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Machine based human action recognition has become very popular in the last decade. Automatic
unattended surveillance systems, interactive video games, machine learning and robotics are only few of
the areas that involve human action recognition. This paper examines the capability of a known
transform, the so-called Trace, for human action recognition and proposes two new feature extraction
methods based on the specific transform. The first method extracts Trace transforms from binarized
silhouettes, representing different stages of a single action period. A final history template composed
from the above transforms, represents the whole sequence containing much of the valuable spatio-
temporal information contained in a human action. The second, involves Trace for the construction of a
set of invariant features that represent the action sequence and can cope with variations usually
appeared in video capturing. The specific method takes advantage of the natural specifications of the
Trace transform, to produce noise robust features that are invariant to translation, rotation, scaling and
are effective, simple and fast to create. Classification experiments performed on two well known and
challenging action datasets (KTH and Weizmann) using Radial Basis Function (RBF) Kernel SVM provided
very competitive results indicating the potentials of the proposed techniques.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Observation and analysis of the human behavior is an open
research topic for the last decade. Recognizing human actions in
everyday life, is a very challenging task that can be applied in
various areas such as automated crowd surveillance, shopping
behavior analysis, automated sport analysis, human–computer
interaction and others. One could state the problem as the ability
of a system to automatically classify the action performed by a
human person, given the action containing video.

Although the problem can be easily grasped, providing a
solution to this problem is a daunting task that requires different
approach to several sub-problems. The challenge of the task rises
from various factors that influence the recognition rate.

Individuality is a major issue as the same action can be
performed differently by every person. Complicated backgrounds,
occlusions, illumination variations, camera stabilization and view
angle are only a few of the problems that increase the complexity
and create a large number of prerequisites.

If we had to classify human action recognition in different sub-
categories, one could do it by taking into consideration the
underlying features used to represent the various activities.
As authors spot in [1], there are two main classes based on the
ll rights reserved.
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underlying features representing activities. The most successful
one is based on “dynamic features” and comprises the research
object for the majority of current studies. The second one is based
on “static pose based features” and provides the advantage of
extracting features from still images.

A system inspired by Local Binary Patterns (LBPs) is presented
in [2] that is resilient to variations in textures by comparing nearby
patches, while it is silent in the absence of motion. LBP based
techniques have also been proposed in [3] where the space-time
volume is sliced along the three axes (x; y; t) to construct LBP
histograms of the xt and yt planes. Another approach in [4] in
order to capture local characteristics in optical flow, computes a
variant of LBP and represents actions as strings of local atoms.
In [5] another approach, inspired by biology, uses hierarchically
ordered spatio-temporal feature detectors. Space time interest
points are used to represent and learn human action classes in
[6]. Improvement of result has reported in [7,8] where optical flow
based information is combined with appearance information. In a
newer study in [9], a spatiotemporal feature point detector is
proposed, based on a computational model of saliency.

As mentioned above, the features used for human action
recognition can be extracted either from video sequences or still
images describing different static poses. The methods that use still
images, are mostly silhouette based and although they do not
present the accuracy of the sequence based techniques, they
provide the main advantage of single frame decision extraction.
Representative samples of this category are the methods presented
for robust human action recognition, Pattern Recognition (2013),
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Fig. 1. Definition of the parameters of an image tracing line.
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in [10,11]. More specifically, in [11] behavior classification is
achieved extracting eigenshapes from single silhouettes using
Principal Component Analysis (PCA). Modelling of human poses
from individual frames in [10],uses a bag-of-rectangles method for
action categorization.

Other technique in [12] involves infrared images to extract
more clear poses. In following, classification is achieved using
single poses based in Histogram of Oriented Gradients (HOGs)
descriptors. A type of HOG descriptors is also used in [13], on a set
of predefined poses representing actions of hockey players. To
better cope with articulated poses and cluttered background,
authors in [14] extend HOG based descriptors and represent action
classes by histograms of poses primitives. Also in contrast to other
techniques that use complex action representations, authors in
[15] propose a method that relies on “key pose” extraction from
action sequences. The method selects the most representative and
discriminative poses from a set of candidates to effectively
distinguish one pose from another.

Another classification for the approaches relevant to human
action recognition is attempted by authors in [16]. The difference
between methods lies in the representation used by the authors.
Time evolution of human silhouettes was frequently used as action
description. For example, in [17] the authors proposed the repre-
sentation of actions with temporal templates called Motion
History (MH) and Motion Energy (ME) respectively. An extension
of this study presented in [18] inspired by MH templates, intro-
duces the Motion History Volumes as free-viewpoint representa-
tion. Working on similar direction, the authors of [19] proposed
action cylinders, representing an action sequence as a generalized
cylinder, while in [20] spatiotemporal volumes were generated
based on a sequence of 2D contours with respect to time. These
contours are the 2D projection of the points found on the outer
boundary of an object performing an action in 3D. Space-time
volumes shapes are also used in [21,22] based on silhouettes
extracted over time.

Another recent category of techniques, also space-time
oriented, is based on the analysis of the structure of local 3D
patches in the action containing video [23–26]. Different local
features (space-time based or not) have been combined with
different machine learning techniques. Hidden Markov Models
(HMMs) [27–29], Conditional Random Fields (CRFs) [30–32] and
Support Vector Machines (SVMs) [33,8,34] are only a few of them.

The work introduced in this paper is an extension of the work
presented in [34]. In the specific study the Radon transform was
proposed for the extraction of features, capable of representing an
action sequence in a form of template. Radon, which is actually a
subcase of the Trace transform, has found a variety of important
applications, from computerized tomography to gait recognition
[35]. In this paper, we create new features examining the poten-
tials of Trace transform for human action recognition. In the first
stage of our work, we use different functionals for Trace construc-
tion, which assign different properties to a final template called
History Trace Template (HTT). In more details, we examine different
functionals of the Trace to create volume templates that each one
represents a single period of an action. Radial Basis Function (RBF)
kernel SVMs used for the evaluation of the technique, shows a
competitive performance of 90.22% for the KTH and 93.4% for the
Weizmann datasets respectively.

At a second stage, we extend further the method introducing
another feature extraction technique for the production of invar-
iant to variations features, like rotation, translation and scaling.
More specifically, from each frame of the action sequence a set of
Traces is calculated. Calculating different functionals with specific
properties on these transforms, a set of invariant triple features is
extracted. The action is finally represented by a low-dimensional
vector named History Triple Features (HTFs) containing the most
Please cite this article as: G. Goudelis, et al., Exploring trace transform
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discriminant features of the sets extracted for each frame. Classi-
fication experiments using the above datasets, presented even
better results of 93.14% and 95.42% respectively, indicating the
potentiality of the method.

To the best of authors' knowledge, this is the first time that the
Trace transform in any of its forms or its derivatives, is used for the
extraction of features for human action recognition.

The rest of the paper is organized as follows. Trace transform
and the theory behind it, is presented in Section 2. An overview of
the proposed methods is given in Section 3. In Section 4, History
Trace Template and History Triple Feature extraction techniques
are described. The experimental procedure is provided in Section 5
followed by conclusion in Section 6.
2. Trace transform

Trace transform is a generalization of Radon [36] transform while
at the same time Radon builds a sub-case of it. While Radon
transform of an image is a 2D representation of the image in
coordinates ϕ and p with the value of the integral of the image
computed along the corresponding line, placed at cell (ϕ; p), Trace
calculates functional T over parameter t along the line, which is not
necessarily the integral. Trace transform is created by tracing an
image with straight lines where certain functionals of the image
function are calculated. Different transforms having different proper-
ties can be produced from the same image. The transform produced
is in fact a 2-dimensional function of the parameters of each tracing
line. Definition of the above parameters for an image Tracing line is
given in Fig. 1. Examples of Radon and Trace transforms for different
action snapshots are given in Fig. 2. In following we will give a
description of the feature extraction procedure for the Trace Trans-
form based on the theory provided in [37].

To better understand the specific transform, let us consider a
linearly distorted object (rotation, translation and scaling). We
could say that the object is just perceived in another coordinate
system linearly distorted. This could be easier explained by letting
us call the initial coordinate system of the image C1 and the new
distorted one, C2. Let us also suppose that the distorted system
can be obtained by rotating C1 by angle −θ, scaling of the axes
by parameter v and by translating with vector (−s0 cos ψ0;

−s0 sin ψ0). Suppose that there is a 2D object F which is viewed
from C1 as F1ðx; yÞ and from C2 as F2ð ~x; ~yÞ. F2ð ~x; ~yÞ can be
considered as an image constructed from F1ðx; yÞ by rotation by
θ, scaling by v−1, and shifting by (s0 cos ψ0; s0 sin ψ0).

A linearly transformed image is actually transferred along lines
of another coordinate system, as the straight lines in the new
coordinate system also appear as straight lines. The parameters of
a line in C2 parameterized by (ϕ; p; t) in the old system C1, are

ϕold ¼ ϕ−θ ð1Þ

pold ¼ v½p−s0 cos ðψ0−ϕÞ� ð2Þ

told ¼ v½t−s0 sin ðψ0−ϕÞ�: ð3Þ
for robust human action recognition, Pattern Recognition (2013),
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Fig. 2. Examples of Radon and Trace transforms created from the silhouettes of different action snapshots taken from Weizmann database.
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Let us denote Λ as a set of lines that scan an image in all
directions. The Trace transform is a function g defined on the
specific set with the help of a functional T of the image function,
when it is considered as a function of a variable t. Functional T is
called Trace functional. If LðC1;ϕ; p; tÞ is a line in coordinate system
C1, then

gðF;C1;ϕ; pÞ ¼ TðFðC1;ϕ; p; tÞÞ; ð4Þ
where FðC1;ϕ; p; tÞ means the values of the image function along a
selected line. Taking this functional, variable t is eliminated. This
results in a two-dimensional function of variables ϕ and p. The
new function is also an image defined on Λ.

As it is described in [37], using two more functionals assigned
to letters P and Φ, a triple feature can be defined. Where P is called
diametrical and Φ is called circus functional respectively. P is a
functional of the Trace transform function, when it is considered
as a functional operating on the orientation variable after the
previous two operations have been performed. Thus, the triple
feature Π is defined as

ΠðF;C1Þ ¼ΦðPðTðFðC1;ϕ; p; tÞÞÞÞ: ð5Þ
At this point, the three functionals must be chosen. In follow-

ing, invariant and sensitive to displacement functionals are used
which for simplicity, will be called “invariant” and “sensitive”
respectively. A functional Ξ of a function ξðxÞ is invariant if

Ξðξðxþ bÞÞ ¼ ΞðξðxÞÞ ∀b∈R ðI1Þ:
The following properties should characterize an invariant

functional:
�

P
h

Scaling the independent variable by α, scales the result by some
factor, aðαÞ
ΞðξðαxÞÞ ¼ aðαÞΞðξðxÞÞ ∀α40 ðiiÞ:
�
 Scaling the function by c scales the result by some factor, γðcÞ
ΞðcξðxÞÞ ¼ γðcÞΞðξðxÞÞ ∀c40 ði2Þ:

It has been shown that one can write

aðαÞ ¼ αkΞ and γðcÞ ¼ cλΞ ; ð6Þ
where parameters kΞ and λΞ characterize functional Ξ.

Functionals with the following properties are required: applied
on a 2π periodic function u, the result produced should be the
same with the one that would be produced if the functional, were
lease cite this article as: G. Goudelis, et al., Exploring trace transform
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to be applied to the original function minus its first harmonic uð1Þ,
denoted by u⊥≡u−uð1Þ

ZðuÞ ¼ Zðuð⊥ÞÞ ðsi1Þ:
A functional Z is called sensitive if

Zðζðxþ bÞÞ ¼ ZðζðxÞÞ−b ∀b∈R ðS1Þ:
A sensitive functional of a periodic function is defined as

follows: Let r be the period of the function in which Z is defined.
A function is called r-sensitive if

Zðζðxþ bÞÞ ¼ ZðζðxÞÞ−bðmod rÞ ∀b∈R ðS2Þ:

The following properties may also apply to a sensitive
functional:
�

for
Scaling the independent variable scales the result inversely

ZðζðαxÞÞ ¼ 1
α
ZðζðxÞÞ ∀α40 ðs1Þ

Combination of the above with (S1), results to

Zðζðαðxþ bÞÞÞ ¼ 1
α
ZðζðxÞÞ−b ðs11Þ

and

Zðζðαxþ bÞÞ ¼ 1
α
ZðζðxÞÞ− b

α
ðs12Þ:
�
 Scaling the function does not change the result

ZðcζðxÞÞ ¼ ZðζðxÞÞ ∀c40 ðs2Þ:

2.1. Invariant feature construction

Be it so that the functionals T ; P and Φ are chosen to be
invariant with T obeying property ði1Þ, P obeying properties ði1Þ
and ði2Þ and Φ obeying property (i2).

The way image linear distortion affects the value of the triple
feature, is presented bellow. It can be observed that the triple
feature of the distorted image is given by

ΠðF;C2Þ ¼ΦðPðTðFðC1;ϕold; pold; toldÞÞÞÞ: ð7Þ
If we substitute from (1), (2) and (3), we obtain

ΠðF;C2Þ ¼ΦðPðTðFðC1;ϕ−θ; v½p−s0 cos ðψ0−ϕÞ�;
v½t−s0 sin ðψ0 sin ðψ0−ϕÞ�ÞÞÞÞ: ð8Þ
robust human action recognition, Pattern Recognition (2013),
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Using the invariance of T and property of ði1Þ the above can be
written as

ΠðF;C2Þ ¼ΦðPðαT ðvÞTðFðC1;ϕ−θ; v½p−s0 cos ðψ0−ϕÞ�; tÞÞÞÞ: ð9Þ
Due to property ði2Þ obeyed by P, this is

ΠðF;C2Þ ¼ΦðγpðαT ðvÞÞPðTðFðC1;ϕ−θ; v½p−s0 cos ðψ0−ϕÞ�; tÞÞÞÞ: ð10Þ
From ði1Þ property obeyed by P and its invariance, it results to

ΠðF;C2Þ ¼ΦðγpðαT ðvÞÞαpðvÞPðTðFðC1;ϕ−θ; p; tÞÞÞÞ: ð11Þ
If Φ is invariant and obeys property ði2Þ there is

ΠðF;C2Þ ¼ γΦðγPðαT ðvÞαpðvÞÞÞΦðPðTðFðC1;ϕ; p; tÞÞÞÞ: ð12Þ
This condition can be expressed in terms of the exponents of

the functionals κ and λ, to obtain

ΠðF;C2Þ ¼ vλϕðκT λpþκpÞΠðF;C1Þ: ð13Þ
So, invariance should followed by the obvious condition

λϕðκTλp þ κpÞ ¼ 0 ð14Þ
This condition is not necessary if there is no scale difference

between objects that are to be matched, while any invariant
functionals that obey the necessary properties can be used.

Choosing functional T, Φ to be invariant and functional P to be
sensitive and obey property (s11), Φ also obeys property si1. So (10)
no longer follows from (9). Instead we could apply property ðs11Þ of
P, which results to

ΠðF;C2Þ ¼Φ
1
v
PðTðFðC1;ϕ;p; tÞÞ

� �
þ s0 cos ðψ0−ϕÞÞ: ð15Þ

Due to si1 property of Φ, we obtain

ΠðF;C2Þ ¼ γΦ
1
v

� �
ΦðPðTðFðC1;ϕ;p; tÞÞÞÞ ð16Þ

or equivalently,

ΠðF;C2Þ ¼ v−λΦΠðF;C1Þ: ð17Þ
Choosing Φ so that

λΦ ¼ 0; ð18Þ
it can be seen that the calculated triple feature is again invariant to
rotation translation and scaling.

Conditions (14) and (18) are too restrictive though. The rela-
tionship between the triple features computed in the two cases,
can be generalized by

ΠðF;C2Þ ¼ v−ωΠðF;C1Þ; ð19Þ
for (13), ω≡−λΦðκTλP þ κPÞ, while for (17), ω≡λΦ. Since we can decide
the type of functional that is to be constructed, we choose ω to be
known. Thus, every triple feature computed can be normalized.

ΠnormðF;C1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ω�jΠðF;C1ÞjsignðΠðF;C1ÞÞ

p
; ð20Þ

while (19) can be simplified to

ΠðF;C2Þ ¼ v−1ΠnormðF;C1Þ: ð21Þ
An invariant can be produced by dividing two triple features

constructed in such a way.
3. Overview of the proposed system

The most common way to capture a human action is by using a
standard 2D camera. Thus, the action is contained in a video
sequence comprised by a number of different frames. In our
scheme, we have worked on KTH [33] and Weizmann [38]
databases. Both of them contain a large number of action video
sequences, while they have been widely used for evaluation of
human action recognition methods. Since background in all videos
Please cite this article as: G. Goudelis, et al., Exploring trace transform
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is uniform, we subtract it using a grassfire algorithm [39]. Silhouette
extraction is a common technique in many different studies
concerning observation of human dynamics [35,40]. As it is used
in most of the human action algorithm approaches, we con-
structed the testing and training examples manually, segmenting
(both in space and in time). We have also aligned the provided
sequences. This way, each action sample is represented by a time-
scaled video that contains one period.

3.1. History Trace Templates (HTTs)

Although the background is uniform, extracted silhouettes
appear to be noisy as there is still a number of external factors
(such as illumination conditions, etc.) that dramatically affect the
result. To indicate the capabilities of the proposed methods we do
not use a sophisticated algorithm for silhouette extraction neither
any prior filtering. However, due to Trace transform specifications,
the new features created, present to be robust to noise. Thus, a
Trace transform is created for each silhouette. A final template
named History Trace Template (HTT) that represents the entire
movement is created as the result of the integration of the binary
transformations to it.

In following, the final templates comprise the vectors that will
train equal to the number of classes, RBF kernel SVMs. Examples of
extracted silhouettes from frames of different actions and the HTTs
produced for the specific videos, are illustrated in Fig. 3. Classifica-
tion is achieved by measuring the distance of the test vector from
the support vectors of each class. However, since the objective
is to evaluate the overall performance of the new scheme, we
measured the total number of correct classifications for every
vector passing from each trained SVM respectively. For testing,
we followed a leave-one-person-out protocol. Further details on
the experimental procedure are provided in the corresponding
Section 5.

3.2. History Triple Features (HTFs)

Exploring the capabilities of Trace transform we extended the
method based on HTTs creating even more effective features for
human action recognition. The new features consist of a set of
triple features divisions and are invariant to different distortions.

For each video sequence, background and silhouettes are
extracted as above from the same datasets. In this case, using a
number of different functionals, a number of different transforma-
tions is calculated for each frame. From these transforms, a vector
that is composed of a series of invariant features calculated for
each frame of one period of an action is produced. Using Linear
Discriminant Analysis (LDA) [44] to reduce dimensionality, the
whole sequence is represented by a new vector named History
Triple Feature (HTT) and is a set of real numbers containing
important discriminant information for human action classifica-
tion. A more comprehensive description of the specific feature
extraction technique, is given in Section 4.2.

3.3. Ability of Trace to distinguish action classes (an intuitive
illustration)

The features that arise from Trace transform may have not any
physical meaning according to human perception. However, they
may have the right mathematical properties which allow classifi-
cation of actions under a certain group of transformations. To
illustrate the ability of Trace to provide sufficient features for
classification of actions and to provide an intuitive understanding
of this ability, we constructed Weighted Trace Transforms (WTTs),
which initially have been proposed in [43] for face recognition. We
applied the same technique to HTTs, calculating the Weighted
for robust human action recognition, Pattern Recognition (2013),
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Fig. 4. Weighted History Trace templates, for all the different action classes of KTH database using two different functionals (rows (a) and (b)). Important points clearly differ
from class to class.

Fig. 3. Examples of History Trace Templates produced for jack, side, skip, run and pjump actions taken fromWeizmann database. Second row shows extracted silhouettes for
the above instances while third and fourth row show two different types of HTT, produced for each of the action videos.
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History Trace Transforms (WHTTs) for each of the classes of the
KTH database.

Every tracing line is represented by a point in the Trace
representation of an image. WHTT is actually a representation of
tracing lines weighted according to the role they play in the
recognition of the different classes. It actually finds the features
that persist in the final template (HTT) for each class, even if the
action is performed by different persons or captured from different
view angles. The WHTT is computed as follows:

Let D1;D2;D3 be 3 training HTTs. The difference between the
HTTs of the 3 actions is calculated.

D1ðp; θÞ≡jT1ðp; θÞ−T2ðp; θÞj;
D2ðp; θÞ≡jT1ðp; θÞ−T3ðp; θÞj;
D3ðp; θÞ≡jT2ðp; θÞ−T3ðp; θÞj; ð22Þ
where Ti is the HTT of the ith training action and κ is a threshold.
The weight matrix is defined as follows:

Wðp; θÞ ¼
1; if D1ðp; θÞrκ and D2ðp; θÞrκ and D3ðp; θÞrκ

0; otherwise:

(

ð23Þ
Please cite this article as: G. Goudelis, et al., Exploring trace transform
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The result is finally a new template that contains those high-
lighted scanning lines that produced values for the HTTs that differ
from each other by only up to a certain level κ. The results of the
above calculations on the different classes of KTH database are
illustrated in Fig. 4. WHTTs have been calculated considering every
time as training set, the set of HTT samples that constitute the
corresponding action class. To demonstrate that different func-
tionals may introduce different characteristics of an action, two
different functionals have been used. The difference of the flagged
points between the final templates among action classes is
clearly shown.
4. Constructing Trace based features for human action
sequences

It has been shown [37] that the integrals along straight lines
defined in the domain of a 2D function can fully reconstruct it.
As it is explained above, Trace transform is produced by tracing an
image along with straight lines where certain functionals of the
specific function are calculated. The result of Trace transform, is
another 2D image which consists a new function that depends on
for robust human action recognition, Pattern Recognition (2013),
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Table 1
Different functionals calculated for the experimental procedure.

Trace Transform Functional

1 Tðf ðxÞÞ ¼ R
½0;∞�rf ðrÞ dr

where r¼ x−c and c¼medianxfx; f ðxÞg
2 Tðf ðxÞÞ ¼ R

½0;∞�r
2f ðrÞ dr
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the parameters (ϕ; p) that characterize each line. Different Trace
transforms can be produced using different functionals. In this
work, we choose the appropriate computation of the correspond-
ing Trace functionals so that we take advantage of noise robust-
ness of Trace and invariability to translation, and scaling.

Let f ðx; yÞ be a 2D function in the Euclidean plane R2 taken from
an action video sequence containing an extracted binary silhou-
ette. The Trace Transform ǧf , is a function defined on the space of
straight lines L in R2 by a functional along each such line. If for
instance this functional limits its operation to the integration of
each line, it falls to the case of continuous Radon transform of an
image and is given by

Rf ðp; θÞ ¼
Z ∞

−∞

Z ∞

−∞
f ðx; yÞδðp−x cos θ−y sin θÞ dx dy ð24Þ

where Rðp; θÞ is the line integral of the image along a line from −∞
to ∞. p and θ are the parameters that define the position of the line.
So, Rf ðp; θÞ is the result of the integration of f over the line
p¼ x cos θ þ y sin θ. The reference point is defined as the center
of the silhouette.

As human actions are in fact spatio-temporal volumes, the aim
is to represent as much of the dynamic and the structural
information of the action as possible. At this point, Trace transform
shows a great suitability for this task. It transforms 2-dimensional
images with lines into a domain of possible line parameters, where
each line in the image will give a peak positioned at the
corresponding line parameters. When Trace transform is calcu-
lated with respect to the center of the silhouette, specific coeffi-
cients will have capture much of the energy of the silhouette.
These coefficients will vary during time and will provide great
differences from one action to another for the same time-frame.
where r¼ x−c and c¼medianxfx; f ðxÞg
3 Tðf ðxÞÞ ¼medianr≥0ff ðrÞ; ðf ðrÞÞ1=2g

where r¼ x−c and c¼medianxfx; f ðxÞg
4 Tðf ðxÞÞ ¼medianr≥0frf ðrÞ; ðf ðrÞÞ1=2g

where r¼ x−c and c¼medianxfx; f ðxÞg
5 Tðf ðxÞÞ ¼ R

½0;∞�e
iklogrrpf ðrÞ dr; ðp¼ 0:5; k¼ 4Þ

where r¼ x−c and c¼medianxfx; ðf ðxÞÞ1=2g
6 Tðf ðxÞÞ ¼ R

½0;∞�e
iklogrrpf ðrÞ dr; ðp¼ 0; k¼ 3Þ

where r¼ x−c and c¼medianxfx; ðf ðxÞÞ1=2g
7 Tðf ðxÞÞ ¼ R

½0;∞�e
iklogrrpf ðrÞ dr; ðp¼ 1; k¼ 5Þ

where r¼ x−c and c¼medianxfx; ðf ðxÞÞ1=2g
4.1. Constructing HTTs

Besides structural information, in order to also capture the
temporal information included in a movement, we propose the
construction of History Trace Template. This template is actually a
continuous transform in the temporal direction of a sequence. Let
f ðp; ϑ; tÞ be a human action sequence. If

̌
gnðp; θÞ is the Trace

transform of a silhouette snðp; θÞ, for the n frame where n¼ 1…N,
then the History Trace Template for the action sequence will be
Fig. 5. Extracted silhouettes and Trace transforms for one walking
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given from

TNðp; θÞ ¼ ∑
N

n ¼ 1
ǧnðp; θÞ: ð25Þ

This way the resulting features will be a function of multiple
significant distinctions contained in multiple transforms produced
for every action period respectively. As mentioned above, in our
work all action periods have been timescaled to the same number
of frames N. Fig. 5 shows the transformations for each extracted
silhouette received from one walking period. The final HTT is
shown on the bottom side of the figure. For the experimental
procedure, we have calculated and tested a number of Trace
transforms using different functionals. The exact forms of the
above transforms are provided in Table 1.
4.2. Constructing HTFs

In this section we introduce a novel human action representa-
tion using features derived from the Trace transform, hereafter
simply called History Triple Features (HTFs). The Trace transform is
a global transform that can be applied to full images. It is known to
be able to pick up shape as well as texture characteristics of the
period. History Trace Template is shown on the bottom.
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object it is used to describe and offers an alternative representa-
tion of an image of it [43].

We presented above, how Trace can be used to represent a
whole action sequence. However, the above representation can
only be used in the case where the actions have been captured
under the same conditions (view angle, scale, rotation, etc.). Since
this is not very common in most of the applications that embroil
human action recognition, we propose a more advanced technique
that overcomes many of the above limitations. The Trace transform
is a very rich representation of an image. To use it directly for
recognition, one can produce a more simplified version of it.

Authors in [37] have proved that using extracted triple features,
robust features for the classification of different but very similar to
each other image classes (e.g. different kind of fishes) can be
produced. In Section 2 we presented the theory behind the
construction of triple features. In following, we demonstrate the
construction of the proposed HTTs.

Having the extracted silhouettes, we first transform the silhou-
ette containing image space, to Trace transform space. For each
frame of the sequence, a set of Trace transforms is calculated.
Following the procedure described in Section 2.1 for the extraction
of the triple feature, a set of such features is extracted. The ratio of
a pair of such features as it has been shown, may be invariant to
different kind of distortions, depended on the functionals used.
Fig. 6. Triple features extraction for one period of
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These functionals may be chosen to be sensitive or relatively
insensitive to the possible variations that occur in action
sequences, while maintaining discriminability.

Let f ðp; ϑ; tÞ be a human action sequence. Applying a Trace
functional T, along lines tracing the n frame referring to snðp; θÞ
silhouette, where n¼ 1…N and N is the number of frames, a Trace
transform

̌
gnðp; θÞ is produced. Applying different Ts to every

silhouette snðp; θÞ a set of
̌
gni

ðp; θÞ transforms is produced. Where
i¼ 1…L and L is the number of transforms one chooses to
calculate. For every

̌
gni

ðp; θÞ a set of ΠnormðF;CÞ normalized triple
features is computed.

In a simple way triple feature is constructed as follows:
(a)
a wa

for
Trace transform is produced by applying a Trace functional T
along lines tracing the image.
(b)
 The circus function of the image is produced by applying a
diametric functional P along columns of the Trace transform.
(c)
 The triple feature is finally produced by applying a circus
functional Φ along the string of number produced in step b.
The procedure is illustrated in Fig. 6.
Dividing all ΠnormðF;CÞ by each other, a set of independent

features is produced. So, the whole action sequence is finally
represented by a vector v comprised by the set of all triple feature
ve action taken from Weizmann dataset.
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ratios calculated for every frame of the action sequence.

v¼ ðΠrat1 ;Πrat2 ;…;Πratg−1 ;Πratg Þ ð26Þ

where Πrat is the ratio of two normalized triple features and g the
number of calculated ratios.

This method allows the construction of many features easily.
Supposing that one makes use of 10 functionals for each stage of
the construction (e.g. 10 T functionals, 10 P functionals and 10Φ
functionals) in a 10 frame action video, he may construct
10�10�10�10 ¼ 10 000 features for one sequence. As men-
tioned above, these numbers may have not any physical meaning
according to human perception, but they may have the required
mathematical properties for classification purposes.

Since the discriminatory power of the features constructed will
definitely vary, a dimensionality reduction technique could pro-
vide a selection of the most discriminant features while make the
problem of classification more tractable. In our scheme the HTF
vectors produced as described above, become subject to LDA in
order to determine an appropriate subspace that is suitable for
classification. In practice we keep only a subset of the initial HTF
vector that contains the most discriminant of the calculated
feature capable to efficiently describe the entire action sequence.
5. Experimental results

In this section, we will present the experimental results in
order to demonstrate the efficiency of the proposed schemes for
human action recognition while at the same time, we will provide
the experimental evaluation of the different invariant Trace func-
tionals calculated for the construction of HTTs.

Different published methods have used different evaluation sce-
narios. As it is stated in [41], most of the researchers working on the
field of human action recognition have evaluated their methods on the
KTH [33] and Weizmann [38] datasets. However, there is not a unified
standard usually followed for evaluation. The authors of the above
paper also report differences up to 10.67% in results when different
validation approaches are applied to the same data.

In our experiments, the leave-one-person-out cross-validation
approach was used to evaluate performance. The specific pro-
tocol was chosen due to its popularity among researches. It also
Fig. 7. Action samples from Weizmann database for wave1, w

Fig. 8. Action samples from KTH database for walking, jogging, runn
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reconstructs the real life application needs, in the closest way.
Thus, the physical dynamic behavior of an unknown subject is
captured by an action recognition system and thereafter processed
and compared against a pre-recorded set of data that have
previously trained it. The final decision is made based on the
relativity of the examined action, with one of the data that
comprise the training set, according to system's set rule. Accord-
ingly, the above protocol uses one person's samples for testing and
the rest of the dataset is used for training. The procedure is
repeated N times where N is the number of subjects within the
dataset. Performance is reported as the average accuracy of N
iterations.

The experiments were performed on an Intel Core i5
(650@3,2 GHz) processor with 4 GB RAM memory. For the experi-
ments the KTH and the Weizmann action databases were used.
Samples from the datasets used for different type of actions are
illustrated in Figs. 7 and 8. The KTH video database contains six
types of human actions (walking, jogging, running, boxing, hand
waving and hand clapping) performed several times by 25 subjects
in four different scenarios, under different illumination conditions:
outdoors, outdoors with scale variation (camera zoom in and out),
outdoors with different clothes and indoors. The database contains
600 sequences. All sequences were taken over homogeneous back-
grounds with a static camera with 25 fps frame rate.

The Weizmann video database consists of 90 low-resolution
(180�144, deinterlaced 50 fps) video sequences presenting nine
different people. Each individual has performed 10 natural actions
such as run, walk, skip, jumping-jack (or shortly jack), jump-
forward-on-two-legs (or jump), jump-in-place-on-two-legs (or
pjump), gallopsideways (or side), wave-two-hands (or wave2),
wave-one-hand (or wave1), or bend.

In our experiments, the sequences have been downsampled to
the spatial resolution of 160n120 pixels and have a length of four
seconds in average. The training examples were constructed by
manually segmenting (both in space and in time) and aligning the
available sequences. The background was removed using a grass-
fire algorithm [39]. The leave-one-person-out cross-validation
approach was used to test the generalization performance of the
classifiers for the action recognition problem.

At this point, we should note that human action recognition is a
multiclass classification problem. We cope with this, by constructing
ave2, walk, pjump, side, run, skip, jack, jump and bend.

ing, boxing, hand waving and hand clapping respectively.
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Table 3
Classification percentages (%) achieved by different published methods on KTH
database.

Method Average
accuracy (%)

Classifier

Wong end Cipolla [42] 86.50 SVM
Sun et al. [45] 94.00 SVM
Liu end Shah [46] 94.16 VWCcorrel
Dollar et al. [24] 81.20 NNC
Schuldt et al. [33] (reported in [9]) 50.33 NNC
Rapantzikos et al. [9] 88.30 NNC
Oikonomopoulos et al. [47]
(reported in [42])

74.79 NNC

Ke et al. [48] 80.90 SVM
Schuldt et al. [33] 71.70 SVM
Niebles et al. [6] 81.50 pLSA
Jiang et al. [49] 84.40 LPBOOST
Laptev et al. [8] 91.80 SVM
HTTs 90.22 SVM
HTFs 93.14 SVM

Table 4
Classification percentages (%) achieved by different published methods on Weiz-
mann database.

Method Average accuracy (%) Classifier

Sun et al. [45] 97.80 SVM
Klasser et al. [50] 84.3 SVM
Jhuang et al. [5] 96.3 SVM
Thurau [51] 86.66 MOH
Thurau et al. [14] 94.40 1-NN
Niebles et al. [6] 72.8 pLSA
HTTs 93.4 SVM
HTFs 95.42 SVM
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the problem as a generalization of binary classification. More
specifically, for each dataset, we trained 6 and 10 different SVMs
(one for each class of the KTH and Weizmann database respectively)
using an one-against-all protocol. The final decision was made by
assigning each testing sample to a class Ca, according to the distance
d of the testing vector from the support vectors. Where Ca is the set
of templates assigned to an action class (e.g. boxing). However, since
we wanted to evaluate the generalization of the algorithm in a more
broad way, we measured the successful binary classifications of every
sample, tested on each of the different trained SVMs. This way we
managed to produce 25n6n4n6 ¼ 3600 (personsnactionsnsamples
per person) classifications instead of 600 for the KTH and
10n9n10 ¼ 900 classifications instead of 90 for the Weizmann
respectively. The same procedure was followed for both feature
extraction methods (HTT and HTF respectively).

The results, indicated a very competitive classification rate for
both techniques. However, as it was expected, HTFs performed
much better since they have been designed to be invariant to
different variations. More specifically, the recognition rate using
HTTs was 90.22% and 93.4% for each of the two datasets while
HTFs indicated a rate of 93.14% and 95.42% for the KTH and the
Weizmann databases respectively. We should also note that the
extracted silhouettes used were very noisy and no prior filtering
had been applied to them. The overall (for all classes) percentages
produced for the different functionals of Table 1 that used for the
construction of HTTs, are provided in Table 2.

It is also interesting to mention that both feature extraction
methods performs quite fast. For 25 iterations (testing all samples
of KTH), training included, HTTs technique required 6 min while
each sample was tested within 0.01 s. The same testing procedure
for the HTFs technique required 2.5 min while each sample was
tested within 0.005 s. However for HTFs, testing time as well as
feature extraction time, is proportional and inversely proportional
respectively, to the number of Trace functionals T one chooses to
calculate. In our experimental procedure, 9 T functionals were
calculated for each frame of every video representing an action.
This resulted in the production of 40 triple features per frame. This
way, each sequence (all comprised of 7 frames), is initially
described by a vector of 320 features. Using Linear Discriminant
Analysis (LDA) to distinct the most discriminant of them, resulted
in a vector of 31 features. Thus, every action sequence was finally
represented by a 31�1 vector v. The time required for the
calculation of HTFs for one action was ≃2 s.

A comparison of the proposed techniques with other published
works for the same databases are given in Tables 3 and 4 for the
KTH and the Weizmann databases respectively. At this point we
should note that the results illustrated are not the optimum for
HTF technique. Calculating more features and/or adapting more
suitable functionals for the calculation of the final HTF vector that
represents a sequence may dramatically increase the results. The
purpose of this work is not to present a consummate human
action recognition system that gets ahead of the competition. Our
Table 2
Results produced by calculating HTT, testing different functionals on the two
different datasets.

Trace Transform Results (%) on KTH Results (%) on Weizmann

Radon 87.7 91.11
1 89.82 92.20
2 88.41 92.00
3 86.66 90.52
4 88.00 93.11
5 89.82 92.20
6 89.82 92.20
7 90.22 93.41
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aim is mainly to examine the capabilities of Trace transform for
the specific task and to propose a novel feature extraction
technique based on Trace that is suitable for human action
recognition, while at the same time overcomes common problems
such as zoom-in zoom-out and unstable video captures.

Although HTT method indicated to be able to effectively
distinguish action classes, reveals some limitations when it comes
to video capture variations and would probably suit more envir-
onmentally controlled applications. On the other hand, HTF
indicated great potentials for the specific task as it does not only
performed well, but theoretically the limitation of calculating
suitable functionals is endless. For real life applications, func-
tionals could be calculated to suit specified requirements increas-
ing the performance of a dedicated to action recognition system.
Applications such as human–computer interaction and games,
could greatly benefit from a conscientious design. Outdoor appli-
cations such as surveillance systems and automated sport analy-
zers, could also benefit from a more generalized design that will
cover specific requirements while at the same time will overcome
many limitations arising from common video capturing variations.
6. Conclusion

In this paper, Trace transform is examined for its capability to
produce efficient features for human action recognition. More
specifically, calculating Weighted Trace transforms (WTTs) we
initially presented an intuitive illustration of Trace capability to
distinguish action classes. In following, two new feature extraction
for robust human action recognition, Pattern Recognition (2013),

http://dx.doi.org/10.1016/j.patcog.2013.06.006
http://dx.doi.org/10.1016/j.patcog.2013.06.006
http://dx.doi.org/10.1016/j.patcog.2013.06.006


G. Goudelis et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
methods are introduced: History Trace Templates (HTTs) and
History Triple Features (HTFs). The first type of features proposed,
contains much of the spatio-temporal information of a human
action. A template is created integrating a series of Trace trans-
forms calculated with different functionals that provide fast
recognition and noise robustness. The second type, is produced
by a series of triple features extracted from multiple Trace trans-
forms, calculated for every frame of an action sequence. Using LDA
to reduce dimensionality, the whole action is finally represented
by a small vector containing the most discriminant features. The
vectors produced, may have not any physical meaning according to
human perception, they contain though, the mathematical proper-
ties required for action classification. The features produced are
calculated to be invariant to scaling, translation and rotation, while
they are noise robust giving solutions to some of the most
important problems in the field of action recognition.

We evaluated the effectiveness of both methods for the specific
task, by calculating different functionals for HTT and HTF and
testing the new features on KTH and Weizmann databases. It is
worth noting, that both methods proved to be very effective for
action recognition showing great noise robustness. However, HTFs,
are suggested for a wider range of applications as they perform
better, present invariability to different scenarios and are very
robust in illumination variations, noise and scaling (zoom-in
zoom-out) conditions. The method is of great potentiality as one
may calculate more, different and more reliable features that can
present invariability to conditions appeared in specific type of
action applications.
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