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Abstract—Multimodal streams of sensory information are
naturally parsed and integrated by humans using signal-level
feature extraction and higher-level cognitive processes. Detection
of attention-invoking audiovisual segments is formulated in this
work on the basis of saliency models for the audio, visual
and textual information conveyed in a video stream. Aural or
auditory saliency is assessed by cues that quantify multifrequency
waveform modulations, extracted through nonlinear operators
and energy tracking. Visual saliency is measured through a
spatiotemporal attention model driven by intensity, color and
orientation. Textual or linguistic saliency is extracted from part-
of-speech tagging on the subtitles information available with most
movie distributions. The individual saliency streams, obtained
from modality-depended cues, are integrated in a multimodal
saliency curve, modeling the time-varying perceptual importance
of the composite video stream and signifying prevailing sensory
events. The multimodal saliency representation forms the basis of
a generic, bottom-up video summarization algorithm. Different
fusion schemes are evaluated on a movie database of multimodal
saliency annotations with comparative results provided across
modalities. The produced summaries, based on low-level features
and content-independent fusion and selection, are of subjectively
high aesthetic and informative quality.
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I. INTRODUCTION

ATTENTIONAL selection and information abstraction are
cognitive mechanisms employed by humans and animals

for parsing, structuring and organizing perceptual stimuli.
These mechanisms are grounded in most of the normal con-
scious or non-conscious activities such as guided search, com-
munication and interaction, awareness and alert states, sensory
grouping, memory, decision making, action taking, visual and
auditory scene analysis etc. [1]–[3]. They are functionally
correlated to modulations of neuronal activity and the product
of a combination of bottom-up (sensory) and top-down (cogni-
tive) processing. Attention is the process of focusing cognitive
resources on prevailing properties, cues, temporal segments
or individual streams of sensory information. Abstraction
refers to the reduction of information representations through
simplification and selection. Both processes have been the
common ground and subject of neurophysiological, cognitive,
behavioral and computational studies. In this work, we pro-
pose computational models for multimodal stream abstraction
and attentional selection, based on the saliency of individual
features for aural, visual and linguistic representations.

Attention may be of two modes, a top-down, task-driven
and a bottom-up, stimulus-driven, that control the gating of
the processed information (input filtering) and the selective
access to neural mechanisms (capacity limitation), for example
working memory [2]–[5]. Bottom-up attention or saliency is
based on the sensory cues of a stimulus captured by its signal-
level properties, like spatial, temporal and spectral contrast,
complexity, scale etc. [6]–[8]. Similar to competitive selection,
saliency can be attributed on the feature level, the stream level
or the modality level. For example, a frequency tone may be
acoustically salient, a voice can be perceivable among environ-
mental sounds, and an audiovisual scene can be biased towards
any of the two signals. Feature saliency is the property of a
feature to dominate the signal representation while preserving
information about the stimulus. Stream saliency is the property
of a temporal segment to stand-out or ‘pop-out’ with respect to
its surroundings in a time-evolving scene. Modality saliency is
the importance of individual sensory or data modalities (aural,
visual, linguistic, etc.) across time (intramodality) or percep-
tual scene (cross- or intermodality). Salient feature selection
is done based either on their representational strength or their
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appropriateness for a given application. Here, we develop a
hierarchical, multimodal saliency representation where audio,
visual and text cues compete at feature, stream and modality
levels for the formation of salient multimodal events.

Events in video streams are temporal segments of trace-
able activity or change in scene properties, for example
actions, periodic motions, highlights, or facial expressions.
Neurophysiological studies with narrative media like movies
suggest that event segmentation is automatic during active
perception and occurs both at feature-level and at higher-
level concept changes [9]. For a video stream with audiovisual
content, perceptually salient events can be detected by tracking
intramodal changes on the individual sources of auditory and
visual stimuli, or crossmodal changes for coupled events, i.e.,
changes that span multiple modalities. Attention towards such
salient events is triggered by changes or contrast in object
appearance (texture and shape), motion activity and scene
properties (visual events), changes in audio sources, textures
or tempo (aural events), and the relevant –when available–
transcribed dialogues or spoken narrations (textual events).

Computational models of single- and multimodal saliency
[10]–[13] have been applied to emerging multimedia appli-
cations such as automatic video abstraction, summarization,
indexing and browsing [14], [15]. Summarization refers to
producing a shorter, in duration, version of a video that
contains essential information for content understanding, with-
out sacrificing much of the original’s informative, functional
or aesthetical purpose. A summary can function as a video
preview or an overview, thus aiding in quickly accessing
whether the content is important, interesting or enjoyable.
Automatic summarization can be broadly classified into two
types [14]–[16]: key-frame selection, yielding a static, small
set of important video frames, and video skimming (loosely
referred to as video summarization here), giving a dynamic
short clip that contains sub-segments of the original stream.
Since content coverage in the final summaries is important,
most summarization techniques employ prior information on
the structure of the underlying source data. In the case of
scripted, structured video, for example films, the hierarchical
segregation in shots and scenes is explicitly utilized [11], [17].

Movies provide the substrate of video content that poses
challenging research problems, and at the same time introduce
the potential for a range of commercial and interdisciplinary
applications. Movie data are multimodal, conveying audio,
visual and text information in the form of screenplay and subti-
tles, scripted and structured and generated through professional
and artistic filming and editing. Besides the sensory-level,
movies are rich in semantics, either in the form of conceptual
units (themes, concepts, stories) or in the form of structured
content (frames, shots, scenes). Additionally, direction and
montage effects are introduced on purpose in order to induce
emotional or attentional responses to the viewer. In this work,
we aim to elicit higher-level semantic or affective content from
sensory-level saliency representations.

Contributions and Overview: We propose multimodal
saliency representations of audiovisual streams, in which sig-
nal (audio and visual) and semantic (linguistic/textual) cues are
integrated hierarchically. Each modality is independently ana-

lyzed in individual saliency representations: spectro-temporal
for the audio channel (Sec. III), spatio-temporal for the visual
channel (Sec. IV), and syntactic for the transcribed subtitle
text (Sec. V). A multimodal saliency score per video frame
is obtained by combining features within each modality and
saliencies across modalities using linear and nonlinear fusion
schemes (Sec. VI), and weighted integration where the weights
can be: a) constant across time, b) stream-variance depended,
associated to feature/modality uncertainty, and c) dynami-
cally adaptive, in local, structure-depended windows (e.g.,
movie scene and shot boundaries). Based on the conjecture
that temporal variation of saliency is correlated to the time-
varying attentional capacity of the underlying streams, a
video summarization algorithm is formulated on the basis
of salient segments (Sec. VII) and applied on structured,
multimodal movie data. The algorithm is content-independent
and scalable, ranging from short movie clips to entire movies,
and can be generalized to other types of audiovisual data.
Summarization precision results, as a function of skim duration
and fusion scheme, are presented on a new database of
Academy-Awarded films, annotated with respect to salient,
semantic and aesthetic content (Sec. VIII). The quality of the
produced summaries is additionally evaluated using subjective
user ratings related to content aesthetics (enjoyability) and
coverage (informativeness) (Sec. IX).

II. BACKGROUND/RELATED WORK

Video Summarization: Summaries of video data may be
static or dynamic; personalized, domain-dependent or generic;
interactive or unsupervised; based on objects, events or per-
ceptual features, such as user attention. An extensive survey
on methods and taxonomies from the vast literature on video
abstraction and summarization can be found in [18] and de-
tailed field overviews in [15], [16]. Early works on automatic
skimming were primarily based on extracting low-level, visual
features, such as color or motion [19], often complemented
by mid-level cues. Representative key-frames were selected
using supervised and unsupervised classification [20], [21],
singular value decomposition [22] or probabilistic inference
[23]. Summarization has been also approached in a semi-
automatic manner, following video-editing principles, through
semantics mining, manual editing and abstraction effects [24].

Attempts to incorporate multimodal and/or perceptual fea-
tures have led to the design and implementation of various
systems that take into account more than the visual stream of
a video [25]. IBM’s CueVideo system [26] automatically ex-
tracts a number of low- and mid-level visual and audio features
and clusters the visually similar shots. The Informedia project
[27] and its offsprings combined speech and image processing
with natural language understanding to automatically index
video for intelligent search and retrieval [28]. Gaining insight
from viewer behavior, user attention models were developed
to guide the search for salient video segments [12]. Besides
visual saliency, additional cues (motion, face, camera and
audio attention) have been sought in order to capture salient
information, detect important video segments and compose a
summary [10]. Attention values were also coupled with scene
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and shot detection, for example through partitions on graphs
modeling video structure [11].

