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Abstract

Ontologies expressed in Description Logics or extensions of Datalog are gradually used for describing the domain of many research

and industrial strength applications. They provide a formal semantically rich and data-independent layer over which user queries

can be posed. A prominent technique for query answering in ontology-based applications is query rewriting, where the given user

query Q and ontology O are transformed into a (datalog) program R that captures the answers of Q over O and every database

D. In realistic scenarios it is quite often the case that users refine their original query by adding or removing constraints until they

produce a final one. In such scenarios, however, all existing systems would compute a new rewriting Ri for each refined query

Qi from scratch, discarding any information possibly computed previously. In this paper we study the problem of computing a

rewriting for a query Q′ which is a “refinement” of a query Q by exploiting as much as possible information possibly computed

previously for Q. We investigate whether such information is usable when computing a rewriting for Q′ and present detailed

algorithms. Finally, we have implemented all proposed algorithms and conducted an extensive experimental evaluation.

Keywords: Ontologies, Description Logics, Query Rewriting, Query Refinement.

1. Introduction

The use of ontologies in research as well as in industrial

strength applications is gradually gaining momentum [21, 26,

33]. In such scenarios the data reside in secondary data manage-

ment systems while ontologies provide a formal specification

of the intentional level (knowledge/schema) of the application

domain. Then, access to the data is performed via conjunctive

queries (CQs) and the computed answers reflect both the stored

data as well as the knowledge in the ontology providing so-

called Ontology Based Data Access (OBDA) [34]. Ontologies

also play an important role in a number of different scenarios

like data integration [7, 22], biomedical applications [15, 12],

and more.

An important family of formalisms for constructing ontolo-
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gies, primary due to fact that they constitute the logical under-

pinnings of the Web Ontology Languages OWL [19] and OWL

2 [11] are Description Logics (DLs) [3]. Other prominent on-

tology languages motivated mostly from the area of deductive

databases are fragments of Datalog± [6]. Query answering over

such ontology languages has extensively been studied in the lit-

erature [23, 14, 29] and today there exist languages that are

specifically purposed for efficient data access. Prominent ex-

amples are DL-Lite [8] and EL [4], which constitute the logical

underpinnings of OWL 2 QL [25] and OWL 2 EL [25], respec-

tively.

An important approach for query answering in these lan-

guages is via a technique called query rewriting [8, 2, 32]. Ac-

cording to this technique a query Q and an ontology O are

transformed into a program R, typically a datalog program

called a rewriting, such that the answers of R over any input

data D (discarding the ontology) are precisely the answers of Q

over D and O. Such an approach to query answering is interest-
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ing from a practical perspective because after computing Q the

problem of query answering can be delegated to efficient and

scalable (deductive) database and datalog evaluation systems

by either directly evaluating R using off-the-shelf systems [13],

by implementing customised engines [27], or by integrating R

in an optimal way into data saturation engines [38].

In the last years many algorithms and systems for comput-

ing rewritings have been presented, such as QuOnto [1], Re-

quiem [31], Presto [37], Nyaya [16], Quest [35], Rapid [10],

IQAROS [41], and Clipper [13]. All of them will compute

for a given fixed query a rewriting by applying (usually in a

brute-force manner) a certain set of rewriting rules discarding

any information possibly computed for previously processed

queries. However, it is quite often the case that user queries

alter their initial queries producing new ones which have small

differences [30, 20]. Consequently, a query can be refined sev-

eral times until the user (possibly) finds the intended informa-

tion.

For example, a user might initially ask to retrieve from a stu-

dent database all those students that take a specific course using

the following conjunctive query:

Student(x) ∧ takesC(x, y)→ QA(x)

where x, y are variables that need to be matched to actual

students and courses from the database, respectively, while

Student is a concept atom (unary predicate) and takesC is

a role atom (binary predicate). Moreover, the predicate QA,

called head of the query, specifies which matches should be

returned to the user. In this query, only the matched students

would be returned.

Subsequently, the user might desire to also retrieve the course

that each student takes, hence posing the following query:

GStudent(x) ∧ takesC(x, y)→ QA(x, y)

where now variable y also appears in the predicate QA. Yet,

our hypothetical user might want to further refine the query and

retrieve all those that take a course without necessarily being

students, hence, posing the following query:

takesC(x, y)→ QA(x, y)

Finally, he/she can again relax the constrains and retrieve only

the people that take a course:

takesC(x, y)→ QA(x)

In our previous work [40, 41] we have studied the problem of

computing a rewriting for queries that have been refined by ex-

tending them with new atoms. More precisely, given a DL-Lite

obtology O, a query Q, a rewriting R computed for O and Q

and a new atom α with which the user wants to “extend” Q,

we have studied how to compute a rewriting for the extended

query by reusing as much as possible the information that has

been pre-computed in R. Our study gave rise to a novel query

rewriting system based on incremental processing of the query

atoms and experimental evaluation showed that the new algo-

rithm is currently one of the most efficient ones.

