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Abstract

Modeling and recognizing spatiotemporal, as opposed to static input, is a

challenging task since it incorporates input dynamics as part of the problem.

The vast majority of existing methods tackle the problem as an extension

of the static counterpart, using dynamics, such as input derivatives, at fea-

ture level and adopting artificial intelligence and machine learning techniques

originally designed for solving problems that do not specifically address the

temporal aspect. The proposed approach deals with temporal and spatial

aspects of the spatiotemporal domain in a discriminative as well as cou-

pling manner. Self Organizing Maps (SOM) model the spatial aspect of the

problem and Markov models its temporal counterpart. Incorporation of ad-

jacency, both in training and classification, enhances the overall architecture

with robustness and adaptability. The proposed scheme is validated both

theoretically, through an error propagation study, and experimentally, on

the recognition of individual signs, performed by different, native Greek Sign

Language users. Results illustrate the architecture’s superiority when com-

pared to Hidden Markov Model techniques and variations both in terms of
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classification performance and computational cost.

Keywords: Spatiotemporal pattern recognition, Self Organizing Maps,

Markov Models, Probabilistic, Sign language recognition
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theory, 60J10 Markov chains

1. Introduction

Challenges and open issues concerning the applicability and extensibility

of approaches that aim at tackling spatiotemporal problems include resis-

tance to noise and variability (w.r.t. user/repetition gesture performance)

in the input channel, computational efficiency of the recognition scheme

adopted, large scale dictionary registration and recognition and dictionary

extension without the need of extensive retraining. Additionally, fusion of

multiple modalities and usage of arbitrary, or experimentally defined, initial-

ization parameters, such as the number of HMM states significantly influences

performance, generalization and adaptability of the majority of approaches.

In the proposed scheme, dedicated per modality classifiers are trained in

order to model different recognition aspects and are consequently fused at

decision level. This approach resembles Boosting of weak classifiers; however,

the classifiers used in the proposed scheme are suitable for tackling partic-

ular aspects of the recognition task and not weak, generic classifiers. Input

variability is addressed through the flexibility, provided by state transition

probability dispersion during Markov chains training and by optimal path

search performed during classification, both based on SOM neighborhood

properties. Spatial modeling is achieved using a SOM, trained with a repre-
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sentative sample of hand positions during signing. Spatial modeling is per-

formed once, annulling the need for exhaustive retraining when an unknown

class is introduced to the vocabulary. Given that the initial training set is

representative in terms of signing space distribution, no additional training

is required, since the signing space has been well modeled. The SOM nodes

neighboring relation, formed during training, consists a crucial characteristic

of the overall training and classification process. It is driving the adaptive

nature of the overall approach, tackling large scale vocabulary application is-

sues. A modified algorithm is used for calculating the Levenshtein distance,

also taking into account the similarity of sequence’s symbols, addressing the

problem of potential variation or noise in the input channel.

Sign Language (SL) is the linguistic system used by the hearing disabled

group, in order for the members of the group to communicate amongst them-

selves and also with hearing able people. Unlike spoken languages, sign lan-

guages are heavily based on iconicity to convey meaning. A morphosyntactic

structure is employed to express linguistic relations in 3D space. Concepts

are represented by signs, the basic grammatical unit of a sign language, form-

ing a visual natural language. Sign language analysis and recognition can be

viewed as a spatiotemporal problem incorporating the issues discussed pre-

viously, as well as a wide range of concepts. It includes pure image analysis

tasks, ranging from locating and tracking the face and hands of the signer

up to notions related with semantics and context, usually found in natural

language processing paradigms.

Validation of the proposed approach is performed through its applica-

tion to the SL analysis problem. At first we locate the head and hands of
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the signer in order to extract features related to both handshape and hand

location. Then, hand positions are used to train Self Organizing Maps, so

as to effectively represent the signing space, tackling the spatial aspect of

the recognition task. First order Markov chains, which use the SOM units

as states, are used to cope with the temporal aspect. Fusion of SOM and

Markov chains is performed by a greedy algorithm seeking to make a locally

optimal choice at each stage and converge to a global solution. Intra and

inter user spatial or performance variation and random errors in the input

stream are tackled by incorporating the neighborhood property of the mod-

els’ states in the overall classification process, thus enhancing the overall

architecture with robustness and adaptability. Separate classifiers, namely

Markov models for hand position and movement and Hidden Markov Models

for handshape features are fused on a decision level, in a committee-machine-

like setup, further ensuring stability of the recognition process. Application

of the proposed architecture has a low computational cost, making it there-

fore suitable for realtime applications. Experimental results, discussed in

section 4.2 and performed on two datasets, a synthetic and a Greek SL cor-

pus, illustrate the architecture’s superiority both in terms of classification

performance and computational cost over popular techniques such as Hid-

den Markov Models and their variations (Multi-Stream, Parallel and Product

HMMs). Initial validation on the synthetic dataset have been presented on

[9] and current work builds on this and enhances the approach with:

• transition probability spreading during training providing robustness

against noise and variability in the input channel

• incorporation of a novel distance calculation algorithm based on the
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Levenshtein distance metric which takes into consideration similarity

of symbols

• a distributed approach, tackling individual aspects of the handshape

such as boundary and region, aiming to model an extremely complex

pattern, such as the handshape, especially for 2D projection, and chal-

lenging, in terms of automatic recognition, finger configurations

• incorporation of multiple modalities and appropriate multimodal fu-

sion; the latter balances each stream’s contribution to the final decision

according to respective unimodal classification results

• extensive experimentation with datasets featuring native signers that il-

lustrate the architecture’s superiority to current state of the art schemes,

both in terms of classification performance and computational cost

.

The remaining of the paper is organized as follows: section 2 discusses

aspects, challenges and previous work related to automatic Sign Language

recognition, by critically reviewing each approach, bringing forth the focus

and the strong points of each article. Section 3 introduces the proposed ar-

chitecture and is roughly divided into the learning process (section 3.2) and

the classification process (section 3.6). The proposed approach is validated:

a) theoretically in section 3.6.1, by studying the propagation of error when a

random error is introduced in the input stream and b) experimentally in sec-

tion 4, by applying the learning and classification scheme on the Greek Sign

Language Corpus [17] featuring three native signers performing representa-

tive lemmata of the Greek Sign Language. Finally, the article is summarized
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in section 5 where future directions of the presented research work are also

discussed.

2. Machine learning and SL recognition

An abundance of automatic sign language recognition techniques can be

found in the literature, differentiating in terms of input streams, extracted

features, vocabularies, signer dependence, isolated or continuous recognition

[39] and [1]. The input stream can be either based on the use of motion

capture (direct-measure device) data gloves [53, 63] or consist of visual sig-

nals. Datagloves are quite expensive and intrusive, however they constitute

a robust and accurate way of capturing 3D hand location and finger flexion

in real time. Motion capture is used in [49] while time-of-flight camera is

employed in [21] and visual and device inputs are fused in [8]. In all ap-

proaches features are extracted from the gestured input stream mainly based

on position of the dominant right hand. Usually, when motion capture is em-

ployed, the 3D position is included in the features set, but for vision based

approaches, only the 2D projection of the hand position can be extracted and

3D can only be calculated in conjunction with stereo vision. The position

of the hand is relative to some reference point, for example, the head of the

user or his/her back in case of data capturing by placing an additional sensor

on the back of the signer. Another important issue on which automatic sign

language recognition is based on, is the vocabulary size of the experimen-

tal corpora. In most cases, the experimental dataset is composed of a quite

restricted number of signs (≈ 50); only in a small number of cases this is

extended [15, 22, 21, 63]. Additionally, signer dependence and sign variation
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are decisive aspects when trying to implement architectures into real world.

Signer independence, and ways to tackle both intersigner variation in the

performance of the signs and grammatical idioms of signer groups, are vital

for achieving good recognition rates in an arbitrary setting by an unregistered

user.

An important issue in the wide research area of automatic sign language

recognition is the vocabulary size of the experimental corpora used to verify

the robustness and generalization capabilities of the proposed systems, as

can be seen in Table 1. Most articles construct their experimental dataset

using a quite restricted number of signs, varying from 10 to 65, while others

extend their vocabulary, to what would be a more representative sample of

the respective sign language, but still use between 164 and 274 signs. The ar-

ticles that approximate a universal recognizer are those who reach impressive

vocabulary sizes that enumerate up to more than 5000 signs. Publications

belonging to the last group focus mainly on large vocabulary recognition and

issues related to a complete, real time system that could support automatic

sign language recognition. The number of repetitions performed for each vo-

cabulary entry is also important, as is the training/testing sample ratio. Typ-

ically each sign is repeated 5-10 times e.g.[7, 11, 12, 32, 36, 54, 52, 65], while

there are cases where more [34, 26, 29] or less [3, 18, 30, 44, 55] repetitions

are performed for each lemma in the restricted, experimental vocabulary.

Residing in the heart of each recognition system, the classification archi-

tecture is considered the most important one. Although a plethora of works

propose a single off the shelf classifier, there is also a significant number of

approaches that utilize a combination of classification schemes. Such schemes
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Size Work

10 < Size < 65 [2, 5, 4, 6, 8, 13, 14, 26, 27, 28, 30, 34, 40, 42, 43, 44, 45,

48, 50, 51, 53, 55, 56, 59, 62]

164 < Size < 274 [3, 7, 11, 12, 18, 25, 32, 41, 54, 65]

Size > 5000 [15, 19, 20, 24, 23, 22, 21, 31, 36, 52, 64, 63]

Table 1: Vocabulary Size

include HMM and variants, Neural Networks, Boosting Techniques, Linear

Models, Tree structures, Clustering and State Sequence Comparison.

2.1. HMM and variants

HMMs can model spatiotemporal information in a natural way. These

models have the ability to compensate time and amplitude variances, as has

been proven in speech and character recognition. As a result, this approach

dominates, in terms of popularity in Sign Language Recognition. The draw-

back in this case is the need to collect extensive amounts of data and the

demanding processing time to estimate corresponding HMM parameters. Ad-

ditionally, the architecture’s sensitivity to arbitrary or experimentally defined

architectural decisions (e.g. number of states) constitutes another weakness

of the approach. Finally, in signer independent scenarios, HMMs seem to fail

to adapt and generalize well [65].

Conventional HMMs [6, 8, 13, 65] have been used extensively while inter-

esting variants have been also presented. Fang, Gao et al. have been very

active and published several articles on sign language recognition adopting

HMM variants. Temporal clustering with k-means has been proposed to
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cluster the temporal sequence of the vectors. Dynamic Time Warping is

employed as the distance computation criterion since it can measure the dis-

tance between two temporal sequences. This is achieved by aligning different

time signals and normalizing them to a warping function through search

for the minimal accumulating distance and the associated warping path. A

SOFM/SRN/HMM model [22] has been used for signer-independent contin-

uous SLR. Wang et al. also deal with the issue of scaling with increasing

vocabulary sizes based on phoneme recognition process; in [55] they cope

with this issue utilizing a homography like scheme where each sign is repre-

sented as a series of tiny hand motions and segmented into atomic units of

3 consecutive frames. Zhang et al. in [64] incorporate a Tied-Mixture Den-

sity Hidden Markov Model which speeds up recognition without significant

loss of recognition accuracy. Factorial HMMs and Coupled HMMs model

several processes occuring in parallel, while Parallel HMMs [49] model par-

allel processes independently. In the above, training times are polynomial

to the number of states, and linear to the number of parallel processes and

the decoding algorithm is a token passing instead of the standard Viterbi

algorithm.

2.2. Boosting

Boosting is a general method that can be used for improving the accuracy

of a given learning algorithm. More specifically, it is based on the principal

that a highly accurate or ”strong” classifier can be produced through lin-

ear combination of many inaccurate or ”weak” classifiers. In general, the

performance of an individual weak classifier may be only slightly better than

random. Cooper and Bowden in [11] present an approach to large lexicon sign
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recognition that does not require tracking, based on the AdaBoost boosting

algorithm to detect present visemes. The same authors in [12] experiment

with different boosting classifiers, such as AdaBoost and AdaPlusBoost, us-

ing volumetric features as a natural extension of haar like features into the

temporal domain. Bowden, Ong, Kadir et al. published several articles

[7, 38, 32] on hand detection, hand shape and sign language recognition,

focusing on boosted classifiers, minimal training and large vocabulary gen-

eralization. In [10] the same researchers present an unsupervised method to

recognise signs from subtitles.

2.3. Neural Networks

Neural Networks have been used extensively within Sign Language recog-

nition. Vamplew and Adams in [48] introduced SLARTI, a modular ar-

chitecture consisting of multiple feature-recognition neural networks and a

nearest-neighbour classifier. Yang et al. in [59] presented a feature extraction

algorithm based on multiscale segmentation and used the resulting trajec-

tories to classify gestures based on a time-delay neural network. Shanableh

et al. [42] employed k-nearest neighbor and Bayesian classifier to recognize

isolated Arabic Sign Language, while Yang [61] added fuzziness to a BP net-

work. Wang and Gao [54], considering the speed and performance of isolated

word recognition systems, presented a Semi-Continuous Dynamic Gaussian

Mixture Model recognition technique.

2.4. Discussion on SL automatic recognition

While HMMs are widely used in Sign Language and gesture recognition,

such an approach has been proven inadequate in many cases [39]. In HMM
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training, each word model is estimated separately, using the corresponding

labeled training observation sequences, without considering data that are

close, but do not match the patterns exactly (i.e. other models with similar

behavior). Moreover, arbitrarily or experimentally defined design parame-

ters, such as the number of states, make HMMs unstable and sensitive to

modifications of these parameters. Additionally, Dynamic Time Warping

and HMMs are intrinsically related with each other, while based on own

features. DTW searches for the best alignment path while the HMMs like-

lihood function sums the density along all possible alignment paths. DTW

can provide a higher level of granularity in the movement path compared to

HMMs. Lichtenauer et al. in [35] present an interesting combination DTW

and HMMs with discriminative classifiers.

It should be mentioned that recognition rates of either isolated or continu-

ous signing are merely an indicative and quite subjective criterion for method

comparison due to the many different parameters and uncontrolled variables

used. Furthermore, the use of different datasets by researchers makes the

comparisons more difficult. Even in cases when the same corpora are used,

such corpora are not in the public domain or they are published under some

copyright restrictions.

3. The proposed scheme

The automatic spatiotemporal recognition scheme proposed here and

tested on the Sign Language application domain is described in detail in the

following. Section 3.1 introduces the overall approach while sections 3.2-3.5

and 3.6 discuss the modeling and classification process respectively. Interme-
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diate transformations and novel algorithms, aiming to tackle challenges that

are introduced by the spatiotemporal domain in general and SL in particular,

are presented in sections 3.3 to 3.5. Finally, the scheme is validated through

experimental results on a synthetic and a Greek Sign Language corpus of 118

representative lemmata, presented in section 4.