Visual attention and image saliency: Visual saliency and
its computational representations, i.e., image saliency maps,
have been the subject of efforts to model computationally the
neural basis of biological attention [6], [7]. Bottom-up models,
in which image regions are selected based on their distinctive
physical feature properties, or saliency, have arguably been the
most popular. This is supported by observations that saliency
is related to a region’s visual conspicuity and can predict gaze
and fixation allocation [29]. In most cases, the objective is the
notion of a centralized spatial saliency map, where each image
location is assigned a stimulus conspicuity or saliency value
[7]. In an evaluation study of image saliency methods [30], a
soft distinction is drawn in biologically-inspired, purely com-
putational and statistical/information-theoretical approaches.

Cues for visual saliency have been sought in low-level
(intensity, color, texture, motion orientation, size distributions)
and mid-level features (edges, shapes and contours) and in
some approaches high-level object or scene parsing [7], [31],
[32]. An in-depth review on the elementary visual cues that
can infuse saliency and guide the visual search is given in
[33]. Besides spatial contrast, a number of methods rely on
frequency or phase-selective tuning of the saliency map [34],
[35]. In addition, several information-theoretic measures of
saliency have been based on the distributions of features
within and across local image patches and neighborhoods.
Such measures include entropy [36], self-information [37],
mutual-information [38] and spatial Bayesian surprise [39].

The equivalent of a saliency map for image sequences is a
spatiotemporal map [35]. To capture the dynamics of visual
scenes, a video sequence is represented as a solid in the 3D
space. Saliency volumes are then computed through feature
competition at voxel level and optimization with inter- and
intra-feature constraints [40], [41].

Aural attention and audio saliency: The equivalent
bottom-up component of auditory attention is due to temporal
and spectral cues of the acoustical stimuli [3], [42], [43].
These are related to primitive sound features such as loudness,
frequency, direction and their temporal or spatial contrast
in an acoustic scene [5], [43], which are also involved in
higher-level processing, e.g, parsing and recognition, of the
acoustical stream. For example, auditory speech separation
employs timbre, pitch and spatial location [43], while speaker
identification relies also on accent and intonation [3].

Following the distinction in [3], attention to acoustical
streams may be spatial, towards different sources that need
to be localized [42], [44] or featural, non-spatial, towards
distinctive acoustical features within each stream [10], [45],
depending on the demands of the auditory task. The former
implies the construction of spatial saliency maps, the latter the
formation of temporal saliency streams. In addition, featural
salient segments signify the temporal boundaries of audio
events [46]. Models of auditory attention have been previously
used to simulate psychophysical tasks and applied to audio
analysis systems, such as grouping and stream segregation
[42], sound source localization, auditory scene analysis [8],
soundscape design [44], prominent syllable and word detection

[45], change or event detection and video summarization.
Building on the analogies of early visual and auditory

processing, bottom-up, auditory saliency maps of an acoustic
scene were developed inspired by the visual paradigm [8].
The auditory spectral representation is processed as an image,
by extracting multiscale features (intensity, frequency and
temporal contrast, orientation). Pyramidal decompositions in
isotropic and oriented bands, give rise to feature maps that are
subsequently combined across-scales to an integrated saliency
map [44], [45]. Saliency maps can be reduced to a saliency
stream by across-frequency integration or maximization. In
addition, top-down, biased selection has been included in au-
ditory attention models in the form of task-dependent control
mechanisms [45] or attentional switching [44].

For the case of speech signals, salient features have been
sought to micro-modulations in the envelope and phase
variations of fundamental, nonstationary AM-FM compo-
nents. These variations were employed for extracting various
modulation-inspired representations like formant tracks and
bandwidth [47], dominant components [48] and coefficients
of energy-frequency distributions [49].

Text saliency: The saliency of language and text has been
studied extensively for a wide range of applications most
notably text summarization. The various features proposed for
estimating saliency include: word frequency, term frequency-
inverse document frequency (tf-idf) [50], part-of-speech tags
[51], discourse structure [52], ontological relationships [53],
lexical centrality in semantic graphs [54]. In recent, closed-
loop approaches, models of saliency are trained from annotated
text corpora using machine learning algorithms [55]–[57].

III. AUDIO ANALYSIS

We approach saliency computation in an audio stream as a
problem of assigning a measure of interest to audio frames,
based on spectro-temporal cues. Applying the Amplitude
Modulation - Frequency Modulation (AM-FM) speech model
[58] to generic audio signals, where multiple sources are
added linearly (temporal overlap) or concatenated (auditory
streaming) [59], audio features are extracted through sig-
nal instantaneous amplitude and frequency. The importance
of amplitude and frequency changes for aural saliency and
auditory scene analysis has motivated a variety of studies
where subject responses are measured with respect to tones
of modulated frequency or loudness [3], [5], [8]. Amplitude
and frequency modulations are also related to temporal acous-
tic micro-properties of sounds that are useful for auditory
grouping [59] and recognition of audio sources and events.
In the proposed model, saliency is quantified through the
parameters of elementary AM-FM components, separated in
time and frequency. An abstracted representation is obtained
by tracking the components with maximal energy contribution
across frequencies and time.

The input audio is processed as a sequence of signal frames,
with the window length defining the scale of the repre-
sentation, e.g. instantaneous (sample-wise) or set to match
the associated visual modality rate (frame-wise). Frames are
decomposed to a set of frequency bands; each band is modeled
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by an AM-FM signal and further decomposed to instantaneous
energy, amplitude and frequency signals. We are modeling
salient structure in the signal level, as opposed to the context
level in previous approaches [10], thus approaching saliency
in a more generic, context-independent way.

A. Audio Modeling
In this work, an audio source is either the physical signal-

producing medium or a specific semantic part of the audio
stream (speech, music, sound effects, natural and artificial
sounds, background/enviromental noise). A signal from such
a source is modeled by a linear mixture of K nonstationary
sinusoids modulated in frequency and amplitude, i.e. a multi-
component AM-FM signal

s(t) =
K∑

k=1

sk(t) =
K∑

k=1

ak(t) cos (ϕk(t)) (1)

where ak and ϕk are the instantaneous amplitude and phase
signals of component k ∈ [1,K]. In the most general case we
assume a fixed tessellation in K sub-components. Each signal
sk(t) is a real-valued amplitude and frequency modulated
sinusoid of the form x(t) = a(t) cos(ϕ(t)) with time-varying
envelope a(t) and instantaneous frequency ω(t) = dϕ(t)/dt.
Amplitude accounts for subtle envelope variations in x(t),
while the frequency ω(t) = dϕ(t)/dt accounts for small-scale
instantaneous deviations from a carrier frequency ωc.

For a complex-valued sinusoid x(t) = a(t) exp(jϕ(t)),
demodulation in amplitude and frequency can be approximated
via |a(t)| ≈ |x(t)| and ϕ(t) ≈ arctan(Im{x(t)}/Re{x(t)})
[47]. For real signals, this involves construction of the analytic
signal through the Hilbert transform, which requires a longer
time window and results in errors related to approximating the
quadrature signal. An approach of comparable modeling error,
but reduced complexity and improved temporal resolution is
based on the Teager-Kaiser energy operator

Ψ[x(t)] ≡ [ẋ(t)]2 − x(t)ẍ(t), ẋ(t) = dx(t)/dt, (2)

and the energy separation algorithm (ESA) [47], [58], [60].
Applied to x(t) = a(t) cos(ϕ(t)), Ψ gives with negligible
approximation error under realistic constraints [58],Ψ[x(t)] ≈
a2(t)ω2(t), i.e., the instantaneous energy of a source of
oscillations of amplitude a(t) and frequency ω(t). This energy
is separated to its amplitude and frequency components by
the energy separation algorithm using Ψ on the signal and
its first derivative. Signal x(t) is thus described by the set of
amplitude, frequency and energy signals {a(t), ω(t),Ψ[x(t)]}.