In the current paper we study all other types of refinements

as illustrated previously in our running example. More pre-

cisely, for an ontology O, a query Q, and a rewriting R possi-

bly computed previously for Q and O we study how to compute

a rewriting for a new query that is obtained from Q by remov-

ing some specific atom of Q, or by removing some of the head

variable of Q, or by extending its head variables with new ones,

again by exploiting as much as possible the information in pre-

viously computed rewriting R.

To the best of our knowledge there exist no previous study

of the above problems in the presence of ontologies. A re-

lated problem studied in the field of databases is view adap-

tation [18, 24], where the problem is to compute the materi-

alisation of a re-defined materialised view. However, in both

works, the focus is in updating the data (the materialisation of

the view) and, moreover, there are no database constraints (on-

tological axioms) present.

The rest of the paper is organised as follows. In Section 2

we recapitulate all the necessary terminology as well as rel-

evant definitions that will help us with the rest of the paper.
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Subsequently, in Sections 3–5 we study the aforementioned re-

finement problems. More precisely, in Section 3 we study query

rewriting when some head variables have been removed; in Sec-

tion 4 we study query rewriting when new variables have been

added to the head of the current query; and finally, in Section 5

we study query rewriting when an atom from the query has been

removed. For each studied problem we present motivating ex-

amples, detailed algorithms, and proofs. Subsequently, in Sec-

tion 6 we study for each refinement problem the possiblity of

some optimisations. Next, in Section 7 we present two imple-

mentations of all our algorithms, one using the system Rapid

and one using Requiem. We also present results of a detailed

experimental evaluation comparing them against the classical

Rapid and Requiem implementation. Finally, in Section 8 we

conclude the paper.

2. Preliminairies

2.1. Existential Rules

We use standard notions of (function-free) term, variable,

substitution, ground atom, formula, and entailment (denoted as

|=) from First-Order Logic [9]. An instance I is a finite set of

ground atoms. For a finite set of atoms {α1, . . . αn}, we define∧
{α1, . . . αn} to be the formula α1∧ . . .∧αn. For α an atom and

σ a substitution, the result of applying σ to α is denoted as ασ.

Also, every substitution σ induces a directed graph G = 〈V, E〉,

where t ∈ V iff t is a term in σ and 〈x, t〉 ∈ E iff x 7→ t ∈ σ.

A concept atom is of the form A(t) with A an atomic concept

and t a term. A role atom is of the form R(t, t′) for R an atomic

role, and t, t′ terms. An existential rule r (or just rule) [5, 6],

often called axiom or clause, is a sentence of the form:

∀~x.∀~z.[φ(~x,~z)→ ∃~y.ψ(~x, ~y)]

where φ(~x,~z) and ψ(~x, ~y) are conjuncts of function-free atoms

and ~x, ~y and ~z are pair-wise disjoint. Formula φ is the body,

formula ψ is the head and universal quantifiers are often omit-

ted. Note that, by definition, existential rules are safe–that is, all

variables in ~x occur both in the body and the head. If ~y is empty,

the rule is called datalog. For r a datalog rule, we denote with

bd(r) the set of body atoms of r, and by hd(r) the single head

atom of r. A datalog program is a finite set of datalog rules.

Many popular Horn ontology languages, such as DL-

LiteR [8] and ELHI [32] as well as Datalog± [6] can be cap-

tured by existential rules. So, in the context of this paper, we

will define an ontology O as a finite set of existential rules.

2.2. Queries

A query Q is a finite set of sentences containing a distinct

query predicate QA in the head atom. A tuple of constants ~a is

a certain answer to Q w.r.t. ontology O and instance I if the

arity of ~a agrees with the arity of QA and O ∪ I ∪Q |= QA(~a).

We denote with cert(Q,O ∪ I) all answers to Q w.r.t. O ∪ I. A

query Q is a union of conjunctive queries (UCQ) if it is a set of

datalog rules containing QA in the head but not in the body. A

UCQ Q is called a conjunctive query (CQ) if it has exactly one

rule; in this case with Q we denote the single rule in the CQ.

All the variables that appear in the head of a conjunctive

query are called distinguished (or answer) and are denoted by

avar(Q). For an atom α we use var(α) to denote the set of

its variables; var can be extended to queries in the obvious

way. Let φ(~x,~z) → QA(~x) be a CQ, where ~x = (x1, . . . , xn)

and let also a vector ~y = (y1, . . . , ym) of variables. Then, by

φ(~x,~z) → QA(~x, ~y) we denote the new query φ(~x,~z) → QA(~z),

where ~z = (x1, . . . , xn, y1, . . . , ym).

