
Query Rewriting Under Ontology Contraction

Eleni Tsalapati, Giorgos Stoilos, Giorgos Stamou, and George Koletsos

School of Electrical and Computer Engineering,
National Technical University of Athens,

Zographou Campus, 15780, Athens, Greece

Abstract. Conjunctive query (CQ) answering is a key reasoning service
for ontology-based data access. One of the most prominent approaches
to conjunctive query answering is query rewriting where a wide variety
of systems has been proposed the last years. All of them accept as input
a fixed CQ q and ontology O and produce a rewriting for q,O. However,
in many real world applications ontologies are very often dynamic—that
is, new axioms can be added or existing ones removed frequently. In
this paper we study the problem of computing a rewriting for a CQ
over an ontology that has been contracted (i.e., some of its axioms have
been removed) given a rewriting for the input CQ and ontology. Our
goal is to compute a rewriting directly from the input rewriting and
avoid computing one from scratch. We study the problem theoretically
and provide sufficient conditions under which this process is possible.
Moreover, we present a practical algorithm which we implemented and
evaluated against other state-of-the-art systems obtaining encouraging
results. Finally, axiom removal can also be relevant to ontology design.
For each test ontology we study how much the removal of an axiom affects
the size of the rewriting and the performance of systems. If the removal
of a single axiom causes a significant decrease either in the size or in the
computation time then this part of the ontology can be re-modelled.

Keywords: Ontologies, Query Rewriting, Ontology contraction, Axiom
Removal.

1 Introduction

A recent application of ontologies that continuously gains momentum is ontology-
based data access (OBDA) [17]. Ontologies aim to provide a formal semantically
rich conceptualization of the (possibly distributed) data layer, thus simplifying
numerous data management problems such as information integration [13], data
exchange [9], data warehousing [23] and more. The main advantages of OBDA
are that, firstly, the conceptual data description does not directly reflect the
specific system/storage specifications and restrictions and, secondly, the data
access can be performed by answering conjunctive queries (CQs) expressed in
terms of the ontology [17], which is usually more intuitive for the user.

Unfortunately, the problem of answering conjunctive queries over ontologies
expressed using expressive ontology languages (like those underpinning the Web



Ontology Language OWL 2) has been proved to be very difficult [14]. Conse-
quently, less expressive languages (like those underpinning the OWL 2 QL and
OWL 2 EL fragments) have been proposed in the literature. For these languages
query answering is tractable [5, 16, 11] and thus efficient systems can be imple-
mented. One of the widely used methods to query answering over such languages
is query rewriting. Given a query q and an ontology O, a rewriting r of q,O is a
set of clauses (usually Datalog rules or unions of CQs) such that for any database
the answers of q over the database and the ontology coincide with the answers
of the rewriting over the database and discarding the ontology. Thus, r can be
used for finding the answers by translating it into an (recursive) SQL query.

So far many algorithms and systems for computing the rewriting of a query
over an ontology have been developed in the literature [5, 16, 19, 11, 6, 15, 22].
Several of them, like Presto, Quest,1 Nyaya,2 Rapid,3 and IQAROS4 employ
sophisticated optimisations in order to reduce either the size of the computed
rewriting or the computation time. Despite very encouraging results it is clear
that the problem of query rewriting remains open since there are several prob-
lematic cases for which either the computation time or the computed rewriting
are quite large. The latter is a significant problem as it is well-known that large
rewritings are likely to cause a problem when evaluated over a database (a large
rewriting implies a large SQL query with many unions and joins) [11].

All the aforementioned systems assume a fixed query and ontology and for
this input they employ a set of ‘rewriting’ rules in order to compute the tar-
get rewriting. However, in many applications ontologies are very often dynamic
and can change in time [7, 3, 18]. More precisely, an ontology can be extended
by adding new axioms or be contracted—that is, some of its axioms might be
removed because they no longer hold. For example, the NCI ontology (a well-
known medical ontology) has been updated more than 85 times [10]. In such
scenarios all aforementioned algorithms would compute a rewriting for the input
(fixed) query over the updated ontology from scratch discarding any informa-
tion previously computed, although it is expected that the new rewriting has a
significant overlap with the initial one. In the current paper we study the fol-
lowing problem: Given a query q, an ontology O, a rewriting r for q,O and a
set of axioms A, compute a rewriting for q,O \A ‘directly’ from r and by avoid-
ing using any of the known rewriting algorithms. Firstly, we study the problem
theoretically to investigate its feasibility. We thus develop sufficient conditions
that if satisfied by r then this process is possible. Subsequently, we present a
practical algorithm for computing the rewriting of a query over a contracted
ontology. Finally, we have implemented our algorithm and we have conducted
an experimental evaluation using the evaluation framework proposed in [16]. We
compared the performance of our system to the performance of cutting-edge
query rewriting systems and we obtained encouraging results.

1 http://obda.inf.unibz.it/protege-plugin/quest/quest.html
2 http://mais.dia.uniroma3.it/Nyaya/Home.html
3 http://www.image.ece.ntua.gr/~achort/rapid.zip
4 http://code.google.com/p/iqaros/



To the best of our knowledge there is no previous study of the problem of
query rewriting over contracted ontologies. We believe that such an algorithm
can be helpful in cases where computing the rewriting for a large and complex
ontology is time consuming. In such cases an initial rewriting can be computed
once while then rewritings for contractions of the input ontology can be com-
puted using a lightweight algorithm. Additionally, ontology contraction can also
be interesting in designing ontologies for practical applications. More precisely,
given an ontology O and query q the proposed method can be used to investigate
which of the axioms of O affect the size of the rewriting for q,O. More precisely,
if r is a rewriting for q,O while for some α ∈ O r′ is a rewriting for q,O \ {α}
that is significantly smaller than r, then we can deduce that the presence of α
makes rewriting particularly ‘hard’ and hence should be revised. The specific
idea has lately gained attention in the area of terminological reasoning over ex-
pressive DLs with important theoretical and practical results [10]. However, as
far as we know it has not been studied in the area of query rewriting. Finally,
our techniques are also relevant to the problem of ontology repairing for incom-
plete reasoners [21], which provides an alternative and very promissing way to
scalable ontology-based data access. More precisely, our methods can be used to
compute a repair for a contracted ontology by avoiding re-computing one from
scratch.

2 Preliminaries

We use standard notions of first-order constants, variables, function symbols,
terms, substitutions, predicates, atoms, (ground) formulae, sentences, and en-
tailment (|=). A fact is a ground atom and an instance is a finite set of facts.
A tuple (vector) of variables (constants) is denoted by ~x (~a). For φ a formula,
with φ(~x) we denote that ~x are the free variables of φ, while for σ a substitution,
φσ is the result of applying σ to φ. Satisfiability and entailment are defined as
usual.

Existential Rules An existential rule [2, 4], often called axiom, is a sentence
of the form

∀~x.∀~z.[φ(~x, ~z)→ ∃~y.ψ(~x, ~y)] (1)

where φ(~x, ~z) and ψ(~x, ~y) are conjunctions of atoms and ~x, ~y and ~z are pair-wise
disjoint. Formula φ is the body, formula ψ is the head, and universal quantifiers
are often omitted. If ~y is empty, the rule is called datalog. An ontology R is a
finite set of existential rules.

Many popular Description Logics, such as ELHI [16], as well as database
constraint languages, such as tuple generating dependencies [1], can be captured
by existential rules.

Queries A datalog query Q is a tuple 〈QP , P 〉, where QP is a query predicate
and P is a set of datalog rules such that the body of each clause in P does
not contain QP . A datalog query Q = 〈QP , P 〉 is called a union of conjunctive
queries (UCQ) if QP is the only head predicate in the head of the rules in



P ; furthermore, Q is a conjunctive query (CQ) if it is a union of conjunctive
queries and P contains exactly one rule—that is, Q = 〈QP , {QC}〉 and QC is a
datalog rule with QP as a head predicate. We often abuse notation and write
Q = QC if Q is a CQ in which case the head of QC is the query predicate. A
tuple of constants ~a is a certain answer of a datalog query Q = 〈QP , P 〉 over an
ontology R and an instance I if and only if R∪ I ∪P |= QP (~a). We denote with
cert(Q,R∪ I) the set of certain answers of the datalog query Q over R∪ I.

Given two datalog rules r1, r2 we say that r2 subsumes r1 if there exists a
substitution σ such that (r2)σ ⊆ r1.
Query Rewriting Intuitively, a rewriting of Q w.r.t. an ontology R is another
query that captures all the information from R relevant for answering Q over R
and an arbitrary instance I. Today several query rewriting algorithms for many
ontology languages such as DL-Lite, ELHI, linear -TGDs and many more have
been presented [5, 16, 11, 15]. For all these works, UCQs and datalog are common
target languages for computing a query rewriting.

Definition 1. A datalog rewriting of a conjunctive query Q = 〈QP , {QC}〉
w.r.t. an ontology R is a datalog query Q′ = 〈QP , P 〉 such that the following
properties hold:

– each r ∈ P either does not mention QP or contains QP only in the head,
– for each r ∈ P we have R∪Q |= r,
– for each instance I using only predicates from R we have cert(Q,R ∪ I) =

cert(Q′, I).

If the rewriting Q′ is a UCQ then it is called UCQ rewriting.

Many state-of-the-art systems often normalise the input ontologyR by introduc-
ing new (fresh) predicates that do not appear in R and then compute a rewrit-
ing using the normalised ontology. For example, the ontology R = {R(x, y) ∧
C(y) ∧D(y)→ A(x)} would usually be normalised to R′ = {R(x, y) ∧A0(y)→
A(x), C(x)∧D(x)→ A0(x)}, where A0 is a new predicate. For such systems the
second condition of Definition 1 is likely not to hold. However, the rules of the
rewriting that contain such fresh predicates can be eliminated by ‘unfolding’ the
definition of the fresh symbols creating new rules for which the condition holds.

3 Rewriting Reduced TBoxes

In this section we study the problem of computing a rewriting for a conjunctive
query Q over an ontology R′ given a rewriting for Q and an ontology R ⊇ R′—
that is, given a rewriting for Q over a superset of R′. Since rewriting over large
ontologies can be a rather time consuming process our motivation is to avoid
computing the new rewriting from scratch using any of the standard algorithms,
but instead to re-use the previously computed information as much as possible.
In the following, we first study the problem at a theoretical level providing illus-
trative examples that highlight important technical points and motivate several
assumptions that are required and, then, we present the algorithm in detail.



Example 1. Consider the ontology R1 = {α1, α2, α3}, where α1, α2, and α3 are
defined as follows:

α1 = Painting(x)→ ManMadeObject(x),
α2 = isSimilarTo(x, y) ∧ Painting(y)→ Painting(x),
α3 = isCopyOf(x, y)→ isSimilarTo(x, y)

The ontology states that a painting is a man made object, that if some object
is similar to a painting then it is also a painting and anything that is a copy
of an entity is also similar to this entity. Consider now the CQ Q = Q(x) ←
ManMadeObject(x). The datalog query Q′ = 〈Q,P 〉, where P is the program
consisting of the rules defined below, is a datalog rewriting of Q over R1:

q = Q(x)← ManMadeObject(x) (2)

q1 = Q(x)← Painting(x) (3)

r1 = Painting(x)← isSimilarTo(x, y) ∧ Painting(y) (4)

r2 = Painting(x)← isCopyOf(x, y) ∧ Painting(y) (5)

This rewriting can be computed by any state-of-the-art query rewriting system
that at-least supports the DL language ELHI.

Assume now that we remove axiom α3 from R1 obtaining the new ontology
R′

1 = {α1, α2}. A new rewriting for Q and R1 can be computed using again the
same algorithm; the rewriting would consist of rules (2)–(4). ♦
Although the new rewriting can be computed using again our rewriting system
we can see that when applied over Q and R′

1 this system would re-compute the
rules (2)–(4). Moreover, we can see that one can compute a rewriting directly
from Q′ simply by removing rule (5) from the program P . Intuitively, this rule
is produced by resolving rule (4) with axiom α3 which has been removed from
the initial ontology. Hence, this rule cannot be produced using the axioms of R′

1.
This suggests that if one has additionally annotated the elements of a rewriting
with the subset of the ontology that is required to generate them, then a new
rewriting would be easily computable.

Definition 2. Let Q = 〈QP , {QC}〉 be a CQ, let R be an ontology, let QD =
〈QP , P 〉 be a datalog rewriting of Q w.r.t. R and let some r ∈ P . We say that
R′ ⊆ R is minimal for r if the following conditions hold:

1. r ∈ P ′ for some P ′ ⊆ P s.t. 〈QP , P
′〉 is a datalog rewriting for Q w.r.t. R′.

2. For all R′′ ⊂ R′ condition 1 does not hold.

Intuitively, R′ is minimal for some r if r occurs in some rewriting for Q and R′,
but if we remove any rule from R′ then r no longer occurs in any rewriting for
Q and the modified ontology.

In our running example (Example 1) we have the following minimal sets for
each element of P :

Rq := ∅ is minimal for q
Rq1 := Rq ∪ {α1} is minimal for q1
Rr1 := {α2} is minimal for r1
Rr2 := Rr1 ∪ {α3} is minimal for r2



Hence, since the minimal subset for r2 contains the axiom α3 that was previously
removed from R1 to obtain R′

1, we can deduce that r2 cannot be part of a
rewriting for Q,R′

1.
Note here that for a rule r of a rewriting for some query and ontology R

there may be many minimal subsets. For example, for ontology R = {A(x) →
B(x), C(x) → B(x)} and CQ Q = 〈Q(x), {Q(x) ← A(x), B(x), C(x)}〉 the
rewriting would contain the rule r = Q(x) ← A(x), C(x) and both {A(x) →
B(x)} and {C(x)→ B(x)} are minimal for r. Hence, for each r ∈ P the rewrit-
ing needs to contain all minimal subsets for a member of the rewriting.

Definition 3. Let Q = 〈QP , {QC}〉 be a CQ and let R be an ontology. A la-
belled datalog rewriting is a triple 〈QP , P, ρ〉 where 〈QP , P 〉 is a datalog rewriting
for Q w.r.t. R and ρ is a mapping from P to sets of subsets of R such that for
each r ∈ P , ρ(r) contains all R′ ⊆ R that are minimal for r.

Note that to compute a labelled rewriting for a CQ Q = 〈Q, {QC}〉 over an input
set R one has to modify the internals of the used rewriting algorithm. This can
be done easily by initialising the empty set ∅ as the minimal set for QC and the
singleton set {α} for each axiom α ∈ R and then track the axioms that are used
to generate the elements of the output rewriting. For example, if r′ is produced
by resolving rule r with axiom α, then ρ(r′) = ρ(r′) ∪ {ρ(r) ∪ ρ(α)}.

An important technical question at this point is whether we can compute a
rewriting for a CQ over a reduced ontology R′ given any rewriting for the input
ontology R ⊇ R′. As the following example shows, this is not always possible.

Example 2. Consider the following ontology R2 and CQ:

R2 = {Creator(x)→ Agent(x)}
Q = Q(x)← Creator(x),Agent(x)

The tuple Q1 = 〈Q(x), {r, r1}〉, where r = Q(x) ← Creator(x),Agent(x) and
r1 = Q(x)← Creator(x) is a rewriting for Q, R2. However, r1 subsumes r, hence
Q2 = 〈Q(x), {r1}〉, is also a rewriting for Q,R2.

Assume now that axiom α1 = Creator(x) → Agent(x) is removed from R2

obtaining a new ontology R′
2. A rewriting for Q,R′

2 consists of the query Q3 =
〈Q(x), {r}〉. However, it is quite clear that we cannot compute Q3 from the (non-
redundant) rewriting Q2, as it does not contain the rule r at all. Instead, Q3

can be computed from Q1 that contains rule r simply by removing r1. ♦

Intuitively, the issue in the previous example is that although r is redundant in
Q1 the query that subsumes it (r1) is not part of all rewritings for Q,R′

2 because
the axiom that is used to generate it (i.e., α1) has been removed. Hence, r is no
longer redundant in rewritings of Q,R′

2.
As we will show next, the following condition that was first introduced in

[8], provides a sufficient condition for computing a rewriting for an ontology R′

given a rewriting for an ontology R ⊇ R′.



Definition 4. A datalog rewriting 〈QP , P 〉 of a CQ Q = 〈QP , {QC}〉 w.r.t. an
ontology R is subset-closed if for each R′ ⊆ R there exists P ′ ⊆ P such that
〈QP , P

′〉 is a datalog rewriting for Q w.r.t. R′.

Example 3. Consider the ontology R2 and CQ Q from Example 2. For R′′
2 = ∅

no subset of Q2 is a datalog rewriting for Q,R′′
2 . Instead, for the rewriting Q1

the query Q′
1 = 〈Q(x), {r}〉 is a datalog rewriting for Q,R′′

2 . Therefore, Q1 is
subset-closed while Q2 is not. ♦

As noted in [8], however, from a practical point of view subset-closed rewritings
are not straightforward to compute. As also illustrated by the above example,
to compute such rewritings one would typically need to disable (at least par-
tially) subsumption-based optimisations, whereas many rewriting systems are
optimised hence their output is typically not subset-closed. However, on the one
hand, there exist highly efficient algorithms and systems that compute subset-
closed rewritings [22] and on the other hand, we argue that one can compute
a subset-closed rewriting once as an off-line procedure and then a lightweight
algorithm can be used to compute rewritings for the revised ontologies.

Concluding our presentation of the technical issues of the algorithm we show
that there are certain kinds of dependencies between the elements of a labelled
rewriting which the algorithm can exploit in order to compute the new rewriting
more efficiently.

Example 4. Consider our running example (Example 1) and assume that instead
of α3 we remove axiom α2 creating the new ontology R′′

1 = {α1, α3}. A rewriting
for Q,R′′

1 consists only of rules (2) and (3). The algorithm can compute this by
checking whether for all Rr1 ∈ ρ(r1) we have α2 ∈ Rr1 , which holds hence r1 is
removed, and then the same for r2, which again holds hence r2 is also removed
obtaining finally the correct rewriting.

However, the latter check can be avoided if we order the elements of the
rewriting according to the order induced by their minimal sets in ρ. More pre-
cisely, in our running example the (only) minimal set for r2 is a superset of the
(only) minimal set for ρ(r1); hence if r1 is removed because α2 ∈ Rr1 then all
rules produced “after” r1 (i.e., r2) can be discarded from further processing. ♦

To exploit the above idea the algorithm introduced in the next section first orders
the elements of a rewriting according to their minimal sets. This is performed
using the function order that is defined next.

Definition 5. Let QD = 〈QP , P, ρ〉 be a labelled rewriting for a CQ Q w.r.t. an
ontology R. The function order(QD) returns a directed graph G = 〈P,H〉 where
〈r1, r2〉 ∈ H iff for all R1 ∈ ρ(r1) there exists R2 ∈ ρ(r2) such that R1 ⊂ R2

and no r′ ∈ P exists such that for some R′ ∈ ρ(r′) we have R1 ⊂ R′ ⊂ R2.

In our running example the function order(Q′) would return G = 〈P,H〉 where
H = {〈q, q1〉, 〈r1, r2〉}.



Algorithm 1 DELETE(A,QD)

Input: QD = 〈QP , P, ρ〉 is a labelled datalog rewriting and A a set of axioms.

1: G := order(QD)
2: Initialise a triple Q′

D = 〈QP , P
′, ρ′〉, where P ′ = ∅ and ρ′ is an empty mapping

3: Initialise a stack S to contain all vertices r of G s.t. @r′.〈r′, r〉 ∈ G
4: while S 6= ∅ do
5: Pop an element r from S
6: if Ri ∈ ρ(r) exists s.t. A ∩Ri = ∅ then
7: Add r to P ′

8: if ρ′(r) is undefined then
9: Initialise ρ′(r) := ∅
10: end if
11: for all Rj ∈ ρ(r) do
12: if A ∩Rj = ∅ then
13: ρ′(r) = ρ′(r) ∪ {Rj}
14: end if
15: end for
16: Push all r′ such that 〈r, r′〉 ∈ G to S
17: end if
18: end while
19: return Q′

D

3.1 The Delete Algorithm

As described previously it is possible to compute a rewriting for a CQ Q and
an ontology R′ from some subset-closed labelled rewriting for Q and a superset
of R′ without relying at all on traditional rewriting algorithms. Such a detailed
algorithm is depicted in Algorithm 1.

Algorithm Delete accepts as input a labelled datalog rewriting QD for a query
Q and ontologyR and a set A ⊆ R of axioms to be removed fromR and produces
a new datalog rewriting for Q,R \ A. First, the algorithm calls function order
to sort the elements of QD and create a directed graph G (line 1) while then it
initialises a new labelled datalog rewriting Q′

D which will be the output of the
algorithm. Then G is traversed in a depth-first manner (using a stack S) and
checks if for some element r of the graph there exists a minimal subset in ρ(r)
that does not contain any element of A. This implies that r can be generated
by not using any of the removed axioms and hence should be in the output of
the algorithm. Thus, r is added to the new rewriting (line 7) and ρ′(r) is set to
all minimal subsets of r that do not contain any axiom from A (lines 11–15).
Finally, all successor nodes of r in the graph are added to the stack (line 16).

Example 5. Consider the ontology R1 of the running example (Example 1) ex-
tended by the set of axioms {α′

1, α
′
2, α

′
3}, where α′

1, α
′
2, α

′
3 are defined as follows:

α′
1 = Potrait(x)→ Painting(x)
α′
2 = Fossil(x)→ ManMadeObject(x),
α′
3 = ResinFossil(x)→ Fossil(x)



The new ontology R′
1 = R1 ∪ {α′

1, α
′
2, α

′
3} additionally states that a potrait is a

painting, a fossil is a man made object and a resin fossil is a fossil. Consider again
the CQ of Example 1. The query Q′ = 〈Q,P ′, ρ〉, where P ′ = P ∪ {q′1, q′2, q′3}
and q′1, q

′
2, q

′
3 are defined as follows, is a labelled subset-closed datalog rewriting

of Q,R′
1:

q′1 = Q(x)← Potrait(x) (6)

q′2 = Q(x)← Fossil(x) (7)

q′3 = Q(x)← ResinFossil(x) (8)

Assume now that we remove the axiom α′
2. We will show how Algorithm 1 will

compute a rewriting for Q,R \ {α′
2}.

The algorithm would first initialise a rewriting Q′
D = 〈QP , P

′, ρ′〉, with P ′ =
∅ and ρ′ an empty mapping. Then, it would execute the function order(Q’) which
would return the directed graph G = 〈P,H〉, where

H = {〈q, q1〉, 〈q1, q′1〉, 〈q, q′2〉, 〈q′2, q′3〉, 〈r1, r2〉}

Then, initially S would contain q and r1. Suppose that q is popped. Since Rq = ∅
CQ q would be added to P ′ and ρ′(q) is set to ∅. Since 〈q, q1〉, 〈q, q′2〉 ∈ H, the
CQs q1, q

′
2 are pushed in the stack. Suppose that q1 is popped from the stack

next. Since Rq1 = {α1} the condition in line 6 is satisfied and q1 would also be
added to P ′ while the algorithm sets ρ′(q1) = {α1}. Similarly, q′1 is added to P ′

and so far we have P ′ = {q′1, q1, q}.
Now since there is no q′ s.t. 〈q′1, q′〉 ∈ H nothing is pushed in the stack. Next,

q′2 is popped from the stack. Since Rq′2
= {α′

2} the condition of line 6 is not
satisfied; therefore the algorithm continuous with the next element of the stack
which is r1. Following the same process as before the algorithm would add r1
and r2 to P ′, hence we will have P ′ = {r1, r2, q′1, q1, q}. It can be verified that
the datalog rewriting 〈Q(x), P ′〉 returned by the algorithm is a rewriting for
Q,R \ {α2}. ♦

Next we show correctness of Algorithm 1.

Theorem 1. Let R be an ontology, let Q = 〈Q,P0〉 be a CQ and let QD =
〈Q,P, ρ〉 be a labelled datalog rewriting for Q,R that is subset-closed. Let also A
be a subset of R. When applied to A and QD Algorithm 1 terminates. Let Q′ be
the tuple produced by the algorithm; then, Q′ is a rewriting for Q,R \ A that is
subset-closed.

Proof. First we show termination. Let G be the graph computed at line 1 of
Algorithm 1. First, we show that G is a directed acyclic graph. Assume that
there is a cycle in G—that is, there exist vertices r1, r2 such that r2 is reachable
from r2 and r1 from r2. By Definition 5 we have that for all R1 ∈ ρ(r1) there
exists R2 ∈ ρ(r2) s.t. R1 ⊂ R2. Let an arbitrary R1 and R2. From the latter we
also get that for this specific R2 there exists R′

1 ∈ ρ(r1) s.t. R2 ⊂ R′
1. Hence,

we have that R1 ⊂ R′
1 which contradicts the assumption that R′

1 is minimal for
r1.



Now, since G is a directed acyclic graph and Algorithm 1 performs a standard
depth-first traversal of G the algorithm clearly terminates.

Next we show that Q′ = 〈Q,P ′〉 computed by the algorithm is a rewriting
for Q,R \ A. In order to show this it suffices to show that for all instances I we
have cert(Q,R \ A ∪ I) = cert(Q′,A).

First, we show that cert(Q,R \ A ∪ I) ⊇ cert(Q′, I). By construction, a rule
r is in P ′ only if there exists R′ ∈ ρ(r) such that R′ ⊆ R \ A. This implies
that R \ A |= R′. Moreover, by definition of ρ we have that r belongs in some
rewriting for Q,R′ hence we have that R′ ∪ Q |= r. From both conditions and
monotonicity it follows that R \ A ∪ Q |= r. This holds for all members of P ′

hence we have (R\ A) ∪Q |= P ′ which implies that for any I the answers of Q′

over I are also answers of Q over (R \ A) ∪ I.
Second, we show that cert(Q,R \ A ∪ I) ⊆ cert(Q′, I). Since QD = 〈Q,P 〉 is

subset-closed there exists P ′′ ⊆ P such that 〈Q,P ′′〉 is a rewriting for R \ A.
Clearly for each r ∈ P ′′ and for each R′ ∈ ρ(r) we have R′ ⊆ R \ A. Hence, it
follows easily by construction of P ′ that it contains r and thus we have P ′′ ⊆ P ′;
hence, P ′ |= P ′′ and it follows that any answer of Q over (R \ A) ∪ I is also an
answer of Q′ over I.

Finally, we show that Q′ = 〈Q,P ′〉 is subset-closed. Consider some arbitrary
subset Rs ⊆ R \ A. Clearly, Rs ⊆ R and since Q = 〈Q,P 〉 is subset-closed then
there exists some Ps ⊆ P s.t. 〈Q,Ps〉 is a rewriting for Q,Rs. By the latter we
get that for all rs ∈ Ps we have Rs ∪Q |= rs, hence there exists R′

s ∈ ρ(rs) that
is minimal for rs. It follows easily that rs ∈ P ′. Since rs is an arbitrary rule we
have that Ps ⊆ P ′. Moreover, also note that Rs is arbitrary. Hence, it follows
that Q′ is subset-closed. ut

The performance of Algorithm 1 can be further improved if one additionally
has pre-computed and stored the subsumption relations between the elements
of the input rewriting QD. This can be accomplished by executing the standard
subsumption checking algorithm over QD and creating an additional mapping
λ such that for a clause r, λ(r) contains the subsumers of r in QD. Algorithm 1
uses λ as follows:

– When it selects a new clause r in line 5 it proceeds in processing r only if
λ(r) = ∅ or none of the clauses in λ(r) is already in P ′; otherwise r and all
the clauses that are “after” r in the graph can be discarded by continuing
with the next element in the stack.

– In line 16 it checks whether for some clause rk such that 〈r, rk〉 ∈ H we have
rk ∈ λ(r). In such case, only rk is pushed to the stack.

The correctness of this optimisation is a straightforward consequence of the
correctness of subsumption for First-Order logic. More precisely, if a clause r
subsumes a clause r′, then any resolution inference using r′ will produce clauses
that are subsumed by clauses produced using resolution over r. Hence, if r is
already in P ′, then both r′ and all descendant rules are redundant and can be
discarded from the output. Note, however, that the output of this optimised
algorithm is clearly not guaranteed to be subset-closed.



Concluding this section we comment on the problem of query answering. Note
that a subset-closed rewritings Q for a query Q0 and ontology R can typically be
much larger than an equivalent non-redundant one. Hence, for an instance I it
would not be very practical to use Q to compute the answers of Q0 over R∪I. In
such setting one should use Q to compute a rewriting for further constructions
of R while to evaluate the computed rewriting a non-redundant one should be
computed from Q. Note that given λ this is a fairly easy task.

4 Evaluation

We have developed a prototype tool for computing the rewriting of a conjunctive
query w.r.t. a contracted ontology based on Algorithm 1. Our implementation
is based on the query rewriting system ProgRes [20]—that is, we have modified
ProgRes to extract subset-closed labelled rewritings.5 Then, Algorithm 1 is exe-
cuted over the subset-closed rewriting and a set of axioms. We have developed
two versions of the algorithm; an unoptimised one, called Del, and one that uses
the optimisations outlined at the end of Section 3, called DelOpt.

We have compared our implementations against the standard (non-modified)
version of ProgRes and a recently developed highly-optimised query rewriting
system IQAROS which has been shown to outperform many existing rewriting
systems [12]. For the evaluation we used the framework proposed in [16]. It
consists of nine test ontologies together with a set of five hand-crafted test queries
for each of them. All experiments were conducted on a Intel(R) Core (TM) with
a 3.20GHz processor and 4GB of RAM.

For each test ontology and query we compute a subset-closed labelled rewrit-
ing and then execute Del and DelOpt by selecting one axiom of the input ontology.
Finally, we remove the subsumed (redundant) clauses. This process is repeated
for all axioms of the ontology. For ProgRes and IQAROS we measure the time
to compute the rewriting for the respective contracted ontology from scratch.
Table 1 shows the average computation time for each ontology and query. Note
that all four tools returned rewritings of the same size so for brevity reasons we
do not present these numbers.

Comparing Del with DelOpt we see that DelOpt is in most cases faster than
Del. This is due to the optimisations that have been implemented which prune
the search space of Algorithm 1 significantly by discarding parts of the graph G
that are redundant, e.g., because for some r in line 5 we have λ(r) 6= ∅. However,
in ontology P5X queries Q4 and Q5, Del performs better than DelOpt. We
concluded that this is due to the overhead of the implemented optimisations of
DelOpt. More precisely, DelOpt needs to perform several checks over potentially
large sets in order to decide whether a selected clause can be skipped. However,
as shown by the table this is noticeable only in these two queries.

Compared to ProgRes and IQAROS, both Del and DelOpt are faster in the vast
majority of cases. Actually, in most ontologies and queries DelOpt can compute

5 However, we plan to use other systems as well in the future.



Table 1. Performance results for Del, DelOpt, ProgRes, and IQAROS

V S
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Del 0 0 0 0 0 0 1 7 8 88

DelOpt 0 0 0 0 0 0 0 3 3 26

ProgRes 2 2 11 36 15 1 5 23 25 157

IQAROS 1 1 2 3 3 0 1 8 6 98

P5 P5X
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Del 0 0 0 0 0 1 1 8 152 3014

DelOpt 0 0 0 0 0 0 1 8 158 3384

ProgRes 3 9 4 5 6 3 11 131 2891 123094

IQAROS 0 0 0 2 12 0 3 13 280 8431

U UX
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Del 0 0 1 9 39 0 0 3 30 95

DelOpt 0 0 0 3 10 0 0 1 13 25

ProgRes 1 4 7 73 46 1 4 30 223 141

IQAROS 1 2 4 9 10 1 2 7 13 14

A AX
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Del 1 0 0 1 1 1 2 15 26 -

DelOpt 0 0 0 0 1 1 2 16 17 -

ProgRes 34 9 30 122 604 117 2587 44104 41154 -

IQAROS 3 4 32 11 204 8 59 559 405 31125

a new rewriting almost instantaneously in less than 10 milliseconds. A large
difference compared to these systems can be noticed in P5X query Q5 as well
as in ontologies A and AX which are particularly hard for them. However, note
that we were not able to obtain results for ontology AX query Q5 as the ProgRes
implementation that we based Del did not terminate after 9 hours. Moreover,
Del was slower than IQAROS in ontologies U , UX. By investigating these cases
we concluded that this is due to the large size of the rewriting QD that is
given as an input to Algorithm 1 as well as that for α the removed axiom and
for most CQs q in the rewriting we have α 6∈ ρ(q); hence, the algorithm also
produces a large output. For instance, for ontology UX and query Q5 the graph
contains on average 6622 queries most of which also belong in the rewriting
Q′

D computed by Algorithm 1. But subsequently, most of them are redundant
and need to be removed. In contrast due to the optimisations implemented in
DelOpt the algorithm is able to identify on the fly many redundant CQs and
avoid traversing this large graph that is given as an input.

The goal of our second experiment was to assess and interpret the extent
to which an axiom of an ontology affects the size and computation time of a
computed rewriting for fixed queries. If by removing an axiom the size of the
rewriting or the computation time is significantly smaller than the original one



Fig. 1. Size of rewriting for ontologies S, P5X,UX, and AX for CQs Q1–Q5 when
axiom αi is removed.

then we can conclude that its existence in the specific ontology is particularly
‘problematic’ for the rewriting systems and hence in practical settings one would
probably need to revise it. Note that even if the rewriting can be computed fast
the database system would likely not be able to answer it as large rewritings
imply large complex SQL queries.

For this experiment we proceeded as follows: for each ontology and query
we removed iteratively each axiom and measured the size of the resulting UCQ
using our system Del. We did not eliminate subsumed clauses in order to have a
better picture of the number of clauses that could be produced during a rewriting
process. Then, we drew plots of rewriting size vs. removed axiom in order to see
for which and how many axioms there is a significant reduction in the size of the
rewriting. Figure 1 presents the plots for ontologies S, P5X,UX, and AX which
according to Table 1 are the ones that are the most difficult for the systems.

A first interesting observation is that indeed there are axioms that affect the
size of the rewriting significantly. For example, in AX the removal of one of
the axioms α32, α40, α72 and α78 causes the size of the rewriting to drop to less
than half. Especially, if we remove axiom α40 then the rewriting of Q4 drops
from 7000 CQs to just 528 CQs. Similar observations can be made for the other
ontologies as well. A second interesting observation is that for all ontologies the
set of axioms that demonstrates the largest reduction is the same regardless of
which query we examine. This shows that most queries are interrelated (i.e., they
mention the same predicates) and that there are usually specific points in the
ontology that are hard for a given query. A third interesting observation is that



for all ontologies and queries the number of axioms that affect the size of the
rewriting is usually small. More precisely, for each ontology there are usually less
than five axioms which if removed the size of the rewriting drops significantly.

Subsequently, we wanted to investigate the reason why these axioms affect
the size of the rewriting. For AX one such axiom is α40 = AssistiveDevice(x)→
Device(x) (AssistiveDevice v Device in DL notation). By inspecting manually
the ontology we concluded that concept Device appears very high in the hi-
erarchy of this ontology,6 it has many descendant concepts (that is, there are
many unary predicates A in the ontology such that AX |= A(x) → Devise(x)),
and finally it appears in all test queries. In contrast, although axiom α47 =
VisualDisability(x)→ Disability(x) also refers to Disability that is also high in the
hierarchy it does not affect the size of the rewriting as the hierarchy below it is
rather ‘shallow’. After examining all ontologies we concluded that this is a main
reason for hardness. However, note that in many cases this is not immediately
obvious by inspecting the ontology. For example, in case an axiom involves bi-
nary predicates the interpretation is more difficult since these can participate in
axioms with unary predicates (e.g., in axioms of the form C(x)→ R(x, f(x)) or
R(x, y)→ C(y)) which are not reflected in the hierarchy.

Finally, we also wanted to check whether a large reduction in the size of
a rewriting also implies a large reduction in computation time for each of the
tested systems. Indeed the computation time decreases in a similar way as the
size of the rewriting. An interesting case is the system ProgRes and query Q5 of
ontology AX. Although the system is not able to terminate when processing the
original input ontology even after several hours, by removing axiom α40 (i.e., one
of the problematic ones) it can compute a rewriting for AX\{α40} in 16 seconds.
Hence, we see that this analysis can indeed be very helpful when designing an
ontology for practical applications.

5 Conclusions

In the current paper we present and study a novel problem in the area of query
rewriting. More precisely, we have studied query rewriting of fixed queries over
contracted ontologies—that is, over ontologies for which one or more axioms
have been removed. We presented a practical algorithm which, given a rewriting
Q′ for the input query Q and ontology O (that satisfies certain conditions)
and a set of axioms A to be removed from O it computes a rewriting Q′′ for
Q,O \ A directly from Q. We have implemented and evaluated the algorithm
over state-of-the-art rewriting systems and have obtained encouraging results.
Moreover, we have used the algorithm to analyse the role that each axiom of an
ontology plays to the ‘complexity’ of the final rewriting. More precisely, we have
measured how much the size of a rewriting is reduced if one removes an axiom
of the ontology making interesting observations.

6 That is, there are few (if any) unary predicates A in the ontology such that AX |=
Devise(x) → A(x).



Regarding future work we plan to investigate the same problem under on-
tology extensions—that is, when new axioms are added to the ontology, further
optimise and evaluate our algorithm and also delve more into the role that each
axiom plays in the rewriting.

Acknowledgments This work was partially supported by the European com-
mission project ’Linked Heritage” (contract Number: ICT-PSP-270905). Giorgos
Stoilos is supported by a Marie Curie Career Reintegration Grant within Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement 303914.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: Walking the decidability line. Artificial Intelligence 175(9–10), 1620–1654
(2011)

3. Booth, R., Meyer, T., Varzinczak, I.J.: First steps in EL contraction. In: Pro-
ceedings of the Workshop on Automated Reasoning about Context and Ontology
Evolution (ARCOE 2009) (2009)

4. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A
family of logical knowledge representation and query languages for new applica-
tions. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science (LICS 2010). pp. 228–242 (2010)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

6. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting in OWL 2 QL.
In: Proceedings of the 23rd International Conference on Automated Deduction
(CADE 23), Polland. pp. 192–206 (2011)

7. Cuenca Grau, B., Kharlamov, E., Zheleznyakov, D.: Ontology contraction: Beyond
propositional paradise. In: Alberto Mendelzon International Workshop on Foun-
dations of Data Management (AMW). Ouro Preto, Brazil (Jun 2012)

8. Cuenca Grau, B., Motik, B., Stoilos, G., Horrocks, I.: Completeness guarantees for
incomplete ontology reasoners: Theory and practice. Journal of Artificial Intelli-
gence Research 43, 419–476 (2012)

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. In: Proceedings of the 9th International Conference on Database
Theory (ICDT). pp. 207–224 (2003)

10. Gonçalves, R.S., Parsia, B., Sattler, U.: Categorising logical differences between
OWL ontologies. In: Proceedings of the 20th ACM Conference on Information and
Knowledge Management (CIKM 2011). pp. 1541–1546 (2011)

11. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization.
In: Proceedings of the 27th International Conference on Data Engineering, ICDE
2011 (2011)

12. Imprialou, M., Stoilos, G., Grau, B.C.: Benchmarking ontology-based query rewrit-
ing systems. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI 2012). AAAI Press (July 2012)



13. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. pp. 233–246. PODS ’02, ACM, New York, NY, USA (2002)

14. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Proceedings of the 4th International Joint Conference on Automated
Reasoning, IJCAR 2008. pp. 179–193 (2008)

15. Orsi, G., Pieris, A.: Optimizing query answering under ontological constraints.
Proceedings of the VLDB Endowment 4(11), 1004–1015 (2011)

16. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. Journal of Applied Logic 8(2), 186–209 (2010)

17. Poggi, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:
Linking data to ontologies. JoDS X, 133–173 (2008)

18. Ribeiro, M., Wassermann, R., Antoniou, G., Flouris, G., Pan, J.: Belief contraction
in web-ontology languages. In: Proceedings of the 3rd International Workshop on
Ontology Dynamics (IWOD-09) (2009)

19. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proceedings of the Twelfth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2010) (2010)

20. Stamou, G., Trivela, D., Chortaras, A.: Progressive semantic query answering. In:
Scalable Semantic Web Knowledge Base Systems Workshop (SSWS 2010), Shang-
hai, China, 7-8 November 2010 (2010)

21. Stoilos, G., Cuenca Grau, B., Motik, B., Horrocks, I.: Repairing ontologies for in-
complete reasoners. In: Proceedings of the 10th International Semantic Web Con-
ference (ISWC-11), Bonn, Germany. pp. 681–696 (2011)

22. Venetis, T., Stoilos, G., Stamou, G.: Incremental query rewriting for OWL 2 QL.
In: Proceedings of the 25th International Workshop on Description Logics (DL
2012), Rome, Italy (2012)

23. Widom, J.: Research problems in data warehousing. In: Proceedings of Interna-
tional Conference on Information and Knowledge Management. pp. 25–30 (1995)