For a multicomponent AM-FM of the form (1), the model
requires separation of s(t) in a set of K narrowband sig-
nals sk(t) for the energy separation constraints to hold. A
global and a-priori separation is achieved by bandpass filtering
through a linearly-spaced set of frequency-tuned filters. Gabor
filters have optimum time-frequency localization and their
complex responses come in quadrature pairs

gk(t)=(2πσ2
k)

−1 exp
(
−t2/2σ2

k

)
exp (jωkt) , k ∈ [1,K] (3)

where σk determines the temporal support and filter bandwidth
and ωk the central frequency. Assuming that a component in-
stantaneously dominates a filter’s response (gk ∗s)(t) ≈ sk(t),

its model parameters can be estimated by demodulating the
output directly [60]. This results in a (3 × K)-dimensional
time-varying representation of the audio signal

s(t) ↔ {ak(t), ωk(t),Ψ[gk ∗ s](t)} , k ∈ [1,K]. (4)

If we additionally require that a single component domi-
nates locally the signal spectrum, we obtain a representation
in terms of the dominant modulation component sd(t) =
ad(t) exp{jϕd(t)}, by maximizing an energy criterion Ek(t)
over the K-dimensional component space [48]:

sd(t)=si(t)(t), i(t)=argmax
k∈[1,K]

{Ek(t)}, (5)

A criterion related to component saliency is the short-term
energy operator response of the bandpassed signals, estimated
over local windows:

Ek(t) = Ψ[gk ∗ s](t) ∗Gσ(t), (6)

where Gσ(t) is a Gaussian window of time scale σ. The domi-
nant component’s local energy, amplitude and frequency yield
a reduced, 3-dimensional, time-varying signal representation:

s(t) ≈ sd(t) ↔ [ad(t) ∗Gσ(t), ωd(t) ∗Gσ(t), Ed(t)] . (7)

B. Audio Features

A discrete-time audio signal s[n] = s(nT ) is modeled
using K discrete AM-FM subcomponents whose instantaneous
amplitude and frequency signals are Ak[n] = ak(nT ) and
Ωk[n] = Tωk(nT ), respectively. The model parameters are
estimated from the outputs of K bandpass filters, using convo-
lution with real Gabor filters, a discrete-time energy operator
Ψd(x[n]) ≡ (x[n])2 − x[n − 1]x[n + 1] and the associated
discrete ESA, at an almost instantaneous time resolution [58].

Representation in terms of the dominant modulation com-
ponents is obtained by maximizing per analysis frame the
discrete operator Ψd, in the K-dimensional energy space.
For each frame m of length N , the dominant modulation
component is the maximum energy response, averaged over
the frame {n : (m− 1)N < n ≤ mN}:

Ed[m] = max
k

{W [n−mN ] ∗Ψd[gk ∗ s][n]} , (8)

where W [n] is a moving average filter and gk the filter impulse
response. The dominant energy filter j[m] = argmaxk{W ∗
Ψ d[gk ∗s]} is submitted to demodulation via ESA and the in-
stantaneous signals are averaged over frame duration to derive
the dominant amplitude and dominant frequency features

Ad[m] = W [n] ∗ |Aj [n]| , Ωd[m] = W [n] ∗ Ωj [n]. (9)

Overall, each analysis frame yields average measurements for
the source energy, instant amplitude and frequency from the
filter that captures the prominent modulation components. The
resulting feature vector

Fa[m] = [Fa1, Fa2, Fa3] [m] = [Ad,Ωd,Ed] [m] (10)

is a low dimensional descriptor of signal properties related
to level of excitation, rate-of-change, frequency content and
source energy (Fig. 1).
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Fig. 1. Audio stream: waveform (left-top) with audio saliency annotation and spectrogram (left-bottom) using the employed audio analysis parameters (15 msec
windows, 1/2 overlap). Horizontal lines denote the filterbank (25 filters, 400Hz bandwidth) central frequencies, i.e. ωk in Eq. (3). Dominant modulation
features: energy (solid) Ed and amplitude (dashed) Ad (right-top); frequency Ωd (solid) and frequency of the dominant filter (black dots) (right-bottom).
Audio data are 300 frames (12 sec) from film “Chicago”, containing music, singing and dialogue.

C. Audio Saliency

A temporal index of auditory saliency is constructed by
integrating the feature values of (10) in a single representation.
The rationale is to build a data-driven, time-varying saliency
function that resonates with the sensory-level attention invoked
to a listener of the audio stream. The features extracted
and selected through the audio model quantify spectral and
temporal saliency from fundamental modulation structures.
Our hypothesis for this modulation-based saliency is to be
correlated to the bottom-up attention and listener fixation to
parts of an audio signal.

In accordance with the overall bottom-up framework, an
early integration scheme is applied. For low-level feature
fusion, we define a saliency measure per analysis frame
Sa[m] : R3 → [0, 1] on the space spanned by the audio feature
vectors. An intuitive choice of a weighted linear mapping

Sa[m] = w1Fa1[m] + w2Fa2[m] + w3Fa3[m], (11)

where wi, i ∈ {1, 2, 3} are positive scalars that sum to one,
provides a mid-level representation over m that will depend
on feature normalization and the weighting scheme.

Features are normalized with respect to their value range in
order to theoretically ensure a mapping to [0, 1] and compen-
sate for the difference in their dynamic range. Normalization
is performed by least squares fitting of independent feature
values to [0, 1] over a long-term window Ln. The choice
of Ln can be associated with scale, auditory memory and
temporal integration of the attentional selection process, in
the sense that features retain their relative variation across a
finite time extend. For large-durations of inputs, for example
the audio channel from a full-length film, the normalizing
window can be defined by logical, structural or thematic units.
In this context, global normalization can be sub-optimal if a

listener’s attentional thresholds are progressively adapted, e.g.,
by comparing new representations to short-term memory.

The weighting scheme controls the type and relative contri-
bution of each feature. It be fixed or time-adaptive; incorporate
priors on feature significance; or obtained through supervised
or semisupervised learning. A baseline of constant equal
weights provides the baseline, uniform average of normalized
features. Alternatively, assuming independent normal distribu-
tions for each, we account for feature uncertainty by setting
the weights inversely proportional to feature variance, i.e.,
wi = 1/σ2

i . This is a theoretically semi-optimal scheme under
a weak probabilistic fusion framework [61] and provides the
means for adaptivity across time with the variance estimated
in local windows La of fixed or varying duration.

The developed audio saliency representation is a
continuous-valued function of time, constrained in [0, 1]
by the design of the fusion norm and formed through
an unsupervised, bottom-up approach. It constitutes a 1D
temporal saliency map, conceptually similar to spatial
saliency for images (2D maps) [30] and spatiotemporal
saliency maps (3D volumes) for videos [40]. Schemes for
fusion, normalization, weighting and adaptation will be
further discussed in Sec. VI.

IV. VISUAL ANALYSIS

We define saliency computation in image sequences as a
problem of assigning a measure of interest to each visual unit.
This means that a saliency measure is produced by taking
into account the actual spatiotemporal evolution of the input.
Inspired by theories of grouping and perceptual organization
we propose a model based on a volumetric representation of
the visual input where features are grouped together according
to several criteria related to Gestalt laws.
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The input is a sequence of frames represented in our model
as a volume in space-time. This volume is decomposed into
a set of conspicuity features, each decomposed into multiple
scales. Voxel interactions are allowed in three different ways:
(a) intra-feature (proximity), between voxels of the same fea-
ture and same scale, (b) inter-scale (scale), between voxels of
the same feature but different scale and (c) inter-feature (simi-
larity), between voxels of different features. We implement this
kind of interactions through global minimization of an energy,
which is strongly related to Gestalt’s figure/ground separation,
since the background is continuously suppressed after each
iteration. The stable solution of the energy minimization leads
to the final saliency volume. It is important to notice that
this formulation allows for selective enhancement of features
rather than naive smoothing of conspicuous features. Broadly
speaking, the constraints enhance coherency of similar and
neighboring voxels according to each of the criteria.