3.1. Feature extraction

Features required for training and testing the proposed approach are ex-

tracted based on the methodology described in [16]. The feature extraction

process uses monocular vision input and Geodesic Active Regions models,

enhanced with color and motion cues, which evolve to fit hand regions. The

extracted feature set includes hand coordinates (hand trajectories), shape

and region descriptors. Shape features are both boundary-based (Fourier de-

scriptors, Curvature features) and region-based (Moments, Moment-Based

Features). Region based features include the shape area, its eccentricity,

compactness, orientation and the minor to major axis length ratio. These

features are used to train classifiers, depicting position, direction and state

transition, the outputs of which are fused through appropriate boosting until

a final classification decision is reached. In case of an unlabeled sign instance,

all trained models are tested against the instance and resulting probabilities

are fused using weights calculated according to the isolated recognition rates,

providing the final recognition outcome.

3.2. Modeling Sign Language spatial and temporal aspects

In Sign Language analysis the input space can be modeled as a cube

surrounding the signer in which all signs take place. In the following, this
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space is modeled using a Self Organizing Map, for each hand. The trained

SOM is using a representative sample of the hand positions during signing.

We utilize SOM as a clustering tool to derive a more abstract representation

of the signing space and define neighboring relations between the map’s nodes

based on training. Neurons are allowed to alter their weights representing

similarities in the map. Learning refers to both weights and node neighboring

relations. This neighboring relation consists a crucial characteristic of the

overall training and classification process which is the basis of the adaptive

nature of the overall approach.

Hand coordinates are first normalized with respect to size and position

(head diagonal and center respectively), independently of the sign class they

belong to and the order during sign performance. Then they are used to

train an hexagonal, two-dimensional grid SOM, through batch mode learn-

ing. Normalization also ensures that the input information stream is in-

variant to both the position of the signer in front of the camera and to the

anatomical individuality of the signer. SOM training is performed only once

and not individually for every class. This feature is quite advantageous be-

cause it reduces the training time, the required storage resources and adds to

the system design’s simplicity. Assuming that an adequate number of sign

instances have been used to train the SOM to represent the signing space,

no additional training is required whenever a new class is introduced to the

vocabulary.

The Unified distance matrix, or U-matrix, is one of the most popular

methods of displaying SOMs and visualizing the distance between adjacent

units in the map. When the samples are not similar, the distance between
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the corresponding map units is shown on the U-matrix display with warm

colors. Trained SOMs U-matrices for the right and left hand are shown in

Figure 1. The U-matrix for the left hand has been mirrored, in an attempt to

make the representation more intuitive, since hand coordinates are relative

to the head position in the specified frame. It is worth noticing that the

signing area for each hand has been uniformly mapped, especially in regions

that the appearance of the hand is frequent and coincide with areas of great

uniformity (blue areas).

Figure 1: Signing space as modeled by SOMs for the GSLC described in

section 4.2. U-matrices for right and left hand are illustrated.

3.3. Transformations and transitions

With the signing space modeled, each hand coordinate is assigned to

a respective Best Matching Unit (BMU) on the map, transforming a sign

instance G to a sequence of map units. The transformation is defined as:

T (G) = (u1, u2, . . . , ul) : ui = Wr(BMU(xi, yi)) (1)
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where Wr is a median filter over a window of map units with length r. G is

transformed to a new space model G
′
= N(T (G)), N being a function that

removes consecutive u values that are equal to each other. An additional

transformation OF (G) = {v1, v2, ..., vl−1} is also adopted, based on the opti-

cal flow sequence of each sign, v denoting direction vectors defined by con-

secutive sign trajectory points. Vectors OF (G) are first quantized, in order

to provide distinct direction states, and then smoothed using a median filter,

as in the position counterpart, resulting in transformation G
′′

= N(OF (G)).

In the proposed scheme, each sign instance G contributes to the training of

two sets of Markov Models Msom and Mof for position and direction modeling

respectively. The states of the Markov models belong to SOM states u for

Msom and quantized direction vectors v for Mof . These result in calculation

of transition probabilities and of respective initial state probabilities vectors

(πsom and πof ).

During training, the Markov transition probability matrix depends ad-

ditionally on the neighboring relation between states. Let us assume that

an actual transition between ui and uj occurs for a sign instance used for

training. Then, a number of transitions synapses are created from ui to uj,

as would be the obvious case, but additionally to all the neighbors of uj.

Figure 2 illustrates this process. Green colored node denotes ui, red one

uj and orange ones neighbors of uj. The weights of these synapses, which

finally affect the transition probability, are proportional to the neighboring

associations. Thus for the actual transition ui → uj the transition matrix is

updated using the following equation:
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Ttr(i, x) = Ttr(i, x) + NFuj
(x) (2)

Ttr is the transition matrix for the respective Markov model, NF the SOM

neighboring function and x the neighbors of uj. For the implementation of

the SOM, SOMTOOLBOX [47] was adopted, which features a som neighf

function that returns a MxM matrix containing neighborhood function val-

ues between all map units. Initially, Euclidean inter-unit distances between

the SOM units (Ud) of the map grid are calculated. A gaussian function

e−Ud/(2∗radius) is then applied to these distances (Ud). Ttr is updated as in 2

and is finally normalized so that row values sum to 1 for all row values corre-

sponding to states that are included in the training instances; self transitions

are excluded by assigning a value of zero to the respective cells of Ttr.

This procedure ensures that if the state sequence in the testing dataset

contains transitions that have not appeared in the training sequences, they

will still be included in the search for the best scoring Si (see section 3.6,

Equation 5) since they will have a non zero transition probability. This

enhances architecture’s robustness against user variability and minimizes the

requirement for extensive training sets.

3.4. A modified Levenshtein distance

An additional model that is used in the proposed method for each sign

class is the Generalized Median Mg. It is defined as a sequence that consists

of a combination of set’s symbols that minimizes the sum of distances to every

string of the set [33]. In order to define Mg we employ a modified version of

the Levenshtein distance L as the distance metric, Mg = arg ming

∑
L(g, G

′
),

16



Figure 2: Transitions based on neighboring relations. Transitions from the

Green colored node (source node ui) to the Orange nodes, who are neighbors

of the Red node (target node uj) will now have a non-zero probability in Ttr.

g being a gesture belonging to the training set for a specific sign class. This

modified version of the Levenshtein distance L is also employed during clas-

sification, as will be discussed in section 3.6.

This variation of the Levenshtein distance calculation algorithm (Algo-

rithm 2) incorporates neighboring relations between SOM nodes. The latter

are the symbols of the two sequences in question and are used to assign a

cost for each symbol substitution and is also employed during the classifi-

cation stage. The original cost assignment algorithm is shown in Algorithm

1. It takes place during the comparison of each symbol (str1[i], str2[j]) of

sequences str1 and str2 in order to decide which action has minimal cost.

Finally, the Levenshtein distance is defined by the bottom-right cell of the
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constructed matrix d.

Algorithm 1 Original Levenshtein distance cost calculation

if str1[i] = str2[j] then

cost := 0

else

cost := 1

end if

d[i, j] := minimum( d[i − 1, j] + 1, //deletion d[i, j − 1] + 1, //insertion

d[i− 1, j − 1] + cost//substitution )

Algorithm 1 does not, however, take into account how similar symbols

str1[i], str2[j] are, when such a similarity measurement actually exists in the

symbol set. In the case of the SOM, which is trained to map hand coordi-

nates, this similarity exists between the nodes that are the actual symbols

of the set constituting each sequence. The cost for the substitution action

should be lower, in such cases that the two symbols participating in the sub-

stitution are close in terms of the SOM neighboring function; it should be

higher if the two nodes are not neighbors. In our approach Algorithm 2 is

proposed in order to tackle issues similar to the one described above:

According to this algorithm the cost for a substitution is proportional to

the neighboring relation of the two participating nodes (symbols in the se-

quences). A similar modification can be applied to the Damerau-Levenshtein

distance metric, for the case of transposition of two symbols; however, this is

a case quite rare in sign language analysis. It should be mentioned that the

neighboring relation of the nodes influences two other actions in the Leven-

shtein distance calculation: deletion and insertion. The cost of each action is

18



Algorithm 2 Modified Levenshtein distance cost calculation for symbol sub-

stitution

if str1[i] = str2[j] then

cost := 0

else

cost := 1−NFstr1[i](str2[j])

end if

equal to the neighboring relationship between the ith node, being inserted or

deleted, and the preceding and successive nodes, i− 1 and i+1 respectively:

cost := 1− NFi(i− 1) + NFi(i + 1)

2
(3)

The mean Levenshtein distance (Lm) between the members of the set and

Mg is also calculated. This constitutes a way to measure variation within the

members of the set that will be used accordingly in the classification stage

(section 3.6) and is defined as:

Lm =

∑n
i=1 L(G

′
i, Mg)

n
(4)

n being is the number of training vectors for a specific class.

3.5. Modeling the handshape

Modeling the handshape during sign language analysis can be quite com-

plex, especially when the corresponding features are derived through monoc-

ular visual processing. This feature set refers to three sifferent aspects: palm

orientation, fingertip direction and finger joints arrangement. The set can
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however describe the fusion of all these three aspects and not each one sepa-

rately. It is, therefore, emphasized that this approach does not refer solely to

the arrangement of fingers, as is the case with most of the approaches based

on motion capture.

To tackle this problem, in our approach, we train continuous (mixtures

of three Gaussians), left-to-right Hidden Markov Models based on features

describing the handshape [46], which are: features describing the area of

the extracted hand (HMMhsa), Fourier descriptors (HMMhsf ), moments

(HMMhsm) and coefficients of the Curvature Cepstrum (HMMhsc), as can

be shown in Figure 3. These are utilized to model different combinations of

finger joint angles, palm orientation and fingertip direction.

Every HMM trained with different feature sets has a different number of

states. The number of states per aspect specific HMM was defined experi-

mentally. Indicative state numbers are: Position 7, RegionBased 5, Fouri-

erDescriptors 3, Moments 5, CepstrumCoeff 3. Again, this enforces the ar-

gument about HMMs inadequacy in terms of arbitrarily defined parameters.

3.6. Fusion of classifiers

During classification, the models presented earlier compute correspond-

ing participation probabilities. The latter are then fused at decision level,

following a weak classifier boosting approach. Let us consider a test sign pat-

tern g, belonging to an unknown class, transformed to g′ and g′′ as described

earlier in Section 3.3.

Based on the Msom and Mof , the probabilities P (g
′
) and P (g

′′
) of g

20



Figure 3: Hidden Markov Models based on features describing the handshape

belonging to class j are calculated as shown below:

P (g
′|Msom

j ) =

∏
i

Ssom
i

|g′|

P (g
′′|Mof

j ) =

∏
i

Sof
i

|g′′|

(5)

where Si are values representing an evaluation factor for each u or v value

with respect to Msom
j and Mof

j Markov models. Let us examine the case of

Ssom
i where a search is performed across all units of the map, for a unit

that combines a considerable transition probability from the previous state

with a relatively small distance onto the map grid from the current state
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(Equation 6). Intuitively, this search corresponds to the greedy aspect of the

classification algorithm since it constantly seeks the locally optimal, in terms

of proximity and transition probability, choice at each stage.

Ssom
i = max

z
(NF som

ui
(z)P (z|ui−i, M

som
j )) (6)

where NF som is derived in SOM training. NF of , used in Sof
i of Equation

5 is arbitrarily defined: a value of 1/2 is given to the closest direction neighbor

and 1/4 for the second closest neighbor in both directions. The winner unit

derived from the search is used as the previous state, in the next step.

According to the modified Levenshtein distance, an additional similarity

measurement Mgj
is introduced which corresponds to the distance of g′ to

the generalized median of each class:

P (g
′|Mgj

) =
Lmj

L(g′, Mgj
)

(7)

This can tackle the partial sign problem, where if the whole of a sign

instance is the starting part of a sign class then it would get high ranking

using just Msom and Mof .

Classification fusion is implemented by a weighted summation of the in-

dividual modalities of the handshape, as shown in Equation 8. a, f, m, c

correspond to different handshape feature sets, as shown in Figure 3. For

example HSa
g corresponds to area feature vector for sign instance g and

HMMhsa
j corresponds to the HMM trained with area features for sign class

j.

P (HSg|HMMj) =
∑

q∈[a,f,m,c]

wqP (HSq
g |HMM

hsq

j ) (8)
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The overall winner class is determined by the sum of the evaluation of

Equation 9 for both dominant and non-dominant hands. Each of the four

terms in the equation represents the participation of each separate modality

to classification of sign g in j (g ∈ j), one of the classes in the dictionary. Each

of the information channels is assigned a weight (wsom, wof , wL, wa, wf , wm, wc)

which derives from the recognition rate each channel achieves individually.

The notation of the weights is as following: som and of for the position and

direction Markov models respectively, L for the Levenshtein distance with

the Generalized Median and a, f, m, c for area, fourier, moments and cep-

strum HMMs respectively. The non-dominant hand is also assigned a weight

(< 1) since its participation in the decision making process is inferior to that

of the dominant hand.

arg max
j

(wsomP (g
′|Msom

j ) + wofP (g
′′|Mof

j ) + wLP (g
′|Mgj

) + P (HSg|HMMj))

(9)

3.6.1. Error Analysis

SOM uses several error measurement metrics to determine the mapping

quality. The simpler and most commonly evaluated measurement is the

cumulative quantization error e, which is the average distance D between N

input samples di and their respective best matching unit BMU .

e =
E

N
: E =

N∑

i=1

D(di, bmui) (10)

An alternative SOM error measurement, including the neighborhood in-

formation, is distortion, defined in Equation 11, in terms of the neighborhood
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function h(bmu(i), j) and prototype-data vector distance mj − x(i). In case

of a fixed neighborhood and discrete data, the distortion measure can be

interpreted as the energy function of the SOM which is minimized approxi-

mately. [57] proposes another entropy based SOM error metric EH defined

in 12 k is the total number of input samples and Mtotal is the total number

of SOM units.

DSOM =
∑

i

∑

j

h(bmu(i), j) ‖ mj − x(i) ‖2
(11)

EH = −
Mtotal∑

i=1

ei log ei

En =

k∑

j=1

distance(dj , mn)

en =
En

E

(12)

To perform an error analysis of the proposed system, let us focus on the

SOM decoding stage, and particularly on evaluating P (g
′|Msom

j and
∏
i

Ssom
i .

Let us investigate the effect of a random error δx, δy, of the hand point x, y

in trajectory g, on the evaluation of Equation 6. The trajectory point is now

x+δx, y+δy. a) If δx, δy is small so that BMU(x, y) = BMU(x+δx, y+δy),

no error is introduced, and thus propagated, in the decoding stage since it

is absorbed by the SOM. b) If δx, δy are large, then u
′
= BMU(x + δx, y +

δy) 6= BMU(x, y) = ui. Then Si changes and δSSOM
i ≈ NF som

ui
(u

′
). Since,

however, u
′

constitutes the new ui in the next transition, the error is not

propagated to the next steps of the recognition process.

The error analysis focuses on the SOM since the latter comprises the main
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contribution of the proposed architecture. HMM aspects, as error propaga-

tion, is not discussed throughout this article, since we do not present a novel

HMM methodology. Any errors produced by the HMM module will introduce

a respective, weighted error in the following fusion procedure.

4. Experimental Results

In order to validate the proposed mechanism we performed experiments

on two datasets: a synthetic one containing only 2D spatial information of

one hand and an actual Greek Sign Language corpus described in [17].

4.1. Synthetic corpus

This dataset consists of 30 gestures and 10 repetitions each. The set of

coordinates formed a dataset containing categories varying in gesture com-

plexity. For the synthetic dataset [9], experiments were conducted in order to

evaluate the recognition performance of the proposed method based only on

the position of one hand. Using all instances, for both training and testing

phases of the system, in an attempt to validate the system’s learning capa-

bilities, resulted in 100% recognition percentages. For an evaluation of the

generalization capabilities of the proposed method, another experiment was

executed using the 10-fold cross validation strategy. In this case the average

recognition rate was 93%. In order to compare the results of our system with

the most commonly used approach in the literature we implemented a HMM

based classifier. We trained one HMM per class. We used continuous left-

to-right models and a mixture of 3 Gaussian probability density functions.

During classification an instance was tested against all models and the one
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with the highest log-likelihood value was selected as the winner resulting an

average recognition rate of 86,36%.

4.2. Greek Sign Language Corpus

The corpus used for the second set of experimentation was the Greek

Sign Language Corpus (GSLC). All aspects of the corpus including corpus

design, content definition, recording and quality control, annotation, etc. are

described in detail by Efthimiou and Fotinea in [17]. From the GSLC dataset,

3 native signers were selected performing 3 repetitions of 118 representative

lemmata of the Greek Sign Language under controlled recording conditions

performing.

Initially, we have tested the proposed architecture against standard left-

to-right continuous HMMs with the number of states defined experimentally

so as to maximize the recognition rate. It is worth noting that the pro-

posed approach does not require such an arbitrary design decision, such as

the experimentally defined number of states in the HMM approach, and the

topology and transition matrix of the Markov models is determined auto-

matically without the need for manual, trial and error processes. The GSLC

dataset is by far more complicated than the first synthetic dataset, described

in section 4.1, since many of the signs differ only in the dominant handshape

and have the same spatial and movement characteristics. The recognition

rates for the two approaches can be seen in table 2.

The contribution of each stream in the final recognition rate can be ana-

lyzed as depicted in Table 3, while the handshape’s recognition rate analysis

using HMMs for each of the streams is shown at table 5. Additionally, table 4

demonstrates recognition rates on a dataset consisting a selection (over 90%)

26



Feature set HMM SOMM

Dominant Hand 61.12 73.41

Both Hands + direction 79.18 91.10

Table 2: Position based recognition rates

of the signs in GSLC. Table 2 shows the improvement caused by the incor-

poration of both hands and direction features compared to single handed,

position based features. Symbol set comparison (Levenshtein) is used both

for single and two handed recognition. The improvement due to the incor-

poration of Levenshtein is illustrated in Table 3 where the contribution of

the novel symbol set distance metric is evident by comparing respective rows

(second and third).

Feature set Recognition rate

Position (Dominant hand) 73.41

Position (Both hands) 83.30

Position (Both hands) + Direction + Levenshtein 91.10

Position (Both hands) + Direction + Levenshtein + Handshape 97.80

Table 3: Analysis of recognition rates for different feature sets

During an informal evaluation of the dataset in terms of how easily each

class would be recognized, two reviewers, one from the Greek deaf commu-

nity and the other being one of the authors of the article who had a good

understanding of the functionality of the proposed approach, inspected all

the repetitions of the performed signs by watching the recorded video section
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and plotting the extracted hand positions by the feature extraction process.

Consequently, each sign is assigned a rating depicting the recognition diffi-

culty caused by either signer inconsistent performance or by errors introduced

by the feature extraction process. It is worth noting that the 12 signs that

performed worst in terms of automatic recognition rate belonged to the top

15 of the rating given manually by the reviewers. The respective recognition

rates on the reduced dataset of 106 (118-12) are shown in table 4.

Feature set Recognition rate

Position (Dominant hand) 74.77

Position (Both hands) 88.10

Position (Both hands) + Direction + Levenshtein 95.05

Position (Both hands) + Direction + Levenshtein + Handshape 99.54

Table 4: Performance on a subset of GSLC

Feature set Recognition rate

Area 47.44

Fourier 36.67

Moments 36.82

Curvature 26.35

Fusion 55.1

Table 5: Analysis of recognition rate based on handshape features

Furthermore, we are willing to test how the proposed fusion process per-

forms against popular HMM approaches such as Multi-Stream, Parallel and
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Product variations designed to cope with multimodality and information

from multiple streams. The results for these HMM variations as well as all

of the experiments and results dealing with HMMs on the GSLC originate

from [46]. SOMM’s superiority in terms of efficiency, especially in demanding

problems such as signer-independent sign language recognition in GSLC, is

based on its adaptability both during training, due to the incorporation of

the neighboring characteristic as discussed in section 3.3, and during the de-

coding stage where the classification algorithm, presented in 3.6, constantly

seeks local maxima, in terms of proximity and transition probability.

Scheme Recognition rate

Multi-Stream HMM 92.27

Parallel HMM 92.45

Product HMM 93.64

SOMM 97.80

Table 6: Fusion Performance

All of the above experiments were performed using Matlab and SOM-

TOOLBOX [47] on a regular PC (2GHz Dual Core, 3GB RAM), using the

leave-one-out cross-validation method and the processing time required for

each step is shown in table 7. SOM size was defined taking into account prob-

lem complexity, classification performance, processing cost and spatial quan-

tization and resolution requirements based on linguistic signing space mod-

eling, resulting in a 10x10 and 20x20 SOM for the synthetic and the GSLC

corpus respectively. Modalities weights were assigned as described in section

3.6. More specifically, wsom = 0.83 for the GSL corpus, and wsom = 0.88 for
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the selected GSLC subset, denoting the position information channel impor-

tance according to unimodal recognition results (Table 3 and 4 respectively).

SOM training is the most demanding process in terms of processing time, but

this process is only performed once regardless of the number of classes. The

decoding stage varies depending on the sequence length but the average was

1.2 msec per instance per class, a performance which establishes the overall

architecture suitable for real time applications. The proposed architecture is

proven to be significantly faster than other dominant approaches as can be

seen in table 8. It is worth mentioning that Product HMMs, which proves

to be the most effective HMM variant (table 6), requires 15 times greater

processing time for decoding.

Process Right Left Total

SOM training 5.6151 3.2025 8.8176

Position Models 1.3345 2.0800 3.4145

Direction Models 1.1311 0.9159 2.0470

Decoding 0.0655 0.0803 0.1458

Table 7: Required time for training and classification (average times in sec-

onds)

5. Conclusions and future work

Current work proposes an architecture for solving spatiotemporal prob-

lems and validates it by applying the proposed scheme to an extremely chal-

lenging problem of automatic Sign Language recognition. Dynamics, spa-

tiotemporal variation and random errors and noise in the input stream are
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Classifier Training Testing

SOMM 14.279 0.145

Multistream HMM 28.416 0.870

Product HMM 53.938 2.280

Table 8: Training and classification times for SOMM, Multistream HMM

and Product HMM

tackled by a greedy algorithm constantly seeking the locally optimal choice

at each stage and converging to a global solution and by incorporating the

neighboring characteristic amongst the models’ states both in the learning

as well as the classification process. The proposed scheme is validated both

theoretically, by performing an error propagation study, and experimentally

on Greek Sign Language recognition proving the architecture’s superiority,

in terms of classification performance and computational cost, against pop-

ular techniques such as Hidden Markov Models and variations. SOMM’s

superiority in terms of efficiency, adaptability and generalization is based on

the incorporation of proximity, according to the SOM representation, both

in training and in classification. Regarding design issues, the self organizing

feature of the proposed architecture eliminates the need for arbitrarily or ex-

perimentally defined initialization parameters, such as defining the number

of HMM states which influences significantly their performance and hinder

their generalization and adaptability. Modality fusion is performed at deci-

sion level, in Boosting-like, relaxed but none the less targeted manner based

on weak classifiers who are suitable for tackling a particular aspect of the

problem.
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Concerning future directions of the proposed research work these would

include continuous input and inter-segment analysis. Isolated (sign level)

recognition, which is the application domain of the proposed architecture,

can be extended to continuous (sentence level) recognition by incorporating

a temporal segmentation module that automatically detects sign boundaries

[37, 60, 58]. Boundary detection is performed in various ways:

• by detecting local minima in hand velocity or glove finger flexure values

• by detecting maxima in motion trajectory angle derivative or ratio

between minimum acceleration and maximum velocity

• HMMs trained for implicit sign segmentation or to model transitions

and epenthesis and matching probability drop.

Such an approach would provide segment boundaries and could be considered

a preprocessing step of the continuous input stream. Finally, adding a layer of

domain knowledge (e.g. linguistic knowledge in a Sign Language sentence) in

order to assist intra-segment recognition, consists a research direction worth

investigating. Such a domain knowledge layer would enhance the architec-

ture’s assertion in continuous input. Continuous recognition also introduces

coarticulation phenomena, where each sign, of the sentence, is affected by the

preceding and the subsequent sign and Linguistic NLP knowledge is certainly

needed.
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