
Storing and Querying Fuzzy Knowledge
in the Semantic Web using FiRE

Nikolaos Simou, Giorgos Stoilos, and Giorgos Stamou

Department of Electrical and Computer Engineering,
National Technical University of Athens,

Zographou 15780, Greece
{nsimou,gstoil,gstam}@image.ntua.gr

Abstract. An important problem for the success of ontology-based ap-
plications is how to provide persistent storage and querying. For that
purpose, many RDF tools capable of storing and querying over a knowl-
edge base, have been proposed. Recently, fuzzy extensions to ontology
languages have gained considerable attention especially due to their abil-
ity to handle vague information. In this paper we investigate on the issue
of using classical RDF storing systems in order to provide persistent stor-
ing and querying over large scale fuzzy information. To accomplish this
we propose a novel way for serializing fuzzy information into RDF triples,
thus classical storing systems can be used without any extensions. Addi-
tionally, we extend the existing query languages of RDF stores in order
to support expressive fuzzy querying services over the stored data. All
our extensions have been implemented in FiRE—an expressive fuzzy DL
reasoner that supports the language fuzzy-SHIN . Finally, the proposed
architecture is evaluated using an industrial application scenario about
casting for TV commercials and spots.

1 Introduction

Despite the great success of the World Wide Web during the last decade, it is
still not uncommon that information is extremely difficult to find. Such cases
include searching for popular names, multi-language words with different defini-
tions in different languages and specific information that requires more sophis-
ticated queries. The Semantic Web—an extension of the current Web—aims at
alleviating these issues by adding semantics to the content that exists on the
Web. Information in the (Semantic) Web would be linked forming a distributed
knowledge base and documents would be semantically annotated.

Ontologies, through the OWL language [14], are expected to play a significant
role in the Semantic Web. OWL is mainly based on Description Logics (DLs)
[1], a popular family of knowledge representation languages. Their well-defined
semantics, together with their decidable reasoning algorithms, have made them
popular to a variety of applications [1]. However, despite their rich expressive-
ness, they are not capable of dealing with vague and uncertain information, which
is commonly found in many real-world applications such as multimedia content,

medical informatics and more. For this purpose fuzzy extensions to Description
Logics have been proposed [11, 20, 18, 2].

Fuzzy ontologies have also gained considerable attention in many research
applications. Similar to crisp ontologies, they can serve as basic semantic in-
frastructure, providing shared understanding of certain domains across different
applications. Furthermore, the need for handling fuzzy and uncertain informa-
tion is crucial to the Web. This is because information and data along the Web
may often be uncertain or imperfect. Such cases are domains that may be de-
scribed using concepts, like “near” for modeling distance or concept “tall” for
modeling people and buildings height. The paradox that arises in the latter case
is that there is no distinction between a person’s and a building’s height.

Clearly the information represented by those kinds of concepts is very impor-
tant though imperfect. Therefore sophisticated uncertainty representation and
reasoning are necessary for the alignment and integration of Web data from dif-
ferent sources. Recently, also fuzzy DL reasoners such as fuzzyDL [3] and FiRE
[17] that can provide practical reasoning over imprecise information have been
implemented. Despite these implementations little work has been done towards
the persistent storage and querying of information. Closely related works are
those on fuzzy DL-Lite [22, 13], where the reasoning algorithms assume that the
data have been stored previously in a relational database.

In this paper we follow a different paradigm and study the use of an RDF
triple-store for the storage of fuzzy information. More precisely, we propose an
architecture that can be used to store such information in an off-the-shelf triple-
store and then show how the stored information can be queried using a fuzzy
DL reasoner. The main contributions of this paper are the following:

1. It presents a novel framework for persistent storage and querying of expres-
sive fuzzy knowledge bases,

2. It presents the first ever integration of fuzzy DL reasoners with RDF triple-
stores, and

3. It provides experimental evaluation of the proposed architecture using a
real-world industrial strength use-case scenario.

The rest of the paper is organized as follows. Firstly, in Section 2 the theoret-
ical description of the fuzzy DL f-SHIN [18] is given. After that in Section 3 the
fuzzy reasoning engine FiRE which supports the fuzzy DL f-SHIN and was used
in our approach is presented. In the following Section (4) the proposed triples
syntax accommodating the fuzzy element used for storing a fuzzy knowledge
base in RDF-Stores, is presented. Additionally, the syntax and the semantics
of expressive queries that have been proposed in the literature [13] to exploit
fuzziness are briefly presented. In the last Section (5) the applicability of the
proposed architecture is demonstrated, presenting a use case based on a data-
base of human models. This database was used by a production company for the
purposes of casting for TV commercials and spots. Some entries of the database
were first fuzzified and then using an expressive knowledge base, abundant im-
plicit knowledge was extracted. The extracted knowledge was stored to an RDF

2

Store, and various expressive queries were performed in order to benchmark the
proposed architecture.

2 Preliminaries

2.1 The Fuzzy DL fKD-SHIN

In this section we briefly present the notation of DL f-SHIN which is a fuzzy
extension of DL SHIN [8]. Similar to crisp description logic languages, a fuzzy
description logic language consist of an alphabet of distinct concepts names (C),
role names (R) and individual names (I), together with a set of constructors to
construct concept and role descriptions. If R is a role then R− is also a role,
namely the inverse of R. f-SHIN -concepts are inductively defined as follows:

1. If C ∈ C, then C is a f-SHIN -concept,
2. If C and D are concepts, R is a role, S is a simple role and n ∈ N, then

(¬C), (C t D), (C u D), (∀R.C), (∃R.C), (≥ nS) and (≤ nS) are also
f-SHIN -concepts.