Let V be a volume representing a set of consequent input
frames, defined on a set of points Q, with q = (x, y, t) an
individual space-time point. Points q ∈ Q form a grid in
the discrete Euclidean 3D space defined by their coordinates.
Under this representation, point q becomes the equivalent to
a voxel in this volume and V (q) is the value of the volume
at q. V is decomposed into a set of conspicuity volumes Ci

with i = 1, ...,M corresponding to three different features,
namely intensity, color and orientation. Each conspicuity vol-
ume is further decomposed into multiple scales ℓ and a set
C = {Ci,ℓ} is created with i = 1, ...,M and ℓ = 0, 1, ..., L
representing a Gaussian volume pyramid. The final saliency
distribution is obtained by minimizing an energy function E
composed of a data term Ed and a smoothness term Es:

E(C) = λd · Ed(C) + λs · Es(C). (12)

The data term models the interaction between the observation
and the current solution, while the smoothness term is com-
posed of the three constraints.

A. Visual Features

In order to establish a common encoding and allow inter-
action between different features, each of the volumes partici-
pating in the energy minimization is initialized by conspicuity
and not by pure feature value. Such encoding establishes a
common conspicuity range among all features that makes
them comparable. This means, for example, that the most
conspicuous voxel in the intensity volume must have the same
value as the one in the color volume.

Intensity conspicuity C1 is obtained by applying to the
intensity, given by F1 = (r + g + b)/3, where r, g, b are the
color components of volume V, a local contrast operator that
marks a voxel as more conspicuous when its value differs from
the average value in the surrounding region:

C1(q) =

∣∣∣∣∣∣F1(q)−
1

|Nq|
∑
u∈Nq

F1(u)

∣∣∣∣∣∣ , (13)

where q ∈ Q and Nq is the set of the 26-neighbors of q.
The 26-neighborhood is the direct extension in 3D of the 8-
neighborhood in the 2D image space.

Color conspicuity is based on the color opponent theory
that suggests the control of color perception by two opponent
systems: a blue-yellow and a red-green mechanism. Such
spatial and chromatic opponency exists for the red/green,
green/red, blue/yellow, and yellow/blue color pairs in human
primary visual cortex [62] [63]:

C2(q) = (RG+BY )(q) (14)

RG = |R−G|, BY = |B − Y |,

with R = r−(g+b)/2, G = g−(r+b)/2, B = b−(r+g)/2,
and Y = (r + g)/2− |r − g|/2− b.

Orientation is computed using spatiotemporal steerable fil-
ters tuned to respond to moving stimuli. The responses Eθ

are obtained by convolving the intensity volume F1 with the
second derivatives G2 of a 3D Gaussian filter and their Hilbert
transforms H2. The quadrature response is taken to eliminate
phase variation. More details are given in [64]. Energies are
computed at orientations θ defined by the angles related to
the three different spatiotemporal axis. In order to get a purer
measure, the response of each filter is normalized by the sum
of the consort and orientation conspicuity is computed by

C3(q) =

∑
θ Eθ(q)∑

u

∑
θ Eθ(u)

. (15)

B. Energy Formulation

Each of the conspicuity volumes encodes the saliency of
the contained voxels according to the corresponding feature
only. These volumes should interact in order to produce a
single saliency measure for each voxel. The proposed model
achieves this through a regularization framework, whereby
conspicuity volumes compete along a number of directions,
namely interaction among voxels at the intra-feature, inter-
scale and inter-feature level. As discussed above, the different
interactions are implemented as a competition modeled by
energies inspired by the Gestalt laws. Specifically, proximity
and closure laws give rise to the intra-feature constraint,
according to which voxels that are located near each other
tend to be part of a group and small gaps are closed due to
the induced forces. The similarity law is related to all energies,
since voxels similar in terms of intra-feature, inter-feature
and inter-scale value tend to group. Finally, the common
fate law is related to the entire minimization approach which
produces space-time regions that can be perceived as coherent
and homogenous. Hence, we expect that voxels conspicuous
enough to pop out in all dimensions will become ever salient
during the minimization process.

The data term, Ed, preserves a relation between the ob-
served and initial estimate in order to avoid excessive smooth-
ness of the result, since the energies involved in Es tend to
smooth the visual input according to different criteria. The
constraint is formulated as an energy relating the observed to
the initial voxel values. For a set of conspicuity volumes C
the data term is defined as

Ed(C) =
∑
i

∑
ℓ

∑
q

(Ci,ℓ(q)− C0
i,ℓ(q))

2, (16)
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Fig. 2. Sample video frames (top) and corresponding color-encoded saliency maps (bottom) from movies “Lord of the Rings I” (left) and “300” (right).

where C0
i,ℓ(q) is the initial estimate, i = 1, . . . ,M , ℓ =

1, . . . , L and q ∈ Q. The sum limits are omitted for simplicity.
The smoothness term, Es, is formulated as

Es(C) = E1(C) + E2(C) + E3(C), (17)

where E1, E2, E3 denote the intra-feature, inter-feature and
inter-scale constraints respectively. E1 models intra-feature
coherency, i.e., defines the interaction among neighboring
voxels of the same feature, at the same scale and enhances
voxels that are noncoherent with their neighborhood:

E1(C) =
∑
i

∑
ℓ

∑
q

Ci,ℓ(q)−
1

|Nq|
∑
r∈Nq

Ci,ℓ(r)

2

(18)

E1 produces small spatiotemporal blobs of similar valued
voxels. E2 models inter-feature coherency, i.e., it enables
interaction among different features so that voxels being
conspicuous across all feature volumes are grouped together
and form coherent regions. It involves competition between a
voxel in one feature volume and the corresponding voxels in
all other feature volumes:

E2(C) =
∑
i

∑
ℓ

∑
q

Ci,ℓ(q)−
1

M − 1

∑
j ̸=i

Cj,ℓ(q)

2

(19)

E3 models inter-scale coherency among ever coarser reso-
lutions of the input, i.e., aims to enhance voxels that are
conspicuous across different pyramid scales:

E3(C) =
∑
i

∑
ℓ

∑
q

Ci,ℓ(q)−
1

L− 1

∑
n ̸=l

Ci,n(q)

2

(20)

Voxels that retain high values along all scales are more
salient. This effect is in conformance also to the scale saliency
definition proposed by Kadir and Brady [36].

C. Energy Minimization

To minimize (12) we adopt a steepest gradient descent
algorithm where the value of each feature voxel is updated
along a search direction, driving the value in the direction of
the estimated energy minimum

Cτ
i,ℓ(q) = Cτ−1

i,ℓ (q) +△Cτ−1
i,ℓ (q), (21)

△Cτ−1
i,ℓ (q) = −γ · ∂E(Cτ−1)

∂Cτ−1
i,ℓ (q)

+ µ · △Cτ−2
i,ℓ (q), (22)

where τ is the iteration number, γ is the learning rate and
µ a momentum term that controls the algorithm’s stability.
The two parameters are important both for stability and speed
of convergence. Practically, few iterations are enough for the
estimate to reach a near optimal solution.

Equation (22) requires the computation of the energy partial
derivative

∂E(C)

∂Ck,m(s)
= λd · ∂Ed(C)

∂Ck,m(s)
+ λs ·

3∑
c=1

∂Ec(C)

∂Ck,m(s)
(23)

where k = 1, ...,M , m = 1, ..., L, s ∈ Q and Ec with c =
1, ..., 3 the three energy constraints of the smoothness term.
The detailed analytic derivation of the partial derivatives of
Ed and and Ec can be found in [41].

D. Visual Saliency
The convergence criterion for the minimization process is

defined by maxq |△Cτ−1
i,ℓ (q)| < ϵ, where ϵ is a small constant.

The output is a set of modified conspicuity multiscale volumes
Ĉ = {Ĉi,ℓ} and saliency is computed as the average of all
volumes across features and scales:

S =
1

ML

M∑
i=1

L∑
ℓ=1

Ĉi,ℓ. (24)

A more detailed description of the method for different ap-
plications can be found in [40], [41]. Figure 2 depicts the
computed saliency on three frames of movies “Lord of the
Rings I” and “300”, where higher values correspond to more
salient regions (e.g., the shining ring or the falling elephant).

In order to create a single saliency value per frame, we use
the same features involved in the saliency volume computation,
namely, intensity, color and spatiotemporal orientation. Each
of the feature volumes is first normalized to lie in the range
[0, 1] and then point-to-point multiplied by the saliency one in
order to suppress low saliency voxels. Each frame is assigned
a single saliency value through the the weighted average:

Sv =
3∑

k=1

∑
q

S(q) · Fk,1(q), (25)

where the second sum is taken over voxels q of saliency
volume S(q) and Fk,1(q) stands for the k-th feature volume
at the first pyramid level.
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V. TEXT ANALYSIS

Text saliency scores are assigned on the basis of empirical
word-level relative importance values. As a preprocessing
step, spoken language information in the audio stream has
to be automatically recognized or manually annotated. In
addition, the produced transcripts have to be time-aligned
with the audio stream, in order to establish a temporal word-
frame correspondence. In this work, we utilize the annotation
available in the subtitles of movies and commercial video
streams, although the proposed approach can be also applied
to the output of an automatic speech recognizer.

A. Audio Segmentation using Forced Alignment

Although subtitles provided with commercially released
video material are roughly time aligned with the audio stream,
the synchronization is not perfect. To correct time-stamp bias
and achieve accurate word-level alignment, we perform forced
segmentation on the audio stream using the speech transcript
and phone-based acoustic models, i.e., an automatic speech
recognition (ASR) system. The original timestamps in the
subtitles are used to find the approximate location of the text in
the audio stream in order to initialize the forced segmentation
procedure. We avoid losing relevant speech segments in the
audio stream by adding a small fixed amount of time before
the start time and after the end time of the subtitle time-stamps.

In this work, we use the Sonic ASR toolkit [65] and
general-purpose acoustic models, i.e., content-dependent tri-
phone hidden Markov models trained on clean speech. The
grammar used is based on the phonetic transcription of the
corresponding text in the subtitles with garbage models in the
beginning and end of each sentence. Informal evaluation of
the forced segmentation results showed good performance on
approximately 85% of the sentences analyzed. Errors occurred
for portions of the audio stream where speech overlapped with
loud music or noises. Audio alignment results can be further
improved by employing acoustic model adaptation techniques
[66] or acoustic modeling of various noise types [67], [68].

B. Syntactic Text Tagging

The time-aligned transcripts are analyzed using a shallow
syntactic parser that (mainly) performs part-of-speech (POS)
tagging. We employ a decision-tree-based probabilistic tagger
[69], although in principle any POS tagger can be used.
Text saliency scores are assigned to each word based on the
POS tag of that word. The motivation behind this approach
is the well-known fact that (on-average) some POS convey
more information than others. The most salient POS tags are
proper nouns, followed by nouns, noun phrases and adjectives
[70]. Verbs can specify semantic restrictions on their pre- and
post-arguments, which usually belong to the aforementioned
classes. Finally, there is a list of words (often referred as stop-
words) that have very little semantic content.

POS taggers contain anywhere from 30 to 100 different
tags. We have grouped those into six POS classes to simplify
the text saliency computation process. The first (and most
salient) class contains the proper nouns, e.g., names, cities.

The second contains common nouns, the third contains noun
phrases, the fourth adjectives, the fifth verbs and the sixth class
the remaining parts of speech, e.g., pronouns, prepositions,
conjunctions, adverbs. The following weights are assigned to
each of the six classes: {1.0, 0.7, 0.5, 0.5, 0.5, 0.2}. Note that,
scores are normalized between 0.2 and 1, i.e., even “stop-
words” are assigned a small weight. The somewhat arbitrary
assignment of POS tag classes to saliency scores was chosen
based on observations of linguistic experts [70], however the
weights can be learned from saliency annotations or scores
assigned to movie dialogues.

All in all, each word is assigned a saliency score based on
the POS category assigned to it by the tagger. For example,
the POS label and assigned weights for two sentences from
“Lord of the Rings I” are:

“Taken by Isildur from the hand of Sauron”

NP NP PN IN NP NP IN PN
0.5 0.5 1.0 0.2 0.5 0.5 0.2 1.0

“Evil is stirring in Mordor”

NN VBZ VVG IN PN
0.7 0.5 0.5 0.2 1.0

Note how proper nouns (PN), e.g., “Sauron”, “Mordor”, are
very salient and are assigned a score of 1, common nouns (NN)
a score of 0.7, noun phrases (NP) and verbs (VBZ, VVG) a
score of 0.5, while “stop-words” (IN) are assigned a score of
0.2. The noun phrases (NP) tags produced by the parser are
consistent with the (phrase-level) Penn-Tree bank tags. Since
NPs contain a common noun and typically one or two words
of lower saliency (e.g., determiner, pronoun, adjective) they
are assigned a mid-range score of 0.5.

C. Text Saliency

Based on the assignment of frames to words from the
forced segmentation procedure and the word saliency scores
assigned by the POS tagger, a text saliency temporal curve St

is computed as follows:

St[m] =
∑
p

wpχp[m], χp[m] ∈ {0, 1},

p ∈ {1, . . . , 6}, wp ∈ {0.2, 0.5, 0.7, 1}, (26)

where m is the frame index, p is the POS class index, wp

is the saliency score for class p, and χp[m] is an indicator
function that is 1 if frame m is aligned with a (portion of a)
word in POS class p, else 0.

VI. MULTIMODAL FUSION

Fusion of different modalities and their representations can
be performed at three levels: a) low-level fusion (feature vec-
tors), b) middle-level fusion (saliency curves) or c) high-level
fusion (curve features, salient segments, events). The process
of combining feature or saliency curves can in general be lin-
ear or nonlinear [10], [71], have memory, or vary with time. In
addition, representations from heterogeneous modalities may
require preprocessing, normalization and alignment prior to
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integration. We consider and evaluate experimentally different
fusion schemes, within and across modalities. Specifically, two
problems are examined: Intramodal fusion: Features for each
modality are normalized and combined to produce modality-
specific saliency curve (Sec. III, IV, V). Intermodal fusion:
Saliency curves from different modalities are combined in a
composite, multimodal saliency. The discussed methods for
saliency fusion, normalization and adaptation have been also
applied for the intramodal, feature integration problem.

A. Saliency Integration

The individual saliency cues are combined in a multimodal,
audio-visual-text saliency using frame-level fusion:

Savt[m] = fusion(Sa, Sv, St,m). (27)

Variants of fusion norm frameworks are considered and val-
idated experimentally, namely: a) weighted linear combina-
tions with fixed, equal or unequal, weights; b) variance-based
weights, inversely proportional to each modality’s uncertainty
σ2
i , i ∈ {a, v, t}; c) nonlinear norms, e.g., max, min; d) time-

adaptive, dynamic weights, using syntactic video structure
(e.g., scene and shot changes). For intramodal (audio and
visual) fusion, we used the experimentally optimum of the
same variants of baselines (11) and (25).
Linear Fusion: The straightforward and most intuitive
scheme, sets the information gain of the multimodal curve
equal to the sum of the unimodal gains, through a memoryless,
weighted average of audio, visual and text saliency values:

Slin = waSa + wvSv + wtSt. (28)

In general, the weights can be unequal, time-varying, adaptive,
depending on priors such as the uncertainty of the feature
streams etc. Assuming that the individual saliency features are
normalized in [0, 1] and the weights form a convex combina-
tion, linear fusion gives a multimodal saliency in [0, 1]. Our
baseline system (LE-F) is based on linear fusion with all three
saliency curves equally weighted.
Variance-based Fusion: Each saliency stream is weighted
inversely proportional to its variance:

Svar =
1

var (Sa)
Sa +

1

var (Sv)
Sv +

1

var (St)
St. (29)

The linear scheme (28) is optimum (to a second-order approxi-
mation) under the maximum a posteriori (MAP) criterion if the
monomodal MAP estimates are close and the weights equal
the negatives of the 2nd-order derivatives of the monomodal
posteriors at their maxima [61]. If the underlying distributions
are Gaussian, then it is also exact and the weights become in-
versely proportional to the variances. The same variance-based
scheme (VA-F) can also be applied to feature combination
within each modality for intramodal fusion.
Nonlinear Fusion: Two nonlinear fusion schemes are con-
sidered for intermodal (resp. intramodal) fusion, namely the
minimum (MI-F) and maximum (MA-F) rules applied on
saliency (resp. feature) values at each frame:

Smin = min{Sa, Sv, St}, Smax = max{Sa, Sv, St}. (30)

α-Divergence: All the above linear and nonlinear fusion
schemes can be considered as special cases of the so-called
α-mean proposed in [72] for integration of probability distri-
butions. Let Sk be nonnegative quantities, i.e., saliency values;
then, for α ∈ [−∞,+∞], their α-mean is defined by

f−1
α

[∑
k

wkfα(Sk)

]
, fα(x) ,

{
x

1−α
2 , for α ̸= 1,

log x, for α = 1,
(31)

where wk are given weights and form a convex combination.
For α = −∞,−1, 1, 3,+∞, we obtain respectively the max-
imum, weighted arithmetic mean, geometric mean, harmonic
mean and minimum of the values Sk. In [72] it is shown that
the α-mean is optimum in minimizing the α-divergence.

