it can be set equal

to the unity matrix 4 9 4. Furthermore, considering that

system noise is about 0.2� and, dividing it with a scale

factor (in order to be consistent with ground truth data),

final system noise is about 10-2. Similar noise was con-

sidered for state variables corresponding to velocity com-

ponents. Thus, the noise covariance matrix we consider is

the following:

Q ¼
10�4 0 0 0

0 10�4 0 0

0 0 10�4 0

0 0 0 10�4

0
BB@

1
CCA

Measurements error matrix is calculated based on the

head pose algorithm estimates and the ground truth head

pose angle variables (divided by a scale factor). Thus, in

our experiments, for the two observable states, the

maximum of the variances of measurements error was

considered, and the final measurements error matrix was

the following:

R ¼ 2:38 0

0 0:46

� �

Figure 3 shows typical examples of estimated head pose

vector horizontal and vertical components and the

corresponding ground truth values throughout example

sequences. Estimates’ variances are marked at certain

points. It is obvious that, during the sequences, the variance

values tend to take fixed values.

In order to test the system’s validity to estimate head

rotation values accurately, a series of experiments were

conducted on Boston University dataset (BU) [9]. This

dataset offers ground truth data related to head rotation

around the horizontal and vertical axis (pitch and yaw,

respectively), as well as roll angle data (head rotation

parallel to the image plane). The five participants of the

dataset were asked to make non-pretending, spontaneous

movements, both rotational and translational. Furthermore,

the dataset was taken in an office environment, with

complex background and typical office lighting conditions.

Table 1 shows results on head pose estimation for every

participant, independently. Mapping between head pose

vector, as described above, and actual head rotation angles,

was done by multiplying with a factor, common for all

videos. It is obvious that the system has the ability to

follow head rotation with a high degree of reliability but

the main advantage of this technique is that it is completely

Fig. 2 Diagram depicting conditions under which system

re-initializes
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non-intrusive and does not necessitate a pre-processing

calibration or training phase. Both the head pose and eye

gaze methods described here are based on solely image

processing modules, not requiring intrusive or highly spe-

cialized hardware. Such as approach eliminates the

requirement for person-specific calibration stage and is,

thus, ideal for the purposes of ASLR.

3.3 Facial expressions

Facial features are detected in order to model facial

expressions. Our approach, as described in detail in [19],

achieves robust extraction of facial feature points for nose,

eyebrows, eyes, and mouth. The face is first located, so that

approximate facial feature locations can be estimated from

the head position and rotation. Face roll rotation is esti-

mated and corrected, and the head is segmented focusing

on the following facial areas: left eye/eyebrow, right eye/

eyebrow, nose, and mouth. Each of those areas, called

feature-candidate areas, contains the features whose

boundaries need to be extracted for our purposes. Inside the

corresponding feature-candidate areas, precise feature

extraction is performed for each facial feature, that is, eyes,

eyebrows, mouth, and nose, using a multi-cue approach,

generating a small number of intermediate feature masks.

Feature masks generated for each facial feature are fused

together to produce the final mask for that feature. The

mask fusion process uses anthropometric criteria to per-

form validation and weight assignment on each interme-

diate mask; each feature’s weighted masks are then fused

to produce a final mask along with confidence level esti-

mation. The edges of the final masks are considered to be

the extracted feature points as depicted in Fig. 4, which in

turn are used to calculate MPEG-4 FAPs.

A detailed description of the facial feature detection and

tracking procedure and evaluation results are included in

[19].

3.4 Expressivity

Expressivity of behavior is an integral part of the com-

munication process as it can provide information on the

current emotional state, mood, and personality of a person

[31]. Many researchers have investigated human motion

characteristics and encoded them into dual categories such

as slow/fast, small/expansive, weak/energetic, small/large,

unpleasant/pleasant.

To model expressivity, in our work, we use the six

dimensions of behavior [8], as a more accomplished way to
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Fig. 3 a Horizontal head rotation, b vertical head rotation: true

(continuous lines), estimated values (dotted lines)

Table 1 Mean absolute error at estimating horizontal (yaw), vertical

(pitch) and roll angles on the BU dataset, for each participant

Participant ID Yaw angle Pitch angle Roll angle

jam 7.43� 3.80� 4.73�
jim 9.15� 3.94� 5.37�
llm 10.5� 7.22� 4.73�
ssm 6.63� 4.71� 7.80�
vam 8.01� 5.69� 7.62�
Average 8.35� 5.07� 6.05�

Fig. 4 Detected prominent facial features
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describe the expressivity, since it tackles all the parameters

of expression of emotion [30]. Five parameters modeling

behavior expressivity have been defined at the analysis

level, as a subset of features derived from the field of ex-

pressivity synthesis:

• Overall activation

• Spatial extent

• Temporal

• Fluidity

• Power

Overall activation is considered as the quantity of

movement during a conversational turn. Spatial extent is

modeled by expanding or condensing the entire space

in front of the agent that is used for gesturing. The

temporal expressivity parameter of the gesture signifies

the duration of the movement while the speed expres-

sivity parameter refers to the arm movement during the

gesture’s stroke phase (e.g., quick versus sustained

actions). Gestures have three phases: preparation, stroke,

and retraction. The real message is in the stroke, while

the preparation and retraction elements consist of moving

the arms to and from the rest position, to and from the

start and end of the stroke. Fluidity differentiates smooth/

graceful from sudden/jerky ones. This concept seeks to

capture the continuity between movements, as such, it

seems appropriate to modify the continuity of the arms’

trajectory paths as well as the acceleration and deceler-

ation of the limbs.

Gesture expressivity in automatic sign language recog-

nition, to our knowledge, is completely ignored by

researchers. Although gesture expressivity cues cannot be

considered as non-manual features, with a strict definition

of the term, they provide significant qualitative information

about the gesture or sign lemma. This qualitative aspect of

information conveyed by the signer could be employed in

the automatic SL recognition chain in order to provide

information about the agent or the recipient of an action, or

even the semantic class of the object involved in it.

Repetitiveness is strongly correlated to repetition of

movement which may further declare frequency, plurality,

or grammatical category differentiation, for example,

between verb and noun (a single-movement sign may

indicate verb function, while repetition of the same

movement in a single sign may indicate the respective

deverbal noun). Spatial extension is also related to the

expansion of the movement that may indicate size or vol-

ume, whereas speed or vigor in combination with the

appropriate non-manual signs may express a range of

adverbial properties. Moving to an extremely ambitious

application domain, quite different from automatic recog-

nition, expressivity cues could be utilized in SL poetry

transcription [24].

4 Incorporation of non-manual cues

into the recognition architecture

In order to recognize facial expressions, we need to utilize a

classification model that is able to model and learn dynam-

ics, such as a Hidden Markov Model or a recurrent neural

network. In this work, we are using a recurrent neural net-

work; see Fig. 5. This type of network differs from con-

ventional feed-forward networks in that the first layer has a

recurrent connection. The delay in this connection stores

values from the previous time step which can be used in the

current time step, thus providing the element of memory.

Although we are following an approach that only com-

prises a single layer of recurrent connections, in reality the

network has the ability to learn patterns of a greater length

as well as current values are affected by all previous values

and not only by the last one. A two-layer network with

feedback from the first-layer output to the first-layer input

is adopted. This recurrent connection allows the Elman

network to both detect and generate time-varying patterns.

The input layer of the utilized network has 25 neurons

(FAPs). The hidden layer has 20 neurons, and the output

layer has as many neurons as the possible classes corre-

sponding to the facial expressions. Details on the archi-

tecture, as well as experimental results on facial expression

recognition, can be found in [7]. Partial experimental

results related to recognizing affective quadrants, accord-

ing to an activation-evaluation dimensional emotion rep-

resentation approach, are illustrated in Table 2.

5 Conclusions

Current work deals with the incorporation of non-manual

cues in automatic sign language recognition. Since facial

Fig. 5 Elman recurrent neural network used for facial expression

recognition

Table 2 Experimental results for facial expression recognition using

the adopted approach

Dataset Neutral Q1 Q2 Q3 Q4

Overall 79.07 87.10 86.67 66.10 74.70

Selected 100.00 98.29 96.43 100.00 100.00
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expressions, eye gaze and signer head pose are used as

modifiers for specific signs, they should also be included in

the automatic recognition phase. Related computer vision

methods for extracting low-level features (eye gaze and

head pose) are discussed and, in a higher level, a classifi-

cation approach for recognizing facial expressions is

introduced. The grammatical and syntactic function of

these cues and means of including them in the recognition

phase are investigated.

Although the work presented here provides solid basis

for further investigation of incorporation of non-manual

features in the automatic sign language incorporation,

researching this aspect of sign language recognition is far

from complete. Experimental verification of the enhance-

ment of SL recognition with facial expressions, eye gaze,

and head pose is needed in order to prove and measure the

acquired gain. Synchronization issues with manual features

and fusion with classification techniques based on these

features need to be addressed and investigated.
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