In contrast to crisp DLs, the semantics of fuzzy DLs are provided by a fuzzy
interpretation [20]. A fuzzy interpretation is a pair I = 〈∆I , ·I〉 where ∆I is a
non-empty set of objects and ·I is a fuzzy interpretation function, which maps
an individual name a to elements of aI ∈ ∆I and a concept name A (role name
R) to a membership function AI : ∆I → [0, 1] (RI : ∆I ×∆I → [0, 1]).

By using fuzzy set theoretic operations the fuzzy interpretation function can
be extended to give semantics to complex concepts, roles and axioms [9]. FiRE
uses the standard fuzzy operators of 1− x, where x is a degree, for fuzzy nega-
tion (c), max(x, y), for fuzzy union (u), min(x, y) for fuzzy intersection (t) and
max(1−x, y) for fuzzy implication (J). For example, if d1 is the degree of mem-
bership of an object o to the set AI and d2 the degree of membership to BI ,
then the membership degree of o to (A uB)I is given by min(d1, d2), while the
membership degree to (A t B)I is given by max(d1, d2). The complete set of
semantics is depicted in Table 1.

A f-SHIN knowledge base Σ is a triple 〈T ,R,A〉, where T is a fuzzy TBox,
R is a fuzzy RBox and A is a fuzzy ABox. TBox is a finite set of fuzzy concept
axioms which are of the form C v D called fuzzy concept inclusion axioms and
C ≡ D called fuzzy concept equivalence axioms, where C,D are concepts, saying
that C is a sub-concept or C is equivalent of D, respectively. In cases where C
is allowed to be a complex concept we have a general concept inclusion axiom
(GCI). At this point it is important to note that in our approach fKD-SHIN
without GCIs is considered. The interested reader is referred to [19, 10] that
present how GCIs are handled in fuzzy DLs and also to fuzzy DLs that have
been proposed in the literature [7, 18] and support GCIs. RBox is a finite set of
fuzzy role axioms of the form Trans(R) called fuzzy transitive role axioms and
R v S called fuzzy role inclusion axioms saying that R is transitive and R is a
sub-role of S respectively. Finally, ABox is a finite set of fuzzy assertions of the

3

Constructor Syntax Semantics

top > >I(a) = 1

bottom ⊥ ⊥I(a) = 0

general negation ¬C (¬C)I(a) = c(CI(a))

conjunction C uD (C uD)I(a) = t(CI(a), DI(a))

disjunction C tD (C tD)I(a) = u(CI(a), DI(a))

exists restriction ∃R.C (∃R.C)I(a) = supb∈∆I{t(RI(a, b), CI(b))}
value restriction ∀R.C (∀R.C)I(a) = infb∈∆I{J (RI(a, b), CI(b))}
at-most ≤ pR infb1,...,bp+1∈∆I J (tp+1

i=1R
I(a, bi), ui<j{bi = bj})

at-least ≥ pR supb1,...,bp∈∆I t(t
p
i=1R

I(a, bi), ti<j{bi 6= bj})
inverse role R− (R−)I(b, a) = RI(a, b)

equivalence C ≡ D ∀a ∈ ∆I .CI(a) = DI(a)

sub-concept C v D ∀a ∈ ∆I .CI(a) ≤ DI(a)

transitive role Trans(R) ∀a, b ∈ ∆I .RI(a, b) ≥ supc∈∆I{t(RI(a, c), RI(c, b))}
sub-role R v S ∀a, b ∈ ∆I .RI(a, b) ≤ SI(a, b)

concept assertions 〈a : C./n〉 CI(aI)./n

role assertions 〈〈a, b〉 : R./n〉 RI(aI , bI)./n
Table 1. Semantics of concepts and roles

form 〈a : C./n〉, 〈(a, b) : R./n〉, where ./ stands for ≥, >,≤ or <, or a 6 .= b, for
a, b ∈ I. Intuitively, a fuzzy assertion of the form 〈a : C ≥ n〉 means that the
membership degree of a to the concept C is at least equal to n.

Example 1. An example of a fuzzy knowledge base Σ is shown below.
T ={MiddleAged ≡ 40s t 50s, TallChild ≡ Child u (Short t Normal Height),}
R ={isFriendOf− = isFriendOf} and
A ={〈michalis1539 : Male〉, 〈michalis1539 : (Tall u GoodLooking) ≥ 0.8〉,

〈(michalis1539,maria1343) : isFriendOf ≥ 0.7〉}

3 Fuzzy Reasoning Engine FiRE

In this section we present the graphical user interface, the syntax and the infer-
ence services of FiRE—an expressive fuzzy DL reasoner.

3.1 FiRE interface

FiRE1 is a Java based fuzzy reasoning engine. FiRE implements the tableau
reasoning algorithm for fuzzy-SHIN presented in [18]. It can be used either
as an API by another application or through its graphical user interface. The
graphical user interface of FiRE consists of the editor panel, the inference services
panel and the output panel (Figure 1). Hence the user has the ability to create
or edit an existing fuzzy knowledge base using the editor panel, and to use the
inference services panel to make different kinds of queries to the fuzzy knowledge

1 http://www.image.ece.ntua.gr/~nsimou/FiRE/

4

base. Finally, the output panel consists of four different tabs, each one displaying
feedback depending on the user operation.

Fig. 1. The FiRE user interface consists of the editor panel (upper left), the inference
services panel (upper right) and the output panel (bottom)

3.2 FiRE syntax

As previously mentioned, a fuzzy knowledge base consists of three components
TBox, RBox and ABox. The TBox and the RBox are defined using the Knowl-
edge Representation System Specification [16] proposal since they do not include
uncertainty. So, transitive roles or the sub-role of another role can be defined by
using the keywords transitive and parent respectively and concept axioms by
the keywords implies and equivalent. (Please refer to [16] for a full specifica-
tion.)

