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Abstract—Estimating affective and cognitive states in condi-
tions of rich human-computer interaction, such as in games, is
a field of growing academic and commercial interest. Entertain-
ment and serious games can benefit from recent advances in the
field as, having access to predictors of the current state of the
player (or learner) can provide useful information for feeding
adaptation mechanisms that aim to maximize engagement or
learning effects. In this paper, we introduce a large data corpus
derived from 58 participants that play the popular Super Mario
Bros platform game and attempt to create accurate models of
player experience for this game genre. Within the view of the
current research, features extracted both from player gameplay
behavior and game levels, and player visual characteristics have
been used as potential indicators of reported affect expressed
as pairwise preferences between different game sessions. Using
neuroevolutionary preference learning and automatic feature
selection, highly accurate models of reported engagement, frus-
tration, and challenge are constructed (model accuracies reach
91%, 92%, and 88% for engagement, frustration, and challenge,
respectively). As a step further, the derived player experience
models can be used to personalize the game level to desired
levels of engagement, frustration, and challenge as game content
is mapped to player experience through the behavioral and
expressivity patterns of each player.

Index Terms—Content personalization, experience-driven pro-
cedural content generation, multimodal interaction, player expe-
rience modeling, visual cues.

I. Introduction

V IDEO GAMES is a flourishing industry for more than
three decades now, with revenues surpassing even those

of the movie and music industries [1]. Due to their high
popularity and huge computational demands, video games
would always introduce leading technologies and pioneering
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methods in the field of human–computer interaction (HCI)
at large. Today’s technologies have reached a point where
new addons can boost the gameplay experience, altering
and guiding game content and evolution following affect-
dependent strategies [2], [3]. To this aim, using context and
behavior-related parameters to elicit information regarding the
player’s current state (and, consequently, obtain hints about
her/his needs regarding interaction) is of primary importance
for constructing personal behavioral and interaction-related
models and guiding game adaptation in order to achieve
maximum engagement [4] or possibly enable conditions of
flow [5] and incorporation [6] and, ultimately, realize the
affective loop [7] in games.

There is an abundance of studies presented in bibliography,
dealing with the problem of user state estimation during HCI.
Recent advances on computer vision techniques under uncon-
trolled conditions have allowed the proposal of techniques
incorporating notions, such as body and head movements
[4], eye gaze (with eye gaze usually necessitating specialized
hardware, such as infrared eye trackers [8]), and facial ex-
pressions [9]. Typical works are those reported in [10] and
[11], where the authors use Bayesian networking on gaze,
postural, and contextual data for detecting user engagement
with a robot companion [12] posing various expressions. In
the domain of games, the increased diversification of human
playing demographics, strategies, needs, skills, and preferences
has increased the importance of experience personalization.
Player experience modeling [3] studies that rely on single or
multiple modalities of user input ([13]–[19] among many) have
provided some initial benchmark solutions toward achieving
such a goal.

Physiological signals are a popular modality in this frame-
work; however, measuring affect using most physiological
signals usually requires specialized hardware, which is often
expensive, hard to calibrate and may result in cumbersome
settings, which hamper interaction. As a result, related ap-
proaches may be efficient in terms of recognizing player affect
but are extremely problematic to deploy in mass scales and
for commercial uses. On the other hand, affect estimation
approaches based on processing acceleration data, typically
from mobile phones or accelerometer-equipped controllers
(e.g., Nintendo’s Wii-mote) or video sequences taken from
low-end cameras (e.g. cameras mounted on top of the users’
screen or Kinect sensors, typically sold for Microsoft’s Xbox
360 platforms, but available for desktop computers, as well)
use hardware that most gamers already possess and do not

2168-2267 c© 2013 IEEE
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Fig. 1. Snapshot from Infinite Mario Bros, showing Mario standing on
horizontally placed boxes surrounded by different types of enemies.

impose any additional requirements, such as moving in con-
fined spaces, since gamers carry controllers with them and
do not usually move away from their screen or TV while
playing. Buttussi [20] uses acceleration features to deduce
motions and actions, besides physiological, in the framework
of a fitness game, while Istance [21] and Nacke [22] use
eye-gaze as a means of alternative game control. One of
the issues of such approaches is what Almeida [23] refers
to as the Midas touch problem, where eye gaze vectors are
constantly used to issue commands, regardless of whether
the user actually intends to do so or merely looks around
at the game interface or is producing irrelevant fixations
and saccades. To overcome this, several researchers focus on
gamer attention and engagement, as a higher-level cognitive
concept based on gaze. Seif El-Nasr [24] uses a commercial
head-mounted eye tracker to identify points on a computer
screen and then objects in the game world that attract the
user’s attention, while Sundstedt, Isokoski [25] and Smith
[26] use eye gaze to control virtual and game characters.
However, these approaches lie in-between those described
before and a completely low-cost approach, since they do rely
on visual features but require dedicated eye-tracking hardware
to produce them. Kaiser and Wehrle [27] do rely on automatic
visual estimation but concentrate on emotion labels, in order to
produce an emotion-rich corpus, and do not delve into game-
related concepts, such as flow and incorporation, nor do they
attempt to adapt the game experience and close the affective
loop based on the estimated user state.

Another direction that has received increasing attention
is the procedural generation of content [2]. Artificial and
computational intelligence methods have been used to generate
different aspects of content with or without human inter-
ference [28]–[32]. The creation of personalized content for
either the player or the designer [14], [28], [33]–[35] already
shapes a leading research direction within procedural content
generation (PCG). The first step toward creating personalized
content is to effectively model the relationship between player
experience and content. This can be achieved by constructing
models on data collected throughout the interaction between
the user and the digital content via the annotation of content
with user experience tags [3].

Building on the experience-driven procedural content gen-
eration [3] framework, the presented work employs a fusion
scheme of game-content parameters, game-performance indi-
cators, and a series of visual features from the player’s head
in order to predict player preferences between different game
variants. A large data corpus of behavioral and visual cues as
well as game context and subjective experience annotations is
collected from 58 users while playing variants of the popular

Super Mario Bros platform game. Player subjective reports are
identified via comparative questionnaires and different game
variants are ranked with respect to frustration, engagement,
and challenge. A coupling of automatic feature selection and
neuroevolutionary preference learning is employed to select a
subset of appropriate features that yield accurate predictors
of the reported affect. Results show that highly accurate
player experience models can be constructed as accuracies
reach 91%, 92%, and 88% for engagement, frustration, and
challenge, respectively. The models are used to generate a
sample of maximally engaging, frustrating, and challenging
levels for a number of players derived from our data corpus.
The generated levels showcase the robustness of the algorithm
and the personalization achieved in level design.

This paper builds on the authors’ earlier study [36] and
advances the current state-of-the-art in dissimilar ways. First,
an extensive corpus of visual and behavioral data is used
for the analysis of the cognitive state and behavior of the
player; second, behavioral and visual cues are fused for the
prediction of player experience in a single player game, pro-
ducing concepts related to the gaming paradigm and moving
forward from shallow emotional states by relating user states
to particular in-game events; third, personalized levels are
generated that potentially yield maximally engaging, frustrat-
ing, and challenging levels for a player; fourth, for the first
time, procedural content generation is driven by computational
models of fused modalities of player input.

The structure of this paper is the following. Section II
describes the game platform used and the data collection
strategy followed. Section III describes the gameplay and
motion analysis features that have been considered for player
experience model construction. Section IV introduces the
methods that have been implemented to map player experience
to reported affect. Section V gives the experimental results
regarding player state prediction, while Section VII concludes
the paper.

II. Dataset

This section presents the test-bed game used for data
harvesting and the adopted protocol of the data collection
experiment.

A. Testbed Platform Game

The testbed platform game used for our study is a modified
version of Markus Persson’s Infinite Mario Bros (see Fig. 1),
which is a public domain clone of Nintendo’s classic platform
game Super Mario Bros. The original Infinite Mario Bros and
its source code is available on the web.1

The gameplay in Super Mario Bros consists of moving the
player-controlled character, Mario, through 2-D levels. Mario
can walk, run, duck, jump, and shoot fireballs. The main goal
of each level is to get to the end of the level. Auxiliary goals
include collecting as many coins as possible, and clearing the
level as fast as possible.

While implementing most features of Super Mario Bros,
the standout feature of Infinite Mario Bros is the automatic
generation of levels. Every time a new game is started,
levels are randomly generated. In our modified version, we

1http://www.mojang.com/notch/mario/
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concentrated on a few selected parameters that affect gameplay
experience.

B. Dataset Design

To assess the players’ affective state during play, the follow-
ing experiment protocol was designed. We seated 58 volun-
teers (28 male; player age varied from 22 to 48 years) in front
of a computer screen for video recording. Experiments were
carried out in Greece and Denmark. Lighting conditions were
typical of an office environment, and for capturing players’
visual behavior, a high definition camera (Canon Legria S11)
was used.

We designed a postexperience game survey to collect sub-
jective affective reports expressed as pairwise preferences of
subjects playing different variants (levels) of the test-bed game
by following the experimental protocol proposed in [37]. The
detailed description of the procedure followed is described
here:

1) An introduction scene presents the game to the player
and contains information about the procedure that will
be followed. The player is being told that during the
session she will play two short games and will be asked
to answer a few questions about her game experience.

2) Then, a demographics questionnaire is presented, used
to collect the following data: age, whether the player is
a frequent gamer, how much time she spends playing
games on a weekly basis (0, 1, 2, or more than 3 hours
per week), and whether she had played Super Mario
Bros before.

3) The player is introduced to the keys that can be used to
control Mario.

4) The player is then informed that her game sessions will
be video recorded and analyzed.

5) After these introductory steps the player is set to play the
first game (game A). The player is given three chances
to complete the short game level of Super Mario Bros. If
she fails in the first trial the game is reset to the starting
point and the player is set to try again. The game ends
either by winning one of the three trials or by failing
the third one.

6) After finishing game A, a Likert questionnaire scheme
is presented to the player [38]. The player is asked to
express her emotional preferences of the played game
across the three different emotional states (engagement,
frustration, and challenge). The questionnaire is inspired
by the game experience questionnaire (GEQ), according
to which a likert scale from 0 to 4 represents the strength
of the emotion (four means extremely; 0 means not at
all).

7) A second short game (game B) is then presented to the
player and she is set to play. The player is given three
chances (i.e., Mario lives) to complete the level and the
same rules apply as in game A.

8) After finishing game B, the GEQ questionnaire is pre-
sented to the player (as in game A).

9) After completing a pair of two games A and B, the
player is asked to report the preferred game for the
three emotional dimensions through a four-alternative
forced choice (4-AFC) questionnaire protocol (i.e., A
is preferred to B, B is preferred to A, both are pre-
ferred equally, neither is preferred (both are equally

not-preferred)) [39]. Please note that the questionnaire
presented to the players is the following: Which game
was more x, where x is one of the three emotional states
under investigation.

10) The player then has the choice to either end the session
or to continue. In the latter case, a new pair of two games
is presented and the procedure is repeated.

Each participant played from two to five pairs of games on
average, resulting to a total of 380 games (more than 6 hours
of recordings). In most cases, players were left alone in the
rooms they were playing and, whenever this was not possible,
everyone was asked not to distract them. The game sessions
presented to players have been constructed using a level width
of 100 Super Mario Bros units (blocks), about one-third of the
size usually employed when generating levels for Super Mario
Bros game in previous experiments [40], [41]. The selection of
this length was due to a compromise between a window size
that is big enough to allow sufficient interaction between the
player and the game to trigger the examined affective states
and a window, which is small enough to set an acceptable
frequency of an adaptation mechanism applied in real-time
aiming at closing the affective loop of the game [7].

After removing interaction session instances for which vi-
sual data was corrupted the full dataset considered in this paper
consists of 167 pairs of games. In addition, a preprocessing
step was applied to remove the game pairs for which players
reported unclear preferences (those that were equally preferred
or equally not-preferred). After this step 127, 121, and 144
game pairs remain for engagement, frustration, and challenge,
respectively. Those game pairs are used to train models of
player experience based on clear reported preferences as
described in Section V.

III. Feature Extraction

The following subsections describe the features that have
been extracted and used in this paper as predictors of re-
ported experience. This includes game level (content) features,
gameplay behavioral features, and head movement features.
The section ends with the description of the player experience
annotations.

A. Content Features

The level generator of the game has been modified to
create levels according to the following six controllable (game
content) features:

1) the number of gaps in the level, G;
2) the average width of gaps, Ḡw;
3) the number of enemies, E; this parameter controls the

number of goompas and turtles scattered around the
level, changing the level difficulty;

4) enemies placement, Ep; the way enemies ares placed
around the level is determined by three probabilities,
which sum to one.

a) Around horizontal boxes, Pb: Enemies are placed
on or under a set of horizontal blocks (a number
of blocks placed horizontally without connection
to the ground).

b) Around gaps, Pg: Enemies are placed within a
close distance to the edge of a gap.
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Fig. 2. Enemies placement using different probabilities. High probability is
given to placement around horizontal boxes. (a) Pb. (b) Around gaps, Pg.
(c) Random placement, Pr .

c) Random placement, Pr: Enemies are placed on a
flat space on the ground.

Fig. 2 illustrates positioned enemies by giving different
values for Pb, Pg, and Pr. Fig. 2(a) of the figure shows
enemies placed by setting Pb to 80%. Fig. 2(b) illustrates
the result of setting Pg to 80%. Fig. 2(c) is the result of
Pr = 80%.

5) The number of powerups, Nw. Mario can collect
powerup elements hidden in boxes to upgrade his state
from little to big or from big to fire.

6) The number of boxes, B. We define one variable to
specify the number of the two different types of boxes
that exist in Super Mario. We call these two types blocks
and rocks. Blocks contain hidden elements, such as coins
or powerups. Rocks may hide a coin, a powerup or they
can be empty. Mario can smash rocks only when he is
in big mode.

According to the methodology presented in [41], two states
(low and high) are set for each of the controllable parameters
above except for enemies placement, which has been assigned
three different states allowing more control over the difficulty
and diversity of the generated levels.

The selection of these particular controllable features was
made after consulting game design experts, and with the
intent to cover the features that have the most impact on the
investigated affective states [40], [41].

B. Gameplay Features

While playing the game, different player actions and inter-
actions with game items and their corresponding time-stamps
have been recorded. These events are categorized in different
groups according to the type of the event and the type of
interaction with the game objects. The events recorded are
the following: level completion event; Mario death event and
cause of death; interaction events with games items, such
as free coins, empty rock, coin block/rock and power-up
rock/block; Mario enemy kill event associated with the type
of actions performed to kill the enemy and the type of enemy;
changing Mario mode (small, big or fire) event; changing
Mario state (moving right, left, jump, run, duck) event; and
the full trajectory of Mario as a combination of events.

Several features have been directly extracted from the
data recorded. Most of these features appear in our previous
studies [40]–[42] and their selection is made in order to be
able to represent the difference between a large variety of
Super Mario Bros playing styles. The full list of gameplay
features is presented in Table I.

C. Head Movement Features

In our experiments, as subjects were seated in front of a
computer monitor, the upper part of their body was monitored

by a camera, while head motion was of particular importance
for creating behavioral correlations to game events and levels
of difficulty. Being in line with Csikszentmihalyi’s flow theory
[43], visual features related to arousal were searched for [44]
and combined with expressed player states and experience
reports. It was noticed that head movement was of primary
importance, and different patterns of motion were correlated
to different player states and preferences (Figs. 3 and 4). For
example, frustration was observed to be linked to sudden and
very quick head movements while low levels of challenge
would normally be associated with smoother movements,
probably due to lack of high interest [36]. For the above rea-
sons, in this paper we examine the relation of a series of head
movement features [4], [45] with experience models, along
with gameplay and content features. In particular, we track
player’s head motion through head horizontal and vertical (yaw
and pitch) rotational movements. These are extracted using
the method proposed in [4], due to its efficiency in terms of
computational complexity, accuracy, and robustness to various
lighting conditions and spontaneous movements. The values
of the extracted features are considered, both throughout
whole game sessions (mean head movement features) and
during small periods of critical events (visual reaction fea-
tures).

1) Mean Head Movement Features: As head movement,
here, we considered the first derivative of the norm of the head
pose vector [4] and use the average (Avg) of its absolute values
throughout whole game sessions. A series of further head
movement features [45] have also been considered in order to
elicit emotional information of the player during each game
session (Mean Head Movement Features). More specifically,
we considered:

a) Overall Activation (OA), which comes as the sum of
quantities of motion [45] for each rotational movement,
separately. In other words, OA stands for the quantity
of movement during certain periods of time. Let H be
a sequence of head pose cues for the corresponding
session, consisting of T frames, as in 1

H = [(yH
1 , pH

1 ), (yH
2 , pH

2 ), ..., (yH
T , pH

T )] (1)

where yH
i , pH

i are the absolute yaw and pitch angles,
respectively. Head Pose Overall Activation for sequence
H is

OA =
T∑

i=1

(dYaw + dPitch) (2)

with

dYaw =
dy

dt
(3)

and

dPitch =
dp

dt
(4)

b) Temporal Expressivity (TE) parameter, which denotes
the speed of movement and dissociates fast from slow
head gestures, is the average of OA during periods T .

c) Spatial Extent (SE) parameter is considered as the
maximum value of the instantaneous expansion of head
from a frontally posed position (y=p=0).
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TABLE I

Gameplay and Content Features Extracted From Data Recorded

d) Energy Expressivity parameter (Power) of head
movement(PO) during the stroke phase of the head
gesture. Head gestures (similar to hand gestures) are
considered to constitute of three phases, namely, the
preparation, stroke, and withdrawal. The message is
primarily conveyed during the stroke phase, while the
phases of preparation and withdrawal occur while the
head moves from and to its neutral position, respec-
tively. The formalization of this parameter, according
to this definition, however, is far from trivial, since the
automatic detection of these stages is quite a challenging
task. Alternatively, we opted to associate this parameter
qualitatively, with the first derivative of speed (acceler-
ation), during certain periods of time (5)

PO =

∑T
i=1( d2yi

dt2 + d2pi

dt2 )

T
. (5)

e) Fluidity of head movement (FL) distinguishes between
smooth and abrupt movements. Under this prism, the
variation of speed was considered for the two compo-
nents of head pose used in this paper. This concept
attempts to denote continuity of movements, regardless
of the magnitude of speed. Equation 6 shows the calcu-
lation of the fluidity parameter

FL =
var(dYaw) + var(dPitch)

2
. (6)

The reader is prompted to note that the above quan-
tity takes high values for periods of time containing
abrupt/sudden/unforseen movements, while small values
are considered for gestures of higher continuity.

Fig. 3. Facial feature tracking for head movement features extraction.

The detailed list of extracted head movement features is
presented in Table II. For more details regarding the extraction
of the above criteria, please refer to [45]. In this paper, in
addition to the above features, the median values of horizontal,
Mhorizontal, and vertical, Mvertical rotations, as well as medians
of head rotation norms M are also considered.

2) Visual Reaction Features: As players’ expressivity
appears to increase during certain events, we also considered
the above features for certain gameplay events as described
below.

a) when the player loses a life;
b) when the player kills an enemy by stomping on it;
c) when the player starts or ends a critical move: jump,

duck, run, and move left or right;
d) when the player interacts with an object.
These features are calculated for periods of ten frames

before and after the corresponding events. Subsequently, their
mean values were compared to the corresponding average
values (by calculating fractions) during normal gameplay, for
each game session separately. A detailed list of the features
used can be seen in Table II.
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TABLE II

Head Movement Features. Mean Head Movement Features Extracted Throughout Whole Sessions and Visual Reaction Features

During Gameplay Event have been Presented. The Gameplay Events Considered Include: Losing, Stomping, (Start/End) Jumping,

Ducking, Running Left, Running Right, and Interacting with Items

Fig. 4. Typical head expressivity of player reacting to certain game events.

D. Player Experience

As mentioned earlier, player experience is measured through
four-alternative forced choice questionnaires, presented to the
player after playing a pair of games generated by a different
set of controllable feature values. The questionnaire asks the
player to report the preferred game for three user states:
engagement, challenge and frustration. The selection of these
states is based on earlier game survey studies [40] and our
intention to capture both affective and cognitive/behavioral
components of gameplay experience [3]. Moreover, we want
to keep the self-reporting as minimal as possible so that
experience disruption is minimized. Pairwise preferences have
been adopted for this paper because of their numerous advan-
tages over rating-based questionnaires: a recent comparative
study among the two schemes [46] shows that rating yields
significant order and inconsistency effects as it is biased by a
number of factors including personality and culture.

IV. Preference Learning for Modeling Playing

Experience

Neuroevolutionary preference learning [47], [37] has been
used to construct models that approximate the function
between gameplay, head movement features, content features,
and reported affective preferences. In neuroevolutionary
preference learning, a genetic algorithm (GA) evolves an
artificial neural network (ANN) so that its output matches the
pairwise preferences in the data set. The input of the ANN is
a set of features that have been extracted from the data set.
The GA implemented uses a fitness function that measures

the difference between the reported emotional preferences
and the relative magnitude of the model output. A sigmoid-
based fitness function has been adopted as its shape has
been optimized for maximum model performance in earlier
studies [48], [37].

All features extracted are uniformly normalized to [0, 1]
using standard max-min normalization. After normalization,
these values are used as inputs for feature selection and ANN
model optimization. Our modeling approach contains three
following steps (Fig. 5):

1) Feature selection: We use sequential forward selection
(SFS) [49] to select the relevant subset of features for
predicting each emotional state [37]; this is achieved by
training single-layer perceptrons (SLPs) as a mapping
between selected features and reported preferences. SFS
is a bottom-up approach where a feature is chosen
to be added to the current set of selected features,
such as the new subset of features yields a maximum
possible performance. The quality of a feature subset
is determined by three-fold cross-validation on unseen
data.

2) Feature space expansion: The feature subset derived
from the first phase is used as the input to small
multilayer perceptron (MLP) models of one two-neuron
hidden layer and SFS selects additional features from
the remaining set of features during the training of these
small MLPs.

3) Optimizing topology: In the last phase of the modeling
process, the topology of the MLP models is optimized
using neuroevolutionary preference learning. The net-
work topology optimization process starts with a small
two hidden-neuron MLP and the network topology grad-
ually increases up to two hidden layers consisting of ten
hidden neurons each.

The quality of a feature subset and the performance of each
MLP is obtained through the average classification accuracy in
three independent runs using three-fold cross validation across
ten evolutionary trials. Parameter tuning tests have been con-
ducted to set up the parameters’ values for neuroevolutionary
user preference learning that yield the highest accuracy and
minimize computational effort. As a result of this parameter
tuning process, we use a population of 100 individuals and
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Fig. 5. Three-phase player experience modeling approach followed.

we run evolution for 20 generations. A probabilistic rank-
based selection scheme is used, with higher ranked individuals
having higher probability of being chosen as parents. Finally,
reproduction is performed via uniform crossover, followed by
Gaussian mutation of 1% probability.

V. Experiments and Analysis

The following sections describe the experiments that have
been conducted to construct and compare different models
of player experience derived from the features extracted (as
described in the previous sections). We construct models based
on gameplay and content features only, models from mean
head movement features only and models from visual reaction
features. We then investigate models constructed from fusing
different modalities of player input.

We start by analyzing the features selected and the models’
accuracies obtained from each feature set, then we further
investigate the differences on significance between the models
constructed on the different categories of features.

A. Player Experience Modeling Through Gameplay and
Content Features

Modeling player experience from gameplay and content
highlight important aspects of player behavior and game de-
sign that have strong impact on the gameplay experience. For
this purpose, all features presented in Table I are set as inputs
for feature selection and model optimization. The subsets of
features selected, the models’ accuracies and the best MLP
topologies obtained vary across the three emotional states
under investigation as can be seen in Table III. By constructing
models based only on gameplay and content features, we are
able to predict the three affective states with average accuracies
(across 20 trails) higher than 72% while the best performances
obtained exceed 89% for engagement and frustration. The best
accuracy obtained for predicting challenge is 80.6%, which
is significantly lower than the ones obtained for predicting
engagement and frustration (significance is set to 1% in this
paper).

It is worth observing that out of 30 different gameplay
and content features, a maximum of five features only have
been considered to be important for predicting each affective
state. However, different feature subsets have been picked for
each emotional state with only one common feature between
engagement and challenge, namely, the time spent jumping
tjump. Three out of the six controllable features appear in the
subsets of selected features for predicting engagement and
challenge, namely, the number of enemies, E, the placement
of enemies, Ep and the number of powerups, Nw. Note that
frustration can be predicted with the smallest subset of features

(only three features have been selected), nevertheless, the
prediction accuracy for this emotional state is significantly
higher than the ones obtained for predicting engagement and
challenge.

Although high accuracies have been obtained for predicting
the three emotional states, challenge appears the hardest to
model from gameplay features, while frustration is the easiest.

B. Player Experience Modeling Through Mean Head
Movement Features

In order to map visual behavior to players’ reported affect,
the mean head movement features presented in Table II are
used as inputs to select the relevant features for predicting
players’ affect and optimizing the players’ experience models.
The results presented in Table III show that the models con-
structed from the head movement features, extracted through-
out whole game sessions yield accuracies that are as good as
the ones obtained from gameplay features, or slightly lower.

An analysis on the selected features shows that the median
horizontal head rotation (Mhorizontal) is an important feature for
all three states, while OA and (Mvertical) are only to be found
as predictors of engagement and frustration. Moreover, PO is
a common predictor of both engagement and challenge.

The significance test shows that the model constructed for
predicting frustration significantly outperforms the two other
models for predicting engagement and challenge. Note that
this also applies for the models constructed from gameplay
features, which implies that single input modalities (behavioral
or visual) are better for predicting engagement and frustration
than for predicting challenge.

C. Player Experience Modeling Through Visual Reaction
Features

It was our assumption that visual reaction features during
certain events (losing, making critical moves, etc.) used as the
only input channel for estimating affective states would yield
more accurate results when compared to mean head movement
features (which refer to the overall visual behavior during
whole game sessions) or gameplay features. Affective states
seem to be mostly correlated with events occurring at certain
instances during the game, rather than whole game durations-
related visual features. Visual reaction features are fused on the
feature level before feeding the predictive models and feature
fusion is expected to boost the model’s predictive power.

Accuracy obtained for frustration yields higher values when
using visual reaction features: visual behavior during jumping,
losing, running and interacting with various items appear to be
good predictors of frustration. More specifically, it is typical
that the Energy Expressivity parameter during interaction with
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TABLE III

Features Selected From the Set of Gameplay, Mean Head Movement (During whole Games) and Visual Reaction Features (During

Certain Events) for Predicting Engagement, Frustration, and Challenge. Table Also Presents the Corresponding Average (P̄ )

and Best (Pmax ) Performance Values Obtained from the ANN Models’ and the Best Models’ ANN Topologies. The ANN Topologies

are Presented in the Form: Number of Neurons in the First Hidden Layer−Number of Neurons in the Second Hidden Layer. Best

Performance Values Obtained (That Don’t Show Significant Difference) for Each Emotional State Appear in Bold. Content

Features Also Appear in Bold

items (POitem) and starting to run (POstartRun), as well as
the Overall Activation when losing (OAlose) are related to
the notion of frustration. In addition to frustration, very good
accuracies have been obtained when using the visual reaction
features for predicting challenge with both frustration and
challenge significantly outperforming the accuracies obtained
for predicting engagement.

D. Fusing Features for Modeling Player Experience

This subsection presents experiments with bimodal fea-
tures as inputs to the predictive models. We first fuse the
gameplay/content with the mean head movement features and
we then examine the impact of the fusion between game-
play/content and the visual reaction features on the prediction
accuracy of the models.

1) Modeling Through Gameplay/Content and Mean Head
Movement Features: Using head movement features through-
out whole game sessions along with gameplay/content features
yield accurate results for predicting engagement, frustration
and challenge.

Different gameplay and head movement features have been
selected for predicting each emotional state. Median horizontal
and vertical head directionality, together with fluidity in mo-

tion, along with gameplay/content features (number of killed
enemies by stomping, time spent jumping and completing the
whole game and powerups) resulted in a model for predicting
engagement with up to 89.68% accuracy. Some of these
features (such as the number of powerups, Nw, the time
spent jumping, tjump, the median horizontal and vertical head
direction, Mhorizontal and Mvertical) also appear in the subset of
features selected when constructing models from each one of
these two modalities on its own. This indicates the importance
of the features as predictors of player engagement.

The subset of features selected for predicting frustration in-
cludes: temporal (TA), energy, and OA expressivity parameters
being used along with tlastLife, ngJump, nboxes and dtotal. The TA

and OA features also appear in the subset of features selected
for predicting frustration from only mean head movement
features. Unsurprisingly, the time spent playing during the last
life (tlastlife) and the number of boxes pressed or destroyed
(nboxes) are important predictors of frustration. These gameplay
features also appear in the model constructed on gameplay
features only.

The features selected for predicting challenge are mainly
time-related gameplay features, which are fused with the mean
head horizontal rotation (Mhorizontal). The gameplay features
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Fig. 6. Testing for statistical significance between the obtained performance of the different sets of features examined for modeling player experience. Solid
arrows between two feature sets depict a significant difference on the average performance between them. dash arrows depict average performance differences
of no statistical significance. P-values are added next to significant differences. (a) Engagement. (b) Frustration. (c) Challenge.

selected that also appear in the subset of features selected for
predicting challenge with only gameplay as input include the
time spent jumping (tjump) and the number of opponents that
were killed by unleashing a turtle shell (kunleased). The new
time-related gameplay features selected (trun, tbig and tsmall)
result in an average performance increase of 5% (compared
to the average performance of the models built on gameplay
features only) indicating the importance of time spent running
and time Mario being in large or small mode as predictors of
player challenge.

The t-test shows that the accuracies obtained from the model
constructed for predicting frustration are significantly higher
than the ones for predicting engagement and challenge (Note
that this finding is similar to the ones observed when testing
for differences of significance in mean performance values
between the models constructed from gameplay features only
and from mean head movement features only).

2) Modeling Through Gameplay/Content and Visual Re-
action Features: Combining gameplay/content features and
visual reaction, results in the appearance of features not used
when using each one of the two modalities by themselves. This
may be attributed to the fact that there are correlations between
features used by gameplay/content and visual reaction features
alone. As feature selection seeks beyond linear correlated
features, new selected feature subsets are expected to be
derived for maximizing performance accuracy.

For engagement, a smaller subset of combined features re-
sulted into a higher accuracy than using larger sets of features
from each of the two input modalities alone. Most of the fea-
tures selected do not appear in the subset of features selected
for predicting engagement from each of these two modalities
at a time. The majority of the features selected are directly or
indirectly linked to head movement and gameplay events while
jumping; tjump is an indication of the time spent jumping,
POstomp is the head movement energy while stomping on an
enemy, which is an action that requires jumping, TEendJump

is the temporal expressivity parameter when landing, and B

refers to the number of boxes, which require a jump to interact
with. It therefore expectedly appears that the jump event is a
contributor for the prediction of engagement in platform games
as the average accuracy achieved for engagement (83.97%)
via the bimodal fusion of gameplay and visual reaction fea-
tures is the best obtained across any other feature type as
model input.

The selected subset of features for predicting frustration also
contains less features than the ones selected individually for
each modality. It is interesting to note that there is no overlap

between the features selected from the fused features and the
ones selected from the visual reaction features while there is
only one common feature (nboxes) between the selected fused
features and the features selected from gameplay.

The feature subset selected for predicting challenge contains
a larger number of features when compared to the ones
selected from each modality alone. By looking at the features
selected for the three modes—the models constructed from
gameplay features, the model constructed from visual reaction
features, and the model constructed from fusing these two
modalities—it appears that there are two overlaps between
the visual reaction features selected (FLstartRun and FLlose)
and there is no gameplay feature in common. The resulting
average performance for challenge (78.4%) suggests that the
new features selected do not improve the predictive power of
the model when compared to the corresponding performance
of the visual reaction features. The statistical analysis shows
no significant performance difference between the models con-
structed for predicting engagement and frustration while these
two models’ performances are significantly higher than the
performance of the model constructed for predicting challenge.

E. Statistical Analysis

We perform a statistical analysis to test for significant
differences in the accuracies obtained from the models con-
structed on all different categories of features. Fig. 6 presents
the results obtained from testing for significant performance
differences between the models constructed on all categories
of features across the three emotional states. A signifi-
cant difference on average performance is illustrated with a
solid arrow, while a dash arrow depicts average performance
differences of no statistical significance. The p-values ob-
tained from the statistically significant differences are also
presented.

As can be seen from Fig. 6, mean head movement features
do not yield high performances compared to the other features
when used on their own; all models constructed from other
feature sets yield higher or significantly higher performances
than the model constructed based on the mean head movement
features for engagement. These features, however, outperform
(with no significant difference) the models constructed from
gameplay features for predicting frustration and challenge.
Fusing the mean head movement features with gameplay fea-
tures, nevertheless, resulted in better accuracies than the ones
obtained when only mean head movement features are used
to construct the player experience models for all emotional
states. The accuracies obtained are even better than the ones
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TABLE IV

P-values Obtained From the Two-Way ANOVA Test. Two

Factors Considered are the Inclusion/Exclusion of the

Gameplay Features (A) and Two Types of Visual Cue Features

(B). Significant Effects Appear in Bold

obtained from gameplay features for predicting frustration and
challenge.

Results obtained from models constructed on visual reaction
features, on the other hand, are better than the ones obtained
from the models constructed on mean head movement features
or on gameplay features for predicting frustration and chal-
lenge. These models also improve upon the models constructed
on the fused features of gameplay and mean head movement
for all emotional states.

By fusing visual reaction features with gameplay features,
we were able to construct models with higher performance in
predicting engagement than any other models constructed from
any other feature sets. This argument also holds for frustration
and challenge except for the model constructed from visual
reaction features, which outperforms the model constructed
from fusing these features with gameplay features.

Fusing features from different modalities, in general, ap-
pears to result in more accurate models for predicting players’
affect than the ones obtained when constructing models from
features extracted from one modality. Fusing the features (i.e.,
visual reaction features) empowers the models with implicit
knowledge about more than one channel of information, which
appears to have a positive impact on the models’ performance.

We have anticipated that fusing gameplay and visual reac-
tion features would yield higher accuracies than when using
any other feature set. But our assumption does not hold for
the state of challenge. Analyzing the features selected and
their correlations with players’ preferences would help us shed
some light on this effect. However, the models constructed for
predicting challenge from visual reaction features and from
fusing these features with game play features are multilayered
perceptions of two hidden layers, which further implies that
the relationship between the features selected and the reported
players’ preferences is more complex than simple linear cor-
relations.

We anticipate that the performance decrease obtained when
fusing the features is the result of the feature selection ap-
proach followed, which fails to select the optimal subset of
features for prediction when the pool of features to select from
become large. For instance the total number of 114 features
is reached when fusing gameplay features with visual reaction
features.

To further analyze the effect of the interaction between the
features on the models’ accuracies, we run a two-way ANOVA
test. For this test, two factors have been considered: 1) the
existence (versus non existence) of the gameplay features
for the prediction of affect, and 2) the existence of visual
reaction features (versus head movement features). Such an
analysis would help us investigate whether the use of visual,
or alternatively head movement, features or the fusion of

Fig. 7. Example levels generated to maximize predicted frustration and
challenge for two human players with different visual reaction features.
(a) Generated level for maximum frustration (Subject no. 1). (b) Generated
level for maximum frustration (Subject no. 2). (c) Generated level for maxi-
mum challenge (Subject no. 1). (d) Generated level for maximum challenge
(Subject no. 2.

gameplay with visual cues would yield significant changes in
the models’ performance. The results of a 2 × 2 [(gameplay
and no-gameplay) x (visual reaction and head movement)]
between-groups two-way ANOVA are presented in Table IV.

Both independent variables seems to have an impact on
engagement prediction with p-values of 0.0001 and 4.21∗10−6,
respectively. However, no significant effect was identified
when analyzing the interaction between the variables (p −
value = 0.13). As for frustration, the results showed significant
difference only for the second factor (p − value = 0.0004)
while no significant effects were observed for the first factor
(p − value = 0.78) or for the interaction between the factors
(p − value = 0.512). Finally, for challenge, significant effects
were observed for both factors (p − value = 0.03 and
p − value = 3.54 ∗ 109) and for the interaction between
the factors (p − value = 1.05 ∗ 10−6). These results suggest
that the type of the visual cues has a significant impact on
the prediction accuracies for the three emotional states, while
the inclusion of the gameplay features was found to have a
significant effect on predicting engagement and challenge. The
interaction between gameplay and visual cues features, on the
other hand, was found to have a significant effect only on the
prediction of challenge.

VI. Use of Player Experience Models for

Personalized Level Generation

The ultimate aim for constructing data-driven player ex-
perience models is to use these models to close the af-
fective loop [7], [50], [51] in the game by tailoring the
game content generation according to each individual players’
needs and playing characteristics and realizing the experience-
driven PCG [3] core principle. In the proof-of-the-concept
experiments presented in this section, we describe the method
followed for tailoring content generation driven by the player
experience models constructed in the previous section. We
focus on the models built on selected features from gameplay
and visual reaction as these models give the best accuracy for
predicting engagement and high accuracies with rich informa-
tion about player behavior and visual cues when predicting
frustration and challenge.



SHAKER et al.: FUSING VISUAL AND BEHAVIORAL CUES FOR MODELING USER EXPERIENCE IN GAMES 1529

The player experience models constructed are used to tailor
the content of the game to individual players. As a first
step toward this process we adopt the methodology proposed
in [41] to build models that permit control of content by
forcing controllable features in the input of the ANNs. Then,
in order to generate levels that are tailored to an individual
player, we exhaustively search the content space seeking for a
combination of values for the content features that yields (to-
gether with the selected gameplay and visual reaction features)
the highest ANN output value for the examined affective or
cognitive state (i.e., engagement, challenge, and frustration).
The details of this approach can be found in earlier work of
the authors [41]. Indicatively for the player experience models
built in this paper, the search space consists of a maximum
of five content features: number of gaps, average width of
gaps, number of enemies, enemies placement and number of
boxes with value ranges of [2, 6], [5, 15], [3, 7], [0, 2], and
[0, 15], respectively. The search space is explored by starting
from the minimal possible values and at each step the values
are increased by one. With such a small search space (13 200
configurations) we can find the optimal configuration almost
instantly, allowing real time level generation.

As a proof-of-the-concept experiment, we generate levels
that maximize the predicted frustration and challenge for two
human players having different visual reaction features that are
not used for model construction. Using the experience-driven
PCG mechanism proposed in [41], we were able to generate
a new level for each player that optimizes those two states
of predicted player experience (Fig. 7). It is apparent that the
experience-driven PCG (i.e., adaptation) mechanism generates
a variety of personalized levels depending on the behavioral
and visual cues of the player. For example it seems that a level
can be more frustrating for the first player when it contains
more gaps with small width, a large number of boxes, and
enemies scattered randomly around. A level with less gaps
having small width and enemies around them is found to be
more frustrating for the second player. Likewise, a challenging
level for the first player is the one containing small width
gaps, a small number of enemies scattered randomly around
the level, and no boxes. A level with slightly more challenging
aspects has been generated for the second player where a
smaller number of gaps has been chosen but with larger width,
and enemies placed around collectible items.

Note that neither player behavioral data or self-reported
experience is available for the generated levels; hence, there
is no guarantee that the adaptation mechanism generates
higher levels of challenge and frustration. However, the highly
accurate ANN models built (above 80% accuracy)—that drive
the generation of levels—suggest that higher values are most
likely achieved for all emotional states. Moreover, an earlier
user study on Super Mario Bros [41]—where the same exhaus-
tive search approach was followed to generate personalized
levels based on simpler player models—demonstrated that
personalized levels are preferred from the majority of players.

VII. Conclusion

We have presented an extensive set of experiments for
modeling player experience in games by relying on two
modalities of player input: behavioral data from gameplay
and the player’s visual behavior. A large corpus of behavioral,

visual and player experience report data of 58 Super Mario
Bros players has been collected and predictors of player expe-
rience have been constructed using a coupling mechanism of
automatic feature selection and neuroevolutionary preference
learning. It was shown that players’ visual reactions fused
against certain game events can provide a rich source of
information regarding preferences with respect to challenge
and frustration (reaching model accuracies of 88.88% and
92.5%, respectively). However, engagement (best model accu-
racy obtained was 91.27%) seem to be a notion related both
to the way a game has been designed, played, as well as to
the visual information coming from the player himself.

Future work also includes testing for the generality of
the proposed methodology and the results obtained. While
Super Mario Bros defines more or less the platform game
genre, it would be interesting to investigate to which extent
the methodology proposed can be generalized to other game
genres, such as first person shooter (FPS) or serious games. We
argue that the approach presented has a great potential to be
applied successfully to such games since most of the gameplay
features defined can be easily generalized to capture playing
styles in a variety of other games. The applicability of the
visual reaction features (which proven to be efficient predictors
of player’s affect) appears to be a trivial process since the
extraction of these features depends on key performance events
of the context (such as indicators of losing and winning).

There are a number of limitations inherent in the player
experience modeling approach followed. The feature selection
method provides an efficient mechanism for selecting relevant
features when the size of the search space is rather small. This
method, however, results in a suboptimal subset of features
when searching a large space. Automatic feature selection
is an essential step when constructing the experience models
since selecting the correct subset of features may have a great
impact on the prediction accuracy obtained. Improving on
the global search abilities of the feature selection process is
one way to improve the prediction accuracy of the models.
Algorithms relying on meta-heuristic search, such as genetic-
based feature selection [52] can improve the detection of
more appropriate feature subsets.

Another limitation of the proposed modeling method con-
cerns the expressiveness of the player experience models.
By using neuroevolutionary preference learning, we gain the
advantage of universal approximation capacity for constructing
accurate nonlinear models but we loose the ability of easily
analyzing the cause-effect relationships between the features
selected and the models’ prediction of each emotional state.
Thus, exploiting the use of more expressive model represen-
tations, such as decision trees or fuzzy neural networks for
modeling player experience constitutes a future direction.

As demonstrated with a proof-of-the-concept experiment in
this paper, a level designer can use the derived player expe-
rience models and automatically generate personalized levels
for each player. Given a set of behavioral and visual reaction
features of a player, the ANN player experience models can
inform the designer about the set of game level features (such
as the number of enemies and gaps) that can maximize (or
indeed minimize) the modeled experience state (ANN output)
for that particular player. The personalized generated Super
Mario Bros levels show that the experience-driven procedural
content generation framework [3] can be realized, the affective
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loop can be closed in games and provides a novel approach
for control and adaptation in computer games. The adaptation
methodology proposed, however, needs to be validated with
human players in actual gameplay sessions where players
get to play and compare randomly generated levels against
levels, which are optimized for a player’s modeled experience.
Results in earlier studies on a small group of human players
showcase that the exhaustive search adaptation framework
is effective in generating levels, which are preferred by the
majority of players [41].

The exhaustive search adaptation method presented in this
paper is appropriate due to the relatively small size of the
search space explored. As this paper did not focus on experi-
ence model-driven adaptation—but on the fusion of modalities
for the creation of reliable player experience models—future
work includes the construction and validation of more general
methods for game adaptation, which are effective in larger
search spaces. Evolutionary methods, for instance, can be
utilized for this purpose; previous studies have demonstrated
the potential of meta-heuristics in exploring large content
spaces by integrating the adaptation mechanism within the
content generation process [53], [54].
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