Let Q = φ(~x,~z) → QA(~x), where ~x = (x1, . . . , xn). Let also

j1, . . . , jm be a non-empty sequence of positive integers such

that n ≥ max{ j1, . . . , jm}. The projection of Q over j1, . . . , jm,

denoted by π j1,..., jm (Q), is the new query φ(~x,~z)→ QA(~w) where

~w = (x j1 , . . . , x jm ), and π j1,..., jm is called a projection operator.

Given CQs Q1,Q2 with distinguished variables ~x and ~y, re-

spectively, we say that Q2 subsumes Q1 (or that Q2 is a sub-

sumer of Q1), if there exists a substitution σ from var(Q2) to

var(Q1) such that every atom in Q2σ also appears in Q1. For

a rewriting R we say that Q1 is redundant in R if a different

query Q2 ∈ R exists that subsumes it; otherwise it is called

non-redundant in R. Finally, Q1 is called non-subsumer if it
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does not subsume any other query in R.

A CQ Q is called connected if, for all terms t, t′, there exists a

sequence t1, . . . , tn such that t1 = t, tn = t′ and, for all 1 ≤ i < n,

there exists a role R such that R(ti, ti+1) ∈ Q. Without loss of

generality, we assume that CQs are connected.

2.3. Inferences and Inference Rules

We use standard notions of most general unifier (mgu),

(hyper-)resolvent, and clause subsumption from First-Order

resolution [9]. A resolution inference rule is an n + 2 relation

on clauses annotated with a substitution and a list of the rele-

vant sets of literals. The elements of such a relation with the

corresponding sets and substitution are written as follows:

C C1 . . .Cn

C′
[σ,Υ]

where C is a clause called main premise, C1, . . . ,Cn are dis-

tinct clauses called side premises, and C′ is called the con-

clusion. An inference is also denoted by a tuple of the form

〈C,C1, . . . ,Cn,C′〉. Given an inference 〈C,C1, . . . ,Cn,C′〉, we

require C′ to be a (hyper-)resolvent of C with C1, . . . ,Cn via the

composition of an mgu θ and a renaming ρ. This effectively en-

sures that C′ does not share variables with any of the premises.

Moreover, σ is a mapping from the variables of C to those of

C′ that establishes a connection between them. More precisely,

it is defined as the subset of assignments in θ ◦ ρ mapping vari-

ables of C to function-free terms of C′. Furthermore, Υ is a list

of pairs of sets of the form 〈Ai,Bi〉 that contains the relevant

literals of the inference. More precisely, Ai are all the literals

of C that are unified with literals from the i-th side premise Ci,

while Bi are the literals of Ci that are introduced to C′ (after also

application of θ ◦ ρ). Formally, C′ = [(C \
⋃

i Ai)θ ◦ ρ∪
⋃

i Bi],

where Bi ⊆ Ciθ ◦ ρ. An inference system Γ is a collection of

inference rules. For a set of clauses N we denote with Γ(N) the

set of all inferences by Γ having all their premises in N.

2.4. Query Rewriting

Intuitively, a rewriting of Q w.r.t. O is another query that

captures all the information from O relevant for answering Q

over an arbitrary instance I [8, 32, 16].

Definition 1. A datalog rewriting of a CQ Q with query predi-

cate QA w.r.t. ontology O is a datalog program that can be par-

titioned into two disjoint sets RD ]RQ such that RD does not

mention QA and RQ is a UCQ with query predicate QA, and

where for each I using only predicates from O we have

cert(Q,O ∪ I) = cert(RQ,RD ∪ I).

In the following we freely use RD (RQ) to denote the datalog

(UCQ) part of some rewriting R.

Several techniques and algorithms for computing a rewriting

have been presented in the literature [8, 32, 16, 28]. Many of

them have been implemented in state-of-the-art systems. Thus,

to abstract from the specifics of each system we introduce an

abstract notion that can capture most algorithms proposed in

the literature.

Definition 2. A rewriting algorithm rew for a class L of exis-

tential rules is an algorithm that for each L-ontology O and CQ

Q proceeds in three phases:

1. It transforms O ∪Q into a set of clauses N1.

2. It uses an inference system Γ to compute a sequence

〈N1, σ1,Υ1〉. · · ·.〈Ni, σi,Υi〉 of tuples that consists of a set

of clauses Ni, a substitution σi and a list of pairs Υi such

that for i = 1 we have σ1 = ∅, Υ1 = {〈∅, ∅〉}. Moreover, for

each i ∈ {1, . . . ,m − 1}, Ni+1 extends Ni with a conclusion

of an inference in Γ(Ni) and σi+1, Υi+1 are the annotations

of the specific inference.

3. It returns a tuple rew(Q,O) = 〈R, R〉, where R = RD]

RQ is a subset of Nm s.t. it is a rewriting for Q w.r.t. O,

and R is the relation defined as follows: for x ∈ var(Q),

Q′ ∈ RQ and y ∈ var(Q′), we have x R y iff x(σ1 ◦ . . . ◦

σ j) = y, where j is the smallest integer such that Q′ ∈ N j.