B. Normalization Scale and Weight Adaptation

Movies are structured hierarchically in progressively larger
units, of increasing duration (frames, shots, scenes, settings,
thematics). A global normalization of feature and saliency val-
ues for fusion assumes a mode of prolonged, attentional viewer
fixation around the global maxima of the resulting curves.
To introduce locality in feature scaling, three linear schemes
are considered based on semantically-chosen normalization
windows: (a) global normalization (GL-N), (b) scene-based
normalization (SC-N) and (iii) shot-based normalization (SH-
N), with values scaled independently across movies, scenes
and shots respectively. For SC-N (resp. SH-N) normalization,
we impose the same peak-to-peak variation for all scenes
(shots) in a movie clip. Other schemes such as nonlinear (e.g.,
log) scaling or root mean square normalization across shots or
scenes may be plausible options but are not considered here.
In accordance, the same locality is considered for dynamic
adaptation of the fusion rule, through weight updating across
global or local windows. In the case of the inverse-variance
weighting scheme of Eq. (29), the variance of each stream can
be computed at a global (VA-GL-F), shot (VA-SH-F) or scene
(VA-SC-F) level.

VII. VIDEO SUMMARIZATION

We present a dynamic summarization algorithm that selects
the most salient audio and video sub-clips in order to produce
a coherent and informative summary. Clips are selected based
on their attentional capacity through the computed multimodal,
audio-visual-text (AVT) saliency. One approach for creating
summaries is to select, based on a user- or application-defined
skimming index, portions of video around key frames and
align the corresponding “audio sentences” [10]. Here, sum-
maries are created using a predefined skimming percentage.

First, a smoother, coarse attention curve is created using
median filtering on the initial AVT saliency, since information
from key-frames or saliency boundaries is not necessary. A
saliency threshold Tc is selected so that a required percent of
summarization c is achieved. Frames m with saliency value
Sav[m] > Tc are selected to be included in the summary. For
example, for 20% summarization, c = 0.2, the threshold Tc

is selected so that the cardinality of the set of selected frames
D = {m : Sav[m] > Tc} is 20% of the total number of frames.
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Fig. 3. Saliency curves, multimodal fusion and manual vs. automatic segment
selection for movie summarization (800 frames, scene from the movie “300”).
Keyframes (top) correspond to the indicated saliency peaks.

The result from this leveling step is a video frame indicator
function Ic for the desired level of summarization c that equals
1, Ic[m] = 1, if frame m is selected for the summary and
0 otherwise. The resulting indicator function Ic is further
processed to form contiguous blocks of video segments. This
processing involves eliminating isolated segments of small
duration and merging neighboring blocks in one segment.
Finally, the selected clips are tailored together using overlap-
add (fade-in fade-out) for both the audio and visual streams.
More details are provided in [13].

Results presented in this paper use the following parameters,
for videos at a rate of 25 frames per second: a 41-frame median
filter is used for saliency curve smoothing; selected clips that
are shorter than 20 frames long are ignored; selected clips that
are at most 10 frames apart are joined together; and fade-in
fade-out is applied over 10 frames. In Fig. 3 an example of
individual saliency curves and their multimodal fusion (linear
with equal weights) is shown for a short clip from movie
“300”. Video frames associated with high saliency values
(marked with circles on the multimodal curve) are shown on
top and segments selected from the median-filtered curve for
the summary (c = 0.5) are shown at the bottom.

VIII. DATABASE

The Movie Summarization (MovSum) Database consists
of half-hour continuous segments from seven movies (three
and a half hours in total), namely: “A Beautiful Mind”
(BMI), “Chicago” (CHI), “Crash” (CRA), “The Departed”

(DEP), “Gladiator” (GLA), “Lord of the Rings - the Re-
turn of the King” (LOR) and the animation movie “Find-
ing Nemo” (FNE). Oscar-winning movies from various film
genres (drama, musical, action, epic, fantasy, animation) were
selected to form a systematic, genre-independent database of
acclaimed, high production quality videos. In this paper we
present results for seven movies, however the expansion and
annotation of the database is an ongoing task.

Movie clips were first manually segmented into shots and
scenes. A shot is defined as the interval between editing
transitions (e.g., cut, fade) while a scene, is defined as a
complete, continuous chain of actions (shots) that occur at the
same place and time. The average shot and scene duration was
2.5 sec and 3.5 min, respectively. Next, labeling of perceptual,
semantic, and affective content was performed, as follows:
(a) Sensory information: monomodal (audio, visual) and mul-
timodal (AV) saliency of the sensory content, i.e., segments
that are, respectively, acoustically, visually or audio-visually
interesting. (b) Cognitive information: the combination of
sensory/perceptual events and semantics/pragmatic events. It
includes the semantic information layer, i.e., segments that
are conceptually important as stand-alone sensory/semantic
events, henceforth referred to as audio-visual-semantic events
(AVS). (c) Affective information: both intended emotions and
experienced emotions have been annotated. More details on
the affective annotation and the associated emotion tracking
task are provided in [73].

Annotation was performed by three expert viewers using
ANVIL video annotation tool [74]. Movie segments that were
considered salient at the audio sensory (A), visual sensory (V),
audio-visual sensory (AV), and audio-visual sensory/semantic
(AVS) level were labeled in separate annotation runs. The
output of each run was a binary saliency indicator function.
Table I shows the (average) percentage of frames labeled as A,
V, AV, AVS, for each of the seven movies. To achieve a high
degree of annotation uniformity for this highly subjective task,
the annotators followed guidelines from a labeler’s manual on
how to perform the labeling of all individual layers. Table II
shows the average (pairwise) correlation agreement, overall
satisfactory, for each annotation layer and movie. Note that
the agreement is higher for the sensory (A, V, AV) layers

TABLE I
AVERAGE PERCENTAGE OF FRAMES LABELED SALIENT.

Layer BMI CHI CRA DEP GLA LOR FNE Mean
A 25.4 56.3 55.0 33.4 60.9 58.3 54.6 49.1
V 30.1 46.3 37.9 32.4 39.2 43.3 36.9 38.0

AV 27.4 47.7 43.1 37.8 49.6 50.7 39.7 42.3
AVS 63.2 76.6 64.8 71.8 68.5 72.7 67.6 69.3

TABLE II
AVERAGE (PAIR-WISE) CORRELATION BETWEEN LABELERS.

Layer BMI CHI CRA DEP GLA LOR FNE Mean
A 0.54 0.48 0.46 0.49 0.51 0.52 0.42 0.49
V 0.31 0.33 0.32 0.45 0.38 0.43 0.38 0.37

AV 0.45 0.45 0.41 0.54 0.44 0.50 0.44 0.46
AVS 0.29 0.24 0.27 0.29 0.31 0.33 0.23 0.28
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compared to the sensory-semantic AVS layer. However, the
ground-truth saliency indicator functions, used for evaluation
purposes in Sec.IX, consist of frames that have been labeled
salient by at least two labelers. Thus, despite the lower
agreement between annotators observed for certain movies,
the final saliency ground-truth was formed on the basis of
consistently-labeled salient frames only.

IX. EVALUATION AND DISCUSSION

In this section, we present objective (quantitative) and
subjective (qualitative) results for the proposed saliency repre-
sentations and video summarization algorithms. The different
fusion and normalization schemes for multimodal saliency are
systematically evaluated, with respect to frame-level precision,
against the annotated ground-truth and compared to learning-
based classification. The produced summaries are also qualita-
tively evaluated in terms of informativeness and enjoyability.

A. Objective Evaluation of Fusion Schemes

We evaluate three normalization schemes, i.e., global (GL-
N), scene-level (SC-N), shot-level (SH-N), and six fusion
schemes, i.e., linear (LE-F), min (MI-F), max (MA-F), inverse
variance (VA-GL-F, VA-SC-F, VA-SH-F), using the annota-
tions of the movie database as ground-truth. Normalization
and fusion schemes are evaluated on three different tasks:
a) intramodal fusion of audio features into an audio saliency
curve (audio feature fusion), evaluated on audio saliency
ground-truth (A-A); b) intramodal fusion of visual features
into a visual saliency curve (visual feature fusion), evaluated
on visual saliency ground-truth (V-V); c) intermodal fusion
of audio, visual and text curves (AVT) into multimodal
saliency, evaluated on ground-truth of audio-visual (AVT-AV)
and audio-visual-semantic (AVT-AVS) annotations.

Results are presented in terms of frame-level precision
scores for all tasks. Specifically, the automatically-computed
binary indicator functions on the output of the summa-
rization algorithm (Sec. VII) are compared to the anno-
tated database ground-truth. Precision, i.e., the percentage
of correctly detected salient frames given the ground-truth
labeling to salient/non-salient frames (precision = correctly
detected / all detected), best characterizes the frame-level
performance on these salient event detection tasks. Note that
for the intramodal experiments (audio feature and visual
feature fusion) the saliency indicator and associated summaries
are produced using only the corresponding modality features
(audio and visual respectively). Various percents of summa-
rization are considered, corresponding to different levels of
decision thresholds on the computed saliency curves.

Frame precision scores for intra- and intermodal fusion
are presented in Table III for summaries that include 20%,
33% and 50% of the original number of frames, and for the
tasks of audio feature fusion, visual feature fusion and audio-
visual-text saliency fusion. All possible combinations among
normalization and fusion schemes are evaluated. Best results
in each task are shown in bold. There are two clear trends
across tasks and evaluation settings: a) global normalization
(GL-N) significantly outperforms shot-level and scene-level

normalization schemes, and b) nonlinear minimum fusion (MI-
F) and inverse variance weighting (VA-GL-F, VA-SC-F, VA-
SH-F) outperform uniform linear combination (LE-F) and max
fusion (MA-F). For the remainder of this paper, we focus only
on the best performing normalization (GL-N) and fusion (MI-
F, VA-GL-F, VA-SC-F, VA-SH-F) schemes. Linear fusion (LE-
F) results are also reported as baseline.

In Fig. 4, frame precision results are shown as a function of
summarization percentage (ranging from 5% to 70%). Results
are shown for global normalization and the best performing
schemes for the inter- and intramodal fusion tasks (same as
in Table III). For audio feature fusion, in Fig. 4(a), MI-
F performs best, while LE-F performs significantly worse
compared to the rest. All inverse variance schemes perform
well, with VA-SH-F being the best (performing close to MI-
F). For visual feature fusion, in Fig. 4(b), MI-F significantly
outperforms the similarly performing inverse variance and
linear fusion schemes. Note the low absolute precision scores
achieved for the visual task (compared to audio detection
precision). Results for multimodal saliency fusion are shown in
Fig. 4(c),(d) on AV and AVS annotation, respectively. Relative
scheme performance is consistent in both: MI-F performs best,
followed closely by VA-SH-F, while linear fusion performs
very poorly. Note that (absolute) precision scores are higher in
Fig. 4(d) compared to (c), i.e., including content semantics in
the evaluation improves saliency precision. Although detection
relies on low-level features, semantic information might be
sipping through from text saliency. Overall, the VA-SH-F and
MI-F schemes work very well for both intra- and intermodal
fusion. Nonlinear min (MI-F) works notably well for single
modality fusion (e.g., visual), especially for shorter summaries.

Finally, we examine the relative performance of single (A,
V) and multiple modalities (AV, AVT) on a common annota-
tion layer, i.e., audio-visual-semantics (AVS), with frame-level
precision results presented in Fig. 6. Clearly, the audio features
provide the best stand-alone performance, significantly higher
than the visual ones. Fusing the audio-visual-text curves
improves average precision, especially for longer summaries,
using six out of seven movies (shown here for all seven).

B. Machine Learning

As a proof-of-concept, we consider a data-driven, machine
learning approach to monomodal and multimodal frame selec-
tion, where classifiers are trained using the frame-wise audio
(A) and visual (V) features, or pooled feature vectors for
audiovisual (AV) and audio-visual-text (AVT). The purpose
of this baseline is two-fold: a) to validate the efficiency of the
proposed saliency features, irrespective of the fusion scheme,
b) to serve as a supervised learning-based benchmark for
summarization via frame selection.

Specifically, we employ the raw feature vectors of each
modality along with their first and second time derivatives
computed over three and five frames respectively. Nearest
neighbor classifiers (NNR-k)1 are trained per individual or
multiple modalities on the annotated saliency ground-truth (A,

1Similar results can be obtained using Gaussian mixture models or Support
Vector Machine classifiers.
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TABLE III
FRAME-LEVEL SUMMARIZATION PRECISION FOR FEATURE (AUDIO, VISUAL) AND SALIENCY (AUDIO-VISUAL-TEXT) FUSION, EVALUATED ON

MONOMODAL (A, V), MULTIMODAL (AV) AND MULTIMODAL-SEMANTIC (AVS) GROUND-TRUTH ANNOTATIONS.

Fusion Level Audio Feature Visual Feature AVT Saliency AVT Saliency
Annotation Layer Audio (A) Visual (V) AudioVisual (AV) AV-Semantic (AVS)

Summarization Percent Summarization Percent Summarization Percent Summarization Percent
Algorithm 20% 33% 50% 20% 33% 50% 20% 33% 50% 20% 33% 50%

Norm Fusion Frame-Level Summarization Precision Scores
GL-N LE-F 62.7 60.7 57.6 42.8 39.7 37.0 40.5 38.7 38.5 74.8 72.5 72.1
GL-N MI-F 89.2 79.2 69.2 49.6 45.5 40.8 79.5 69.9 58.9 91.2 87.9 83.2
GL-N MA-F 44.8 47.4 48.6 40.0 37.9 35.5 37.4 36.9 38.0 69.0 69.2 69.2
GL-N VA-GL-F 85.8 75.6 65.7 42.7 40.1 37.5 64.7 56.2 49.9 83.0 79.1 76.1
GL-N VA-SC-F 82.7 72.1 64.2 43.1 39.9 37.6 66.0 59.8 53.8 84.6 81.4 78.0
GL-N VA-SH-F 87.6 79.0 68.3 41.4 39.5 37.4 79.3 68.6 58.0 90.2 85.9 81.8
SC-N LE-F 60.1 59.5 57.3 38.8 38.2 36.2 41.0 39.5 40.0 75.9 73.4 72.7
SC-N MI-F 74.6 69.6 64.3 43.0 40.6 39.1 63.4 58.2 53.6 85.2 82.3 79.5
SC-N VA-GL-F 68.5 64.3 59.7 38.8 38.0 36.2 51.5 48.0 44.7 77.5 76.2 74.3
SC-N VA-SC-F 68.7 62.0 58.1 38.3 38.1 36.1 50.6 48.9 46.2 76.9 75.9 73.9
SH-N LE-F 67.3 63.2 58.8 41.1 39.8 38.2 40.4 40.3 40.9 74.6 74.3 73.2
SH-N MI-F 64.0 61.9 59.2 43.1 41.6 40.1 49.6 49.2 47.6 75.6 75.6 74.8
SH-N VA-GL-F 67.3 63.3 58.8 41.5 40.2 38.3 43.5 43.8 43.2 75.0 74.8 74.1
SH-N VA-SC-F 67.4 63.5 59.3 42.1 40.2 38.5 43.5 43.1 42.7 74.8 74.6 73.7
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Fig. 4. Frame-level summarization precision scores for (a) audio feature fusion, (b) video feature fusion, (c),(d) multimodal (audio-visual-text) saliency fusion.
Multimodal fusion is evaluated on (c) audio-visual human annotation and (d) audio-visual-semantic human annotation.

V, AV, AVS) for a two-class classification problem (salient-
nonsalient frames). Each classifier output is thus an indicator
function of salient frames, that can be used to form learning-
based summaries. In order to select the frames that most likely
correspond to event candidates for a summary, results are

reported using a median-filtered version on the raw classifier
output with window of length 2M + 1. To obtain results for
variable compression rates, a confidence score is defined for
each classification result, i.e., each frame. We set that to be
the fraction of the k nearest neighbors with labels in class
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Fig. 5. Frame-level NNR-k classification precision using different (features-
annotation) salient class labeling for audio (A-A), visual (V-V), audiovisual
(AV-AV, AV-AVS), audio-visual-text (AVT-AVS).

1 (salient events); this roughly corresponds to the posterior
probability of event class for that frame; for details see [75].

Frame precision results are shown in Fig. 5, for saliency
classification from audio on audio (A-A), visual on visual
(V-V), audiovisual on audio-visual-semantics (AV-AVS) and
audio-visual-text (AVT-AVS). A seven-fold cross-validation
was used in a leave-one-movie-out manner, i.e., NNR-k mod-
els are trained on six movies and tested on the seventh. The
parameters were empirically set to k = 250 neighbors for
NNR and M = 2 sec for median filtering, by optimizing for
audio classification accuracy scores. In general, the precision
scores achieved using the classifiers are better than those from
the bottom-up saliency approach for the monomodal saliency
(A) and (V) and the multimodal audiovisual (AV) schemes, on
the expense of the need for training and parameter-validation
(k and M ). However, results from the fused, multimodal AVT
curve (Fig. 6) are better than classification on the pooled audio-
visual-text feature vector.

C. Subjective Evaluation of Summaries

Summaries obtained for c = 0.2 (5 times faster than real
time) were subjectively evaluated by 11 naive and 3 expert
subjects in terms of informativeness and enjoyability on a
0 − 100% scale similarly to [10], [13] for six out of seven
movies of the database. In total, five automatically produced
summaries were used with global normalization (GL-N) and
the following fusion schemes: LE-F (baseline method), inverse
variance (VA-GL-F, VA-SC-F, VA-SC-F) and min fusion (MI-
F). In addition, an “expert” summary, manually created by a
movie production professional, was included in the evaluation.
The 14 subjects that participated in the study viewed the
original thirty-minute clip, for each of the movies, followed
by the six summaries (six-minute each) in random order.

To better normalize the ratings the following scale was
communicated to the subjects: poor between 0 − 40%, fair
40 − 60%, good 60 − 75%, very good 75 − 90% and ex-
cellent 90 − 100%. Average subjective informativeness and
enjoyability ratings for the five fusion schemes and the expert
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Fig. 6. Frame-level summarization precision scores for audio saliency (A-
AVS), visual saliency (V-AVS) and audio-visual-text saliency curve (AVT-
AVS) using GL-N MI-F, all evaluated on audio-visual-semantic annotation.

summary are shown in Table IV for each of the six movies,
along with objective scores (frame-level accuracy evaluated on
AVS annotation) shown for comparison.

Expert summaries achieved very high subjective ratings, up
to 95% for both informativeness and enjoyability. Automatic
summaries also received high scores, up to 80%, but the
performance gap between manually and automatically created
summaries is large. This is expected since professionally
created summaries contain no artifacts such as abrupt changes
in the audio and visual stream and use high-level information
(semantics/pragmatics) to select the relevant sub-clips. High
marks for expert summaries might also be attributed to subject
bias: professional skims were clearly a class apart from the
automatically created summaries and subjects might have over-
emphasized this difference.

The best performing fusion scheme across all six movies
for subjective informativeness ratings is MI-F, followed by
VA-SH-F and LE-F. The results are consistent with objective
evaluation results with the exception of LE-F that gets surpris-
ingly high subjective ratings (this could be due to the good
performance of LE-F for the visual stream that is perceptually
important). Note that performance is movie dependent, i.e.,
VA-SC-F and VA-GL-F also score well for certain movies. The
high (absolute) informativeness scores for fantasy/epic and
animated films (LOR, GLA, FNE) may be due to sharp scene
changes, crisp narration, high-intensity color motifs and audio
effects. Low informativeness for CRA and CHI summaries
could be due to the long dialogue segments and music scenes,
respectively, that are hard to automatically summarize.

Subjective enjoyability scores are higher for VA-SH-F and
VA-SC-F fusion. Among the global fusion schemes MI-F
performs best followed by LE-F and VA-GL-F. Global, non-
adaptive fusion schemes tend to select short segments, result-
ing in summaries that feel “choppy” or “fast-forward” like.
VA-SC-F selects longer segments but might miss important
plot elements, thus often forming enjoyable skims that are not
necessarily very informative. An expert subject evaluated the
seventh movie (BMI) in terms of both informativeness and
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TABLE IV
SUBJECTIVE EVALUATION OF AVT SUMMARIES AT (×5) RATE AND

FRAME PRECISION ON AVS ANNOTATION SHOWN FOR COMPARISON.

Subjective Informativeness
Movie CHI CRA DEP GLA LOR FNE Mean
Expert 91.5 90.1 83.1 87.9 88.7 92.5 89.0
LE-F 70.3 65.4 62.6 67.6 72.3 63.7 67.0

VA-GL-F 61.4 66.6 62.3 57.3 58.6 71.0 62.9
VA-SC-F 71.5 65.9 67.5 52.4 52.8 58.4 61.4
VA-SH-F 53.9 59.5 69.1 71.1 78.7 73.4 67.6

MI-F 50.9 62.9 72.6 70.8 77.4 74.1 68.1
Subjective Enjoyability

Movie CHI CRA DEP GLA LOR FNE Mean
Expert 89.0 93.2 90.1 92.1 92.3 95.6 92.1
LE-F 68.3 62.0 62.0 65.5 62.7 66.2 64.4

VA-GL-F 61.5 65.1 54.7 58.9 57.8 69.7 61.3
VA-SC-F 74.3 75.1 80.8 68.8 70.7 69.3 73.2
VA-SH-F 66.5 65.1 74.3 76.8 80.9 81.0 74.1

MI-F 55.3 69.9 71.0 66.7 74.4 78.3 69.3

Objective Accuracy (Frame Precision)
Movie CHI CRA DEP GLA LOR FNE Mean
LE-F 56.6 58.5 59.5 46.7 46.7 55.5 53.9

VA-GL-F 62.4 68.1 68.2 59.1 56.9 65.2 63.3
VA-SC-F 63.9 69.0 64.8 60.1 59.1 63.9 63.5
VA-SH-F 67.0 70.7 74.3 68.3 64.5 70.0 69.1

MI-F 67.4 70.1 73.6 69.4 65.8 69.8 69.4

enjoyability concluding that MI-F and VA-SH-F are the best
performing fusion schemes on both subjective qualities.

Overall, minimum and inverse variance fusion schemes per-
form best with respect to both informativeness and enjoyability
subjective scores. The performance in informativeness ratings
of linear fusion is somewhat surprising considering its poor
detection performance. Shot- and scene-based adaptive inverse
variance fusion performed best in terms of skim enjoyability.

X. CONCLUSION

A multimodal saliency curve integrating cues from the aural,
visual and text streams of videos was proposed based on audio,
image and language processing, and hierarchical, low-level
fusion. Used as an indicator function for attention-invoking
salient event detection, the developed representation formed
the basis for dynamic movie summarization under a scalable,
generic and content-independent algorithm. Summarization
performance was quantitatively and qualitatively evaluated on
a movie database with multilayer, multimodal saliency anno-
tation. Subjective evaluations showed that the saliency-based
video skims can have both functional and aesthetic value,
i.e., being informative and pleasing to the viewer. Among
the various explored feature normalization, adaptation and
fusion schemes, global normalization (GL-N), shot-variance
(VA-SH-F) and min-fusion (MI-F) schemes work very well
for both intra- and intermodal fusion. Min fusion proved well-
suited for cue integration within modalities, especially for
visual features and shorter summaries. Minimum and inverse
variance schemes performed best in terms of informativeness,
while adaptive shot- and scene-based inverse variance in terms
of enjoyability. Extensions of this work include: the develop-
ment of mid-level fusion algorithms, both inside and across

modalities, such as learning schemes and nonlinear feature
correlations; incorporation of higher-level features from movie
transcript information; and top-down modeling through movie
semantics syntax, and structure for bridging the semantic gap.
Sample video skims and on-going evaluations can be found at
http://cvsp.cs.ntua.gr/research.
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