On the contrary, since the assertions are extended in order to represent im-
perfect knowledge, the ABox specified differently. Instances in FiRE are defined
using the keyword instance followed by the individual, the concept in which the
individual participates, the inequality type (one of <,<=, >,>=) and the degree
of confidence degree ∈ [0, 1]. Similarly, role assertions are defined by using the
keyword related followed by subject and object individuals, the inequality type
and the degree of confidence. In both cases the inequality type and the degree

5

of confidence are required only for fuzzy assertions, if these are not mentioned
then the assertions are assumed as crisp (i.e >= 1).

Example 2. The syntax of the assertions defined in example 1 are shown below
in FiRE syntax.

(instance michalis1539 Male)

(instance michalis1539 (and Tall GoodLooking) >= 0.8)

(related michalis1539 maria1343 isFriendOf >= 0.7)

3.3 FiRE reasoning services

Description Logics offer a large range of inference services, which the user can
query over a knowledge base. The main reasoning services offered are satisfiabil-
ity checking, subsumption and entailment of concepts and axioms with respect to
an ontology. For example, one is capable of asking queries like “Can the concept
C have any instances in models of the ontology T?” (satisfiability of C), or “Is
the concept D more general than the concept C in models of the ontology T?”
(subsumption C v D), or “Does axiom Ψ logically follow from the ontology?”
(entailment of Ψ).

In addition to these reasoning services, fuzzy DLs also provide with greatest
lower bound queries (GLB). In the case of fuzzy DL, satisfiability questions
become of the form “Can the concept C have any instances with degree of
participation ./ n in models of the ontology T?”. Furthermore, the incorporation
of degrees in assertions makes the evaluation of the best lower and upper truth-
value bounds of a fuzzy assertion vital. The term of greatest lower bound of a
fuzzy assertion with respect to Σ was defined in [20]. Informally, greatest lower
bound queries are queries like “What is the greatest degree n that our ontology
entails an individual a to participate in a concept C?”.

FiRE uses the tableau algorithm of f-SHIN presented in [18], in order to
decide the key inference problems of a fuzzy ontology. Hence entailment queries
that ask whether our knowledge base logically entails the membership of an
individual to a specific concept and to a certain degree, are specified in the
Entailment inference tab (see Figure 1). Their syntax is the same as the one
used for the definition of a fuzzy instance. For example a statement of the form:

(instance michalis1539 (and Tall GoodLooking) > 0.8)

asks whether michalis1539 is Tall and GoodLooking to a degree greater than or
equal to 0.8. If there are assertions in the ABox of our Σ that satisfy this query
(i.e. there is a model for our ontology) then FiRE will return true.

On the other hand subsumption queries that are specified in the Subsumption
inference tab evaluate whether a concept is more general than another concept.
Their syntax is of the following form:

(concept1) (concept2)

6

where concept1 and concept2 are f-SHIN concepts. Let us assume that the
first concept is Father while the second concept is Male. Subsequently, assume
that Father has been defined in the TBox using an equivalence axiom as follows:
Father ≡ MaleuMiddleAged. Then, the following subsumption query will always
return true since Father will always be (in all models) a sub-concept of Male.

(Father) (Male)

Additionally, the user can perform a global concept classification procedure
presenting the concept hierarchy tree in the Classification tab of the output
panel.

Finally, FiRE supports GLB queries, which are evaluated by FiRE by per-
forming entailment queries. During this procedure a set of entailment queries
is constructed consisting of an entailment query for every degree contained in
the ABox, using the individual and the concept of interest. These queries are
performed using the binary search algorithm to reduce the degrees search space,
resulting the GLB. The syntax of GLB queries is of the form:

individual (concept)

where concept can be any f-SHIN -concept. In order to illustrate the operation
of the GLB service we will present a trivial example using an atomic concept.
Let the following ABox (in FiRE syntax)

(instance michalis1539 Tall > 0.8)

(instance maria231 GoodLooking > 0.6)

(instance nikos Male > 1)

(instance nikos Tall > 0.9)

We want to evaluate the GLB of individual michalis1539 in the concept
Tall. In FiRE this is specified by issuing the query michalis1539 Tall. Then,
the system proceeds as follows: Firstly, all the degrees that appear in ABox are
sorted. FiRE then performs entailment queries for the individual michalis1539
with the concept Tall, using the binary search algorithm. This procedure is re-
peated until the entailment query is unsatisfiable. The greatest degree found
before unsatisfiability is the greatest lower bound. In this example the following
entailment queries are performed with the indicated results in order to evaluate
that the greatest lower bound of michalis1539 participating in concept Tall is
0.8.

(instance michalis1539 Tall > 0.5) TRUE
(instance michalis1539 Tall > 0.8) TRUE
(instance michalis1539 Tall > 1) FALSE

Finally, FiRE offers the possibility to perform a global GLB for the whole
fuzzy knowledge base. Global GLB evaluates the greatest lower bound degree of
all combinations of individuals and concepts in Σ.

7

4 Storing and Querying a Fuzzy Knowledge Base

In the current section we will present how FiRE stores and queries fuzzy knowl-
edge. More precisely in the proposed architecture a triple-store is used as a back
end for storing and querying RDF triples in a sufficient and convenient way,
while the reasoner is the front end, which the user can use in order to store and
query a fuzzy knowledge base. In that way, a user is able to access data from a
repository, apply any of the available reasoning services on this data and then
store back in the repository the implicit knowledge extracted from them.

Many triple-store systems have been developed in the context of the Semantic
Web, like Sesame2, Kowari3, Jena4 and more. These provide persistent storage of
ontology data as well as querying services. In our approach FiRE was integrated
with Sesame (Sesame 2 beta 6), an open source Java framework for storing and
querying RDF/RDFS data. Sesame supports two ways of storing RDF data
(called RDF Repositories). The first is the in-memory RDF Repository, which
stores all the RDF triples in the main memory, while the second one is the native
RDF Repository, which stores the RDF triples on the hard disk and uses B-Trees
to index and access them.

4.1 Storage of a Fuzzy Knowledge Base

In order to use a triple-store for storing a fuzzy knowledge without enforcing any
extensions on it, we needed to find a way to serialize fuzzy knowledge into RDF
triples. For that purpose a fuzzy-OWL to RDF mapping was required, similar to
the one provided in the OWL abstract syntax and semantics document [14]. In
previous works Mazzieri and Dragoni [12] used RDF reification in order to store
the membership degrees. However it is well-known that reification has weak,
ill-defined model theoretic semantics and its support by RDF tools is limited.
In another approach, Vaneková et al. [23] suggest the use of datatypes, but we
argue that the use of a concrete feature like datatypes to represent abstract
information such as fuzzy assertions is not appropriate.

Consequently, we were lead to propose a new way of mapping fuzzy-OWL into
RDF triples. The technique makes use of RDF’s blank nodes. First, we define
three new entities, namely frdf:membership, frdf:degree and frdf:ineqType

as types (i.e. rdf:type) of rdf:Property.

Using these new properties together with blank nodes we can represent fuzzy
instances. Let’s assume for example that we want to represent the assertion
〈(michalis1539 : Tall) ≥ 0.8〉. The RDF triples representing this information are
the following:

2 http://www.openrdf.org/
3 http://www.kowari.org/
4 http://jena.sourceforge.net/

8

region1 frdf:membership :michalis1539membTall .
:michalis1539membTall rdf:type Tall .
:michalis1539membTall frdf:degree “0.8^^xsd:float” .
:michalis1539membTall frdf:ineqType “=” .

where :michalis1539membTall is a blank node used to represent the fuzzy
assertion of michalis1539 with the concept Tall.

Mapping fuzzy role assertions, however, is more tricky since RDF does not
allow for blank nodes in the predicate position. To overcome this issue we de-
fine new properties for each assertion; for example, the fuzzy role assertion
〈(michalis1539,maria1343) : isFriendOf ≥ 0.7〉 is mapped to

michalis1539 frdf:p1p2isFriendOf maria1343 .
frdf:p1p2isFriendOf rdf:type isFriendOf .
frdf:p1p2isFriendOf frdf:degree “0.7^^xsd:float” .
frdf:p1p2isFriendOf frdf:ineqType “=” .

It is worth mentioning at that point that recently a fuzzy ontology represen-
tation has been proposed by Bobillo et. al [4] that it could be also used for the
RDF serialization.

4.2 Fuzzy queries

One of the main advantages of persistent storage systems, like relational databases
and RDF storing systems, is their ability to support conjunctive queries. Con-
junctive queries generalize the classical inference problem of realization of De-
scription Logics [1], i.e. “get me all individuals of a given concept C”, by allowing
for the combination (conjunction) of concepts and roles. Formally, a conjunctive
query is of the following form:

q(X)← ∃Y .conj(X,Y) (1)

or simply q(X) ← conj(X,Y), where q(X) is called the head, conj(X,Y) is
called the body, X are the distinguished variables, Y are the existentially quanti-
fied variables called non-distinguished variables, and conj(X,Y) is a conjunction
of atoms of the form A(v), R(v1, v2), where A, R are concept and role names,
respectively, and v, v1 and v2 are individual variables in X and Y or individuals
from the ontology.

Since in our case we extend classical assertions to fuzzy assertions, new meth-
ods of querying fuzzy information are possible. More precisely, in [13] the authors
extend ordinary conjunctive queries to a family of significantly more expressive
query languages, which are borrowed from the fields of fuzzy information re-
trieval [6]. These languages exploit the membership degrees of fuzzy assertions
by introducing weights or thresholds in query atoms. In particular, the authors
first define conjunctive threshold queries (CTQs) as:

9

q(X)← ∃Y.
n∧
i=1

(atomi(X,Y) ≥ ki) (2)

where ki ∈ [0, 1], atomi(X,Y) represents either a fuzzy-DL concept or role and
all ki ∈ (0, 1] are thresholds. As it is obvious those answers of CTQs are a matter
of true or false, in other words an evaluation either is or is not a solution to a
query.

The authors also propose General Fuzzy Conjunctive Queries (GFCQs) that
further exploit fuzziness and support degrees in query results. The syntax of a
GFCQ is the following:

q(X)← ∃Y.
n∧
i=1

(atomi(X,Y) : ki) (3)

where atomi(X,Y) is as above while ki is the degree associated weight. As
shown in [13], this syntax is general enough to allow various choices of seman-
tics, which emerge by interpreting differently the degree of each fuzzy-DL atom
(atomi(X,Y)) with the associated weight (ki). In what follows, we give some ex-
ample of the semantic functions for conjunctions and degree-associated atoms.

1. Fuzzy threshold queries: As we mentioned earlier in a conjunctive thresh-
old query an evaluation either satisfies the query entailment or not, thus
providing only crisp answers. A straightforward extension will be instead
of using crisp threshold we can use fuzzy ones with the aid of fuzzy R-
implications. Hence, let a t-norm (t) as the semantic function for conjunc-
tions and R-implications (ωt) as the semantic function for degree-associated
atoms, we get fuzzy threshold queries, in which the degree of truth of qF
under I is

d = sup
S′∈∆I×...×∆I

{tni=1 ωt(ki, atom
I
i (v̄)[X 7→S,Y 7→S′])}.

Given some S′, if for all atoms we have atomIi (v̄)[X 7→S,Y 7→S′] ≥ ki, since
ωt(x, y) = 1 when y ≥ x [9], we have d = 1; this corresponds to threshold
queries introduced earlier.

2. Traditional conjunctive queries [21]: These are the traditional conjunc-
tive queries of the form 1, but instead of classical (boolean) conjunction
between the atoms of the query we use the semantics of a t-norm. Then, the
degree of truth of qF under I is:

d = sup
S′∈∆I×...×∆I

{tni=1 atom
I
i (v̄)[X 7→S,Y 7→S′]}.

It is worth noting that this query language is a special case of the fuzzy
threshold query language, where all ki = 1 and since ωt(1, y) = y [9].

3. Fuzzy aggregation queries: Another example of semantics for GFCTs
would be to use fuzzy aggregation functions [9]. For example, let G(x) =

10

∑n
i=1 xi, as a function for conjunctions and a(ki, y) = ki∑n

i=1 ki
∗ y as the

semantic function for degree-associated atoms. Then we get an instance of
fuzzy aggregation queries, in which the degree of truth of qF under I is

d = sup
S′∈∆I×...×∆I

∑n
i=1 ki ∗ atomIi (v̄)[X 7→S,Y 7→S′]∑n

i=1 ki
.

4. Fuzzy weighted queries: If we use generalised weighted t-norms [5] as the
semantic function for conjunction, we get fuzzy weighted queries, in which
the degree of truth of qF under I is

d = sup
S′∈∆I×...×∆I

{
n

min
i=1

u(k − ki, t(k, atomIi (v̄)[X 7→S,Y 7→S′]))},

where k = maxni=1 ki and u is a t-conorm (fuzzy union), such as u(a, b) =
max(a, b). The main idea of this type of queries is that they provide an
aggregation type of operation, on the other hand an entry with a low value
for a low-weighted criterion should not be critically penalized. Moreover,
lowering the weight of a criterion in the query should not lead to a decrease of
the relevance score, which should mainly be determined by the high-weighted
criteria. For more details see [5].

4.3 Fuzzy queries using FiRE

All of the above mentioned queries have been implemented in FiRE by using the
SPARQL [15] query language for RDF. The queries are translated into SPARQL
and are then issued on Sesame. A user can specify such queries using the Queries
inference tab, and in the case of generalized fuzzy conjunctive queries a choice
of the above mentioned semantics is possible.

Example 3. The following is a threshold query:

x,y <- Father(x) >= 0.8 ^ isFriendOf(x,y) >= 1.0

^ Teacher(y) >= 0.7

Queries consist of two parts: the first one specifies the variables for which their
bindings with individuals from the ABox will be returned as an answer, while
the second one states the condition that has to be fulfilled for the individuals.
The above query asks for all individuals that can be mapped to x and y, such
that the individual mapped to x will be a Father to a degree at least 0.8, and
then, also participate in the relation isFriendOf (to a degree 1.0) with another
individual that y is mapped to, which also belongs to the concept Teacher to a
degree at least 0.7.

The query is firstly converted from the FiRE conjunctive query syntax to
the SPARQL query language. Based on the fuzzy OWL syntax in triples that we
have defined previously, the query of Example 3 is as follows in SPARQL. (The
query results are evaluated by the Sesame engine and visualized by FiRE.)

11

SELECT ?x WHERE {

?x frdf:membership ?Node1 .

?Node1 rdf:type ?Concept1 .

?Node1 frdf:ineqType ?IneqType1 .

?Node1 frdf:degree ?Degree1 .

FILTER regex (?Concept1 , "CONCEPTS#Father")

FILTER regex (?IneqType1 ,">")

FILTER (?Degree1 >= "0.8^^xsd:float")

?BlankRole2 frdf:ineqType ?IneqType2 .

?BlankRole2 frdf:degree ?Degree2 .

?BlankRole2 rdf:type ?Role2 .

?x BlankRole2 ?y .

FILTER regex (?Role2 , "ROLES#isFriendOf")

FILTER regex (?IneqType1 ,">")

FILTER (?Degree2 >= "1^^xsd:float")

?y frdf:membership ?Node3,

?Node3 rdf:type ?Concept3 .

?Node3 frdf:ineqType ?IneqType3 .

?Node3 frdf:degree ?Degree3 .

FILTER regex (?Concept3 , "CONCEPTS#Short")

FILTER regex (?IneqType1 ,">")

FILTER (?Degree1 >= "0.7^^xsd:float")

}

Example 4. GFCQ are specified using the symbol “:” followed by the importance
of participation for each condition statement. For example, we can ask for female
persons having LongLegs and BeautifulEyes and rank higher those with larger
degree for the latter:

x <- Female(x):1 ^ LongLegs(x) : 0.6 BeautifulEyes(x) : 0.8

In the case of GGCQs the operation is different. The SPARQL query is
constructed in a way that retrieves the participation degrees of every role or
concept used in the atoms criteria, for the results that satisfy all of the atoms.
The participation degrees retrieved for each query atom together with its weight
are then used by FiRE for the ranking procedure of the results based on the
selected semantics. An excerpt of the SPARQL query for Example 4 follows.

SELECT ?x ?Degree1...

WHERE {

?x frdf:membership ?Node1 .

?Node1 rdf:type ?Concept1 .

?Node1 frdf:ineqType ?IneqType1 .

?Node1 frdf:degree ?Degree1 .

12

FILTER regex (?Concept1 , "CONCEPTS#Female")

FILTER regex (?IneqType1 ,">")

FILTER (?Degree1 >= "0.0^^xsd:float")

...

}

Concluding this section, it should be noted that the proposed architecture
(clearly) does not provide a complete query answering procedure for f-SHIN ,
since queries are directly evaluated using the RDF triple-store and no f-SHIN
reasoning is involved. However, prior to storing the information in the triple-
store, FiRE applies a global GLB on the given ontology to materialize as much
implied information as possible. This makes the proposed architecture complete
for ground conjunctive queries, i.e., those queries that do not contain any non-
distinguished variables, and that additionally do not allow for complex roles in
the query body, i.e., roles that are transitive or inverse. On the one hand, this is a
common practice for many proposed practical systems such as Jena,5 OWLim,6

and DLEJena7, which first materialize implied knowledge and then store it into
a triple-store, aiming at sacrificing some completeness in favour of performance.
On the other hand, how to efficiently answer general conjunctive queries over
expressive DLs is also still an open question and most DL reasoners, such as
KAON28 and RacerPro9 mainly only support ground conjunctive queries.

5 Evaluation

In the current section we present our use case scenario and the methods used to
provide support through the previously presented architecture. First, we describe
the use case and we show how we have fuzzified a certain number of database
fields, in order to extract rich semantic information from numerical fields. Then
we describe the models’ knowledge base presenting the definitions of some new
interesting concepts, which can be used to assist the process of casting.

5.1 Models use case

The data were taken from a production company database containing 2140 hu-
man models. The database contained information on each model regarding their
height, age, body type, fitness type, tooth condition, eye-condition and color,
hair quality, style, color and length, ending with the hands’ condition. Apart
from the above, there were some additional, special-appearance characteristics
for certain models such as good-looking, sexy, smile, sporty, etc., introduced by
the casting producer. Finally for a minority of models, a casting-video was stored

5 http://jena.sourceforge.net/
6 http://www.ontotext.com/owlim
7 http://lpis.csd.auth.gr/systems/DLEJena/
8 http://kaon2.semanticweb.org/
9 http://www.racer-systems.com/

13

in the database. The main objective of the production company was to pick a
model, based on the above features, who would be suitable for a certain com-
mercial spot. Furthermore, depending on the spot type, inquiries about models
with some profession-like characteristics (like teacher, chef, mafia etc.) were also
of interest.

Despite the fact that the database information on each model was relatively
rich, there was great difficulty in querying models of appropriate characteristics
and the usual casting process involved almost browsing over a large part of the
database to find out for people matching the desired characteristics. One major
issue is that information in the database is not semantically organised. Moreover,
the organisation of the information in the various tables made searching for
combined characteristics impossible. Additionally, the crisp approach of querying
over databases makes it difficult to perform queries over fields such as age, height
and weight. If a person does not match exactly the specified criteria it will not
be returned by the database. Hence, casting people usually set those criteria
much lower than the wanted in order to avoid having a low recall and then
browsed through the returned set to exclude false positive answers. Our goal in
the current use case was to semantically enrich the database in order to make
this process more easy. Moreover, we aimed at using the fuzzy technologies to
alleviate the problem of precise matching of query criteria.

The process of constructing the fuzzy knowledge base was split into two parts.
The first part involved the generation of the fuzzy ABox. The characteristics
given by numerical values in the database, like height and age, were fuzzified
giving rise to new (fuzzy) concepts, while remaining characteristics were used
as crisp assertions. For example, the fuzzification process of the field age was
performed by setting fuzzy partitions depending on age and by defining the
concepts Kid, Teen, Baby, 20s, 30s, 40s, 50s, 60s and Old. As can be observed
from the age fuzzification graph, a model who is 29 years old participates in both
concepts 20s and 30s with degrees 0.35 and 0.65 respectively. Similarly for the
fuzzification of field height, the concepts Very Short, Short, Normal Height, Tall
and Very Tall were defined. In the case of the height, the fuzzy partition used
for female models was different from the one used for males, since the average
height of females is lower than that of males. The fuzzification graphs of age and
men’s height are shown in Figure 2. An example of the produced assertions is
shown in Example 5.

Example 5. An excerpt of the ABox for the model michalis1539:

〈michalis1539 : 20s ≥ 0.66〉, 〈michalis1539 : 30s ≥ 0.33〉,
〈michalis1539 : Normal Height ≥ 0.5〉,
〈michalis1539 : Tall ≥ 0.5〉, 〈michalis1539 : GoodLooking ≥ 1〉,
〈(michalis1539, good) : has− toothCondition ≥ 1〉,
〈good : Good ≥ 1〉

14

Fig. 2. Fuzzification graphs

5.2 The fuzzy knowledge base

In order to permit knowledge-based retrieval of human models we have imple-
mented an expressive terminology for a fuzzy knowledge base. The alphabet of
concepts used for the fuzzy knowledge base consists of the features described
above while some characteristics like hair length, hair condition etc. were repre-
sented by the use of roles. The most important of roles and concepts are shown
below. In the concept set the concept features are highlighted in bold.

The set of individuals consist of the models name along with an ID.
The effective extraction of implicit knowledge from the explicit one requires

an expressive terminology capable of defining higher concepts. In our case the
higher domain concepts defined for human models lie into five categories: age,
height, family, some special categories and the professions. Hence, the profes-
sion Scientist has been defined as male, between their 50s or 60s, with classic
appearance who also wears glasses. In a similar way we have defined 33 domain
concepts; an excerpt of the TBox can be found in Table 3.

5.3 Results

All the experiments were conducted under Windows XP on a Pentium 2.40 GHz
computer with 2. GB of RAM.

The described fuzzy knowledge base was used in the evaluation of our ap-
proach. Implicit knowledge was extracted using the greatest lower bound service
of FiRE, asking for the degree of participation of all individuals, in all the defined
domain concepts. The average number of explicit assertions per individual was
13 while the defined concepts were 33, that together with the 2140 individuals
(i.e entries of the database) resulted to 29460 explicit assertions and the extrac-
tion of 2430 implicit. These results, together with concept and role axioms, were
stored to a Sesame repository using the proposed fuzzy OWL triples syntax to
form a repository of 529.926 triples.

The average time for the GLB reasoning process and the conversion of explicit
and implicit knowledge to fuzzy OWL syntax in triples was 1112 milliseconds.

15

Concepts

Gender: Male, Female
Height: Very Short, Short, Normal Height, Tall, Very Tall
Age: Baby, Kid, Teen, 20s,30s, 40s, 50s, 60s, Old
Body Type: Fat, Normal, Perfect, Plum, Slim
Fitness: Fit, Unfit, PerfectFitness
Hair Length: Long, Medium, Shaved, Tonsure, Bold
Hair Color: Black, BrownLight, Brown, BlondLight, Grey, BlondDark,

BlondRed, BrownRed, Blond, Red, White, Brown− Grey,
2− Colour, Platinum, Black− Grey

Hair Style: Wavy, Straight, Curly, Extreme, Rasta, Frizy
Hair Quality: Natural, Dyed, Highlights
Eyes Color: Green, Blue, BlueGray, Hazel, BlueGreen
Eyes Condition: Healthy, NotHealthy, Glasses, ContactLenses
Tooth Condition: MissingTooth, Brace, Good, Bad, MissingTeeth
Hands Condition: Excellent, Average
Special Characteristics: Sexy, GoodLooking, Smile, Sporty, Ugly, Serious, Funny,

Tough, Aristocrat, Artistic, Folklor, Romantic, Elegant,
Classic, CleanCut, Underground

Roles

has− hairLength, has− hairColour, has− eyeColor, has− eyeCondition, has− handsCondition

Table 2. Concepts and Roles defined for the various characteristics (fields in the
database)

The time required for uploading the knowledge to a Sesame repository depends
on the type of repository (Memory or Native) and also on repository’s size. Based
on our experiments, we have observed that the upload time is polynomial to the
size of the repository but without significant differences. Therefore, the average
minimum upload time to an almost empty repository (0-10.000 triples) is 213
milliseconds while the average maximum upload time to a full repository (over
500.000 triples) is 700 milliseconds.

FiRE and Sesame were also tested on expressive fuzzy queries. We have used
the following set of test queries:

q1 : x← Scientist(x)

q2 : x← Father(x) ≥ 1 ∧ Teacher(x) ≥ 0.8

q3 : x← Legs(x) ≥ 1 ∧ Eyes(x) ≥ 0.8 ∧ 20s(x) ≥ 0.5

q4 : x← Scientist(x) : 0.8

q5 : x← Father(x) : 0.6 ∧ Teacher(x) : 0.7

q6 : x← Legs(x) : 0.8 ∧ Eyes(x) : 1 ∧ 20s(x) : 0.6

The performance in this case mainly depended on the complexity of the query
but also on the type and size of the repository. Queries using role names in com-
bination with large repositories can dramatically slow down the response. Table
4 illustrates the response times in milliseconds using both types of repositories
and different repository sizes. Repository sizes was set by adjusting the number

16

T = {MiddleAged ≡ 40s t 50s,
TallChild ≡ Child u (Short t Normal Height),

Father ≡ Male u (30s tMiddleAged),
Legs ≡ Female u (Normal Height t Tall)

u(Normal t Perfect) u (Fit t PerfectFitness),
Teacher ≡ (30s tMiddleAged) u Elegant u Classic,

Fisherman ≡ Male u Folklor u (MiddleAged t ThirdAge)
u∃has− handsCondition.(Average t Bad),

Military ≡ Male u Tough u Serious u BODY
u∃has− hairLength.(Short u Shaved),

Scientist ≡ Male u Classic u (50s t 60s)
uSerious u ∃has− eyeCondition.Glasses }

Butler ≡ Male u Aristocrat u Serious u Elegant
u(30s tMiddleAged) u ∃has− hairLength.Short ,

Butcher ≡ Male u Tough u Folklor u (30s t 40s) ,
TaxiDriver ≡ Folklor u (30s t 40s) ,

Secretary ≡ Female u Classic u Adult u Sexy ,
HouseCleaner ≡ Female u Folklor u (30s t 40s) }

Table 3. An excerpt of the Knowledge Base (TBox).

Query Native Memory
100.000 250.000 500.000 100.000 250.000 500.000

q1 1042 2461 3335 894 2364 3332

q2 1068 2694 3935 994 2524 3732

q3 3667 8752 21348 4267 7348 9893

q4 2562 4173 5235 3042 4543 6027

q5 4318 6694 8935 4341 7896 9306

q6 9906 29831 66251 12164 16421 20489

Table 4. Evaluation of the fuzzy queries (time in ms)

of assertions. As it can be observed, very expressive queries seeking for young fe-
male models with beautiful legs and eyes as well as long hair, a popular demand
in commercial spots, can be easily performed. It is worth mentioning that these
queries consist of higher domain concepts defined in our fuzzy knowledge base.

Since our system is not a sound and complete query answering system for
f-SHIN , the GLB service performed before uploading the triples is employed in
order to use as much of the expressivity of the language as possible producing
new implied assertions.

Furthermore, the results regarding query answering time are also very encour-
aging, at least for the specific application. Although, compared to crisp querying,
over crisp knowledge bases, our method might require several more seconds to
be answered (mainly due to post processing steps for GFCQs or due to very
lengthy SPARQL queries for CTQs) this time is significantly less, compared to
the time spent by producers on casting (usually counted in days), since they

17

usually have to browse through a very large number of videos and images before
they decide.

6 Conclusions

Due to the fact that imperfect information is inherent in many web-based appli-
cations, the effective management of imperfect knowledge is very important for
the realisation of the Semantic Web. In this paper, we have proposed an archi-
tecture that can be used for storing and querying fuzzy knowledge bases for the
Semantic Web. Our proposal which is based on the DL f-SHIN , integrates the
Sesame RDF triple-store (through a proposed serialisation of f-OWL to RDF
triples), the fuzzy reasoning engine FiRE and implements very expressive fuzzy
queries on top of them.

The proposed architecture was evaluated using an industrial application sce-
nario about casting for TV commercials and spots. The obtained results are very
promising from the querying perspective. From the initial 29460 explicit asser-
tions made by database instances for models, 2430 new implicit assertions where
extracted and both uploaded in the Sesame repository. In this way expressive
semantic queries like “Find me young female models with beautiful legs and eyes
as well as long hair”, that might have proved very difficult or even impossible
using the producing company’s database, are applicable through FiRE. This re-
veals both the strength of knowledge-based applications, and technologies for
managing fuzzy knowledge, since a wealth of the information of the databases,
like age, height, as well as many high level concepts of the specific application,
like “beautiful eyes”, “perfect fitness” and “scientist look” are inherently fuzzy.

As far as future directions are concerned, we intend to further investigate on
different ways of performing queries using expressive fuzzy description logics. Fi-
nally, it would be of great interest to attempt a comparison between the proposed
architecture and approaches using fuzzy DL-lite ontologies and approximation.

References

1. F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press, 2002.

2. F. Bobillo, M. Delgado, and J. Gómez-Romero. Crisp representations and rea-
soning for fuzzy ontologies. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 17(4):501–530, 2009.

3. F. Bobillo and U. Straccia. fuzzydl: An expressive fuzzy description logic reasoner.
In In Proceedings of the 17th IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2008), pages 923–930, 2008.

4. F. Bobillo and U. Straccia. Fuzzy ontology representation using owl 2. interna-
tional journal of approximate reasoning. International Journal of Approximate
Reasoning, 52(7):1073–1094, 2011.

5. A. Chortaras, Giorgos Stamou, and Andreas Stafylopatis. Adaptation of weighted
fuzzy programs. In Proc. of the International Conference on Artificial Neural
Networks (ICANN 2006), pages 45–54. Springer, 2006.

18

6. V. Cross. Fuzzy information retrieval. Journal of Intelligent Information Systems,
3:29–56, 1994.

7. J. Gmez-Romero F. Bobillo, M. Delgado. A crisp representation for fuzzy shoin
with fuzzy nominals and general concept inclusions. In In Proceedings of the 2nd
Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2006), 2006.

8. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the De-
scription Logic SHIQ. In David MacAllester, editor, CADE-2000, number 1831
in LNAI, pages 482–496. Springer-Verlag, 2000.

9. G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall, 1995.

10. Y. Li, B. Xu, J. Lu, and D. Kang. Discrete tableau algorithms for FSHI. In
Proceedings of the International Workshop on Description Logics (DL 2006), Lake
District, UK, 2006.

11. Thomas Lukasiewicz and Umberto Straccia. Managing uncertainty and vagueness
in description logics for the semantic web. Web Semant., 6(4):291–308, November
2008.

12. M.Mazzieri and A.F.Dragoni. A fuzzy semantics for semantic web languages. In
ISWC-URSW, pages 12–22, 2005.

13. J.Z. Pan, G. Stamou, G. Stoilos, and E. Thomas. Expressive querying over fuzzy
DL-Lite ontologies. In Proceedings of the International Workshop on Description
Logics (DL 2007), 2007.

14. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language
Semantics and Abstract Syntax. Technical report, W3C, Feb. 2004. W3C Recom-
mendation, URL http://www.w3.org/TR/2004/REC-owl-semantics-20040210/.

15. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF, 2006.
W3C Working Draft, http://www.w3.org/TR/rdf-sparql-query/.

16. Peter P. Schneider and Bill Swartout. Description-logic knowledge representation
system specification from the KRSS group of the ARPA knowledge sharing effort.
urlhttp://www.bell-labs.com/user/pfps/papers/krss-spec.ps, 1993.

17. N. Simou and S. Kollias. Fire : A fuzzy reasoning engine for impecise knowledge.
K-Space PhD Students Workshop, Berlin, Germany, 14 September 2007, 2007.

18. G. Stoilos, G. Stamou, V. Tzouvaras, J. Z. Pan, and I. Horrocks. Reasoning with
very expressive fuzzy description logics. Journal of Artificial Intelligence Research,
30(5):273–320, 2007.

19. G. Stoilos, U. Straccia, G. Stamou, and Jeff Z. Pan. General concept inclusions
in fuzzy description logics. 17th European Conference on Artificial Intelligence
(ECAI 06), Riva del Garda, Italy, 2006, 2006.

20. U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research, 14:137–166, 2001.

21. U. Straccia. Answering vague queries in fuzzy DL-Lite. In Proceedings of the 11th
International Conference on Information Processing and Management of Uncer-
tainty in Knowledge-Based Systems, (IPMU-06), pages 2238–2245, 2006.

22. U.Straccia and G.Visco. DLMedia: an ontology mediated multimedia information
retrieval system. In Proceeedings of the International Workshop on Description
Logics (DL 07), volume 250, Insbruck, Austria, 2007. CEUR.

23. V. Vaneková, J. Bella, P. Gurský, and T. Horváth. Fuzzy RDF in the semantic web:
Deduction and induction. In Proceedings of Workshop on Data Analysis (WDA
2005), pages 16–29, 2005.

19