A rewriting algorithm is called Q-oriented if all Qi ∈ RQ differ-

ent from Q are produced from some Q j ∈ RQ by an inference

of the form 〈Q j,C1, . . . ,Cn,Qi〉.

Most existing rewriting algorithms are either resolution-

based or can be cast in the framework of resolution, and hence
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they can be captured by our definition. Throughout the pa-

per we will additionally assume that rewritings are computed

by Q-oriented rewriting algorithms. Most well-known sys-

tems, like PerfectRef, Nyaya, and Rapid, are based on Q-

oriented algorithms, hence our results are quite general. How-

ever, there are systems, like Requiem, that are not. For exam-

ple, in Requiem a query Qi ∈ RQ might be computed from

a query Q j ∈ RQ using more than one inferences involving

intermediate clauses that contain functional terms. For exam-

ple, for O = {A(x) → ∃y.R(x, y) ∧ C(y),R(x, y) → S (x, y)} and

Q = S (x, y) ∧C(y)→ QA(x) it will proceed as follows:

• First, it will transform O into the following set of clauses:

A(x) → R(x, f (x)) (1)

A(x) → C( f (x)) (2)

R(x, y) → S (x, y) (3)

where f is a new skolem function.

• Then, it will apply (binary) resolution with free selection

and one possible derivation could be the following: from

Q and (2) derive Q1
f = S (x, f (x)) ∧ A(x) → QA(x); from

Q1
f and (3) derive Q2

f = R(x, f (x)) ∧ A(x) → QA(x); and,

from Q2
f and (1) derive Q′ = A(x) → QA(x). The rewrit-

ing for Q w.r.t. O is the set R = {Q,Q′}.

Clearly, Requiem is not Q-oriented as Q′ is derived from Q by

several steps involving intermediate non-function-free clauses.

Our results can be applied to systems such as Requiem in the

following way: We can modify all algorithms and definitions to

accept as input the limit Nm of Definition 2 instead of just the

clauses in the function-free subset of Nm. For example, in the

previous case the input should be the set N3 = {Q,Q1
f ,Q

2
f ,Q

′}.

With this modification all our results apply.

3. Rewriting Under Answer Variable Removals

In this section we study the problem of computing a rewriting

for a query whose distinguished variables have been reduced,

by exploiting as much as possible a precomputed rewriting for

the original query. The following example illustrates the key

ideas behind the algorithm we will present next.

Example 3. Consider the following ontology O which de-

scribes courses and professors:

teachesGradC(x, y) → teachesC(x, y) (4)

Professor(x) → ∃y.teachesGradC(x, y) (5)

Consider also the query Q1 = teachesC(x1, y1) → QA(x1, y1)

which retrieves pairs of tutors and courses. The set R =

{Q1,Q2}, where Q2 = teachesGradC(x2, y2)→ QA(x2, y2) is a

rewriting of Q1 w.r.t. O. More precisely, Q2 is the conclusion

of an inference with premises query Q1 and clause (4), and an-

notation Υ = {〈{teachesC(x1, y1)}, {teachesGradC(x2, y2)}〉}.

Moreover, R= {〈x1, x2〉, 〈y1, y2〉} that states that during com-

putation of R variable x1 was renamed to x2 and y1 to y2.

Assume that after evaluating Q1 we want to retrieve only

those that teach some course without also retrieving the spe-

cific course, i.e., we pose the query Q′1 = teachesC(x1, y1) →

QA(x1) which is the projection of Q1 over variable x1 (the first

variable), i.e., Q′1 = π1(Q1). The set R′ = {Q′1,Q
′
2,Q

′
3},

where Q′2 = teachesGradC(x2, y2) → QA(x2) and Q′3 =

Professor(x3) → QA(x3), is a rewriting of Q′1 w.r.t. O, and

 R′= {〈x1, x2〉, 〈y1, y2〉, 〈x1, x3〉}.

The rewriting R′ can be computed using any state-of-the-art

system. However, each such system would apply its inferences

rules over Q′1 and O from scratch without taking into account

that a significant amount of information has already been com-

puted for query Q1, and Q′1 differs only by one variable. In fact,

Q′2 (a member of R′) can be computed directly from R as the

projection of Q2 over the first variable, i.e., Q′2 = π1(Q2). Ac-

tually, if Q1 and Q2 have been evaluated over the database then

we can also directly compute the evaluation of Q′1 and Q′2 by a

projection over the results returned for Q1 and Q2, respectively.

However, we can observe that query Q′3 of R′ cannot be

computed using the above simple operation. Instead, one needs

to exploit the inference rules of a rewriting system to compute

it. More precisely, Q′3 can be computed by performing an in-

ference using, e.g., systems like PerfectRef or Requiem, with
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premises query Q′2 and clause (5). Intuitively, this is because

after projection, variable y2 appears only once and hence new

inferences are “activated”. ♦

The above example suggests that given a query Q and a

rewriting R of Q w.r.t. some ontology O, a rewriting for a query

Q′ that is a projection of Q (i.e., Q′ = π j1,..., jn (Q) for some

π j1,..., jn ) can be computed from R by performing two key oper-

ations: first, project all queries in R using π j1,..., jn , and, second,

possibly apply additional inferences over the projected queries

in order to compute the missing ones.

In general, we can apply the inference rules of a rewriting

system exhaustively over all projected queries, however, this

could potentially affect performance. In contrast our algorithm

checks whether a new inference has been activated using the

following function.

Definition 4. Let O be an ontology, let Q be a conjunctive

query, and let π j1,..., jn be a projection operator. Then function

needsRewriting(Q, π j1,..., jn ,O) returns true if there exists an in-

ference with query π j1,..., jn (Q) as a main premise and annota-

tions σπ,Υπ and there exists 〈Aπ,Bπ〉 ∈ Υπ such that for every

inference with query Q as a main premise and every 〈A,B〉 ∈ Υ

either A , Aπ or B , Bπ; otherwise it returns false.

Our algorithm for computing a rewriting for projected

queries using a precomputed rewriting is depicted in Algo-

rithm 1. It accepts as input the ontology O, the precomputed

rewriting R for a query Q w.r.t. O, the relation  R, and a

projection operator over Q. Internally, it also uses a standard

rewriting algorithm rew to apply inferences whenever required.

The algorithm proceeds as follows. First, it initialises a new

rewriting R′ with RD and a relation  R′ with  R. Then, it

iterates over all queries Qi in R and computes their projection

π j1,..., jn (Qi) adding it to the result. Moreover, for each projected

query it checks if further rewriting is required and if so it calls

a rewriting algorithm rew with inputs the projected query and

the ontology O.

Theorem 5. Let Q be a CQ, let O be an ontology, let π j1,..., jn

be a projection over Q, and let R and  R be the output of

Algorithm 1 RemoveVars(O,R, R, π j1,..., jn )

input: An ontology O, a rewriting R with partition RD ]

RQ and a relation  R both of which are the output of a

rewriting algorithm for a CQ Q w.r.t. O, and a projection

operator π j1,..., jn .

1: Initialise R′ := RD and R′ := R

2: for all Qi ∈ RQ do

3: Add Q′i to R′, where Q′i := π j1,..., jn (Qi)

4: if needsRewriting(Qi, π j1,..., jn ,O) then

5: 〈Rn, Rn〉 := rew(Q′i ,O)

6: R′ := R′ ∪Rn and R′ := R′ ∪ Rn

7: end if

8: end for

9: return 〈R′, R′〉

a rewriting algorithm when applied over Q and O. When ap-

plied to O,R,  R, and π j1,..., jn Algorithm 1 terminates. Let

〈R′, R′〉 be the output of the algorithm; then R′ is a rewrit-

ing of π j1,..., jn (Q) w.r.t. O.

Proof. Termination follows by the fact that Algorithm 1 iterates

over each member of a finite set (RQ) only once and because

the rewriting algorithm rew terminates.

Consider, O, 〈R, R〉,Q, and π j1,..., jn to be the input of Al-

gorithm 1, where 〈R, R〉 is computed by some rewriting al-

gorithm rew. Assume now that the output of Algorithm 1 is the

pair 〈R′, R′〉 and assume also that 〈Ri, Ri〉 is the rewrit-

ing computed after i steps of the rewriting algorithm rew when

applied to Q′,O.

Correctness is strongly based on the following property,

which we show using induction over i:

(VR): For all i ≥ 0 and for all Q′l ∈ Ri there exists

Ql ∈ R such that for Qπ
l = π j1,..., jn (Ql) one of the

following conditions holds:

1. Qπ
l subsumes Q′l , or

2. needsRewriting(Ql, π j1,..., jn ,O) returns true

and some Q′′l ∈ rew(Qπ
l ,O) subsumes Q′l .
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Base Case (i = 0): At the beginning R0 = {Q′} where Q′ =

π j1,..., jn (Q), hence Property (VR) is trivially satisfied.

Induction Step: Assume that Property (VR) holds at step i

for each Q′l ∈ Ri—that is, either Item 1. or 2. of Property (VR)

holds. Next, assume that at step i + 1 algorithm rew applies

an inference step on some query Q′l producing (function-free)

query Q′l+1. We now examine separately the two cases of the

induction hypothesis:

1. Qπ
l subsumes Q′l . By known properties of subsumption

in First-Order theorem proving [9] this implies that either

Qπ
l subsumes Q′l+1 or an inference is applicable to Qπ

l and

the result, call it Qπ
0, subsumes Q′l+1. If the former case is

true then we are done (there exists Ql ∈ R such that Qπ
l

subsumes Q′l+1). Assume that the latter is true. Recall that

Ql contains the same body atoms as Qπ
l . Since rewriting

algorithms perform inferences using only the body atoms

of the query, we have that the same resolution inference is

applicable to Ql producing query Q0. However, since Ql

contains more distinguished variables than Qπ
l , then Q0

might contain functional terms in those variables of the

head that have been projected out in Qπ
l . If it does not

then Q0 ∈ R and clearly Qπ
0 = π j1,..., jn (Q0) as the only

difference between Q0 and Qπ
0 are the head variables that

have been projected out. If it does contain functionals in

the head this implies that Q0 < R since a Q-oriented algo-

rithm produces only function-free clauses. But then, all the

latter imply that function needsRewriting(Ql, π j1,..., jn ,O)

returns true and then we clearly have Qπ
0 ∈ rew(Qπ

l ,O).

Hence, in either case Property (VR) holds.

2. needsRewriting(Ql, π j1,..., jn ,O) returns true and there ex-

ists query Q′′l ∈ rew(Qπ
l ,O) that subsumes Q′l . Again,

either Q′′l subsumes Q′l+1 or an inference is applicable

to Q′′l and the result, call it Q′′0 subsumes Q′′l . In ei-

ther case Item 2. would again hold as we will either have

Q′′l ∈ rew(Qπ
l ,O) or Q′′0 ∈ rew(Qπ

l ,O).

This concludes the proof of Property (VR).

Assume now that when applied to Q′,O, the rew algorithm

terminates after n steps computing Rn. Property (VR) implies

that upon termination of Algorithm 1 for each query Ql ∈ Rn a

query Q′ in R′ would exists that subsumes Ql.

A potential performance bottleneck of Algorithm 1 is in

line 5 where it executes the sub-routine rew. If the func-

tion is called a large number of times then performance can

be adversely affected, hence any well-behaved implementation

should attempt to minimise this number. One approach, which

has been implemented in the prototype tool we will present in

the evaluation section, is the following. Let Q′i be the pro-

jection of a query Qi and assume that Qi satisfies the condi-

tions in line 4. Instead of immediately rewriting Q′i we add

it to a set toRew. Then, when the outer for-loop terminates

(lines 2–7), we remove from toRew all queries that are redun-

dant in toRew and hence, subsequently, execute rew only over

the non-redundant queries. Furthermore, a rewriting that has

already been computed for some Qi ∈ toRew can again be used

to prune queries from toRew for which rew has not yet been

executed. Finally, a good heuristic is to check if the projection

of the query Q for which R has been computed is in toRew.

In that case the algorithm can break and execute rew only over

π j1,..., jn (Q) as this obviously constructs the desired rewriting.

4. Rewriting Under Answer Variable Additions

In this section we study the problem of computing a rewriting

for a query whose distinguished variables have been extended

with new ones, by exploiting as much as possible a precom-

puted rewriting for the original query. As in the previous sec-

tion we first give an illustrative example.

Example 6. Consider ontology O, query Q′1, rewriting R′ =

{Q′1,Q
′
2,Q

′
3} and relation R′ from Example 3. Assume now

that we want to “extend” this query and also retrieve the re-

spective courses, i.e., we want to compute a rewriting for the

query Q1 of Example 3 which, as shown, consists of the set

R = {Q1,Q2} that can be computed from Q1 and O using any

rewriting algorithm.
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However, we can again note that instead of applying a rewrit-

ing algorithm completely from scratch we can exploit the pre-

viously computed rewriting R′ of Q′1 w.r.t. O. More pre-

cisely, Q1 can be computed form Q′1 by replacing the head

atom QA(x1) of Q′1 with the head atom QA(x1, y1) (y1 is the

new distinguished variable that is used to retrieve the respective

taught courses). Moreover, Q′2 can be computed by replacing

the head atom QA(x2) of Q′2 with the head atom QA(x1, y1)τ,

where τ = {x1 7→ x2, y1 7→ y2} is computed from R′ . Finally,

we note that the query Professor(x3) → QA(x3, y1) produced

form Q3 using the above process is not entailed form O ∪ Q,

hence no query should be obtained from Q3. ♦

The above example suggests that given a query Q with head

atom QA(~x), a rewriting R of Q w.r.t. some ontology O and a

new vector ~y of distinguished variables such that ~y ⊆ var(Q),

to compute a rewriting for the query
∧

bd(Q) → QA(~x, ~y) our

algorithm needs to proceed as follows: for each Qi ∈ R if

~yτ ⊆ var(Qi), where τ is a proper variable renaming constructed

using  R, then extend the distinguished variables of Qi by

adding the new list ~yτ; otherwise discard Qi. This process is

made precise in the following definition.

Definition 7. Let O be an ontology, let Q be a CQ with ~x as

distinguished variables, and let 〈RD ]RQ, R〉 be the output

of a rewriting algorithm when applied over Q,O. Furthermore,

let ~z be a vector of variables such that ~z ⊆ var(Q), let Q′ ∈ RQ,

and let τ := {x 7→ y | x ∈ var(Q), y ∈ var(Q′) and x R y}.

The extension of Q′ by ~z is the formula Q′′ defined as follows:

Q′′ =
∧

bd(Q′)→ QA(~x,~z)τ (6)

The extension is called safe if ~zτ ⊆ var(Q′).

In Example 6 we were able to compute a rewriting for the

extension Q1 of Q′1 by computing all safe extensions of the

queries in R′ without applying any inferences. This, however,

is in general not possible and, as the following example shows,

depends on the input rewriting.

Example 8. Consider the following ontology and query:

O = {A(x)→ ∃y.R(x, y)}; Q1 = A(x1) ∧ R(x1, y1)→ QA(x1).

The set R = {Q1,Q2}, where Q2 = A(x2) → QA(x2), is a

rewriting of Q1 w.r.t. O. However, we can observe that Q2

subsumes Q1, hence Q1 can be removed and R′ = {Q2} is also

a rewriting of Q1 w.r.t. O.

Now suppose that we want to extend Q1 by also adding

variable y1 to the list of distinguished variables and that we

want to compute a rewriting for the extended query, i.e., Q′1 =

A(x1) ∧ R(x1, y1) → QA(x1, y1). Using R′ the only query that

can be extended by y1 is Q2, however, its extension is not safe.

Hence, using R′ the empty set is obtained. In contrast using R

the extension of Q1 by y1 is the query Q′1 and the singleton set

{Q′1} the desired rewriting. ♦

Intuitively, the issue in the previous example is that although

Q2 subsumes Q1 in R, the extensions of query Q2 by some

variable might not be safe and hence not part of the output.

Consequently, the extensions of Q1 won’t be redundant and

should be added to the result. This is only possible if Q1 has not

been removed from R due to Q2. If redundant queries are re-

moved then our algorithm should additionally apply inferences

over the extended queries as well as over the extension of the

input query Q. However, this in general implies that a rewriting

procedure should be applied from scratch cancelling out any

possible benefits by using the precomputed information. Next,

we formalise a property of input rewritings that is sufficient for

computing a rewriting using only safe extensions.

Definition 9. Let Q be a CQ, let O be an ontology, and let R be

a rewriting of Q w.r.t. O with partition RD]RQ computed by a

rewriting algorithm based on an inference system Γ. We say that

R is inference-closed for Q,O if Q ∈ R and if, additionally, for

every Q1 ∈ RQ if a query Q2 is derivable from O ∪ Q1 by Γ,

then also Q2 ∈ RQ.

It is easy to see that the rewriting R′ from Example 8 is not

inference-closed since Q1 < R′, while R is inference-closed.

Intuitively, a rewriting R is inference-closed if all queries

that are produced by the algorithm during the computation of R

are also members of R. This usually implies that R is computed

without using optimisations like subsumption deletion which
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Algorithm 2 ExtendRewritingForNewVars(Q,R, R, ~y)

input: A query Q, a rewriting R with partition RD ]RQ,

and a relation  R that are the output of a rewriting algo-

rithm for Q w.r.t. an ontology O and a vector of variables ~y

such that ~y ⊆ var(Q).

1: Initialise R′ := RD and R′ := R

2: for all Qi ∈ RQ do

3: Q′i := the extension of Qi by ~y

4: if Q′i is safe then

5: Add Q′i to R′

6: end if

7: end for

8: return 〈R′, R′〉

can remove clauses that are derived by Γ, or that such opti-

misations have been turned-off. Although this would typically

imply that the process of computing a rewriting that is later on

an input to our designed techniques is inefficient (as subsump-

tion optimisation has been turned-off), there are systems that

can compute such rewritings very efficiently [41]. Moreover,

the property of inference-closure has also been turned out to be

relevant and useful for other problems in query rewriting, like

query rewriting under ontology revisions [39].

Algorithm 2 presents our approach for computing a rewrit-

ing for queries extended with new distinguished variables sum-

marising the previous discussion. The algorithm accepts as an

input a query Q, a rewriting R of some Q w.r.t. O, a relation

 R, and a vector of variables ~y. It then iterates over all CQs

Qi ∈ RQ and computes the extension Q′i of Qi by ~y as in Defi-

nition 7. If the extension is safe then Q′i is added to R′ (line 5),

while if not Q′i is discarded.

Theorem 10. Let O be an ontology, let Q be a CQ let ~y be a tu-

ple of variables such that ~y ⊆ var(Q) and let R be an inference-

closed rewriting for Q w.r.t. some ontology O together with

 R. When applied to R, R, and ~y Algorithm 2 terminates.

Let R′ be the output of the algorithm; then R′ is an inference-

closed rewriting of the extension of Q by ~y w.r.t. O.

Proof. Termination follows by the fact that Algorithm 2 iterates

over a finite set of queries from R only once.

Consider, O, 〈R, R〉, Q, and ~y, to be the input of Algo-

rithm 2, where 〈R, R〉 is computed by some rewriting algo-

rithn rew and ~y is a tuple of variables such that ~y ⊆ var(Q).

Assume now that the output of Algorithm 2 is the pair

〈R′, R′〉 and assume also that 〈Ri, Ri〉 is the rewriting com-

puted after i steps of the rewriting algorithm rew when applied

to the extension of Q by ~y, call it Q′ in the following.

Correctness is an immediate consequence of the following

property, which we show using induction over i:

(VE): For all i ≥ 0 and for all Q′l ∈ Ri there exists

Ql ∈ R such that the extension Qe of Ql by ~y is safe

and subsumes Q′l .

Base Case (i = 0): At the beginning R0 = {Q′} where Q′ is

the extension of Q by~y, hence property (VE) is clearly satisfied.

Induction Step: Assume that Property (VE) holds at step i for

each Q′l ∈ Ri. Moreover, assume that in step i + 1 query Q′l+1 is

produced from Q′l by an application of an inference step of the

Q-oriented rewriting algorithm rew. Since Qe subsumes Q′l by

known properties of subsumption we have that either Qe sub-

sumes Q′l+1 or an inference is applicable on Qe and the result

Q′e subsumes Q′l+1. If the former is the case then we are done.

Hence, assume that the latter is the case. Since all variables in

~y appear in the head of Qe the inference that produces Q′e must

be such that it does not eliminate or map variables from ~y to

functional terms. Now recall that Ql is like Qe but the latter

contains all variables ~y in the head. Hence, the same inference

step is applicable to Ql producing Q0. Moreover, as noted be-

fore, the variables ~y ⊆ var(Ql) are not affected in this inference

step and hence we must have ~y ⊆ var(Q0). Thus, the extension

of Q0 by ~y is safe and clearly the extension is the query Q′e.

Moreover, since R is inference-closed we also have Q0 ∈ R.

Consequently, a query Q0 exists in R such that its extension by

~y is safe and it subsumes Q′l+1.

This concludes the proof of Property (VE). Assume that,

when applied to Q′,O, the rew algorithm terminates after n
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steps computing Rn. Property (VE) implies that upon termina-

tion of Algorithm 2 for each query Ql ∈ Rn a query Q′ in R′

would exists that subsumes Ql.

Finally, it is clear that the output produced by the algorithm

is also inference-closed.

5. Rewriting Under Atom Removals

In this section we study the problem of computing a rewrit-

ing for a query some of the body atoms of which have been

removed, by again exploiting as much as possible a previously

computed rewriting for the input query. To simplify the pre-

sentation we only consider the case where one atom is being

removed; removing more atoms can be solved using this algo-

rithm. The following example illustrates some of the key ideas

behind the algorithm we will present next.

Example 11. Consider the ontology O given next:

GradStudent(x) → Student(x), (7)

TennisPlayer(x) → Athlete(x) (8)

and consider also the query Q1 = Student(x1)∧ Athlete(x1)→

QA(x1). The set R = {Q1,Q2,Q3,Q4}, where Qi are as defined

next, is a rewriting for Q1 w.r.t. O computed using systems like

PerfectRef, Rapid, and Requiem:

Q2 = Student(x2) ∧ TennisPlayer(x2)→ QA(x2),

Q3 = GradStudent(x3) ∧ Athlete(x3)→ QA(x3),

Q4 = GradStudent(x4) ∧ TennisPlayer(x4)→ QA(x4)

Moreover,  R= {〈x1, x2〉, 〈x1, x3〉, 〈x1, x4〉}, which denotes

how variable x1 relates to variables x2, x3, and x4.

More precisely, we have the following inferences and respec-

tive annotations Υi = {〈Ai,Bi〉}:

〈Q1, (8),Q2〉 with A2 = {Athlete(x1)} and

B2 = {TennisPlayer(x2)}

〈Q1, (7),Q3〉 with A3 = {Student(x1)} and

B3 = {GradStudent(x3)}

〈Q2, (7),Q4〉 with A4 = {Student(x2)} and

B4 = {GradStudent(x4)}

〈Q3, (8),Q4〉 with A5 = {Athlete(x3)} and

B5 = {TennisPlayer(x4)}

Assume now that subsequently the user wants to retrieve all

individuals that are students—that is, issue the query Q′1 =

Student(x5) → QA(x5). It can be verified that R′ = {Q′1,Q
′
2},

where Q′2 = GraduateStudent(x6) → QA(x6) is a rewriting of

Q′1 w.r.t. O which can be computed in a standard way.

However, we can observe that a rewriting for Q′1 w.r.t. O can

be directly computed using the information that has been ma-

terialised previously for R. More precisely, a query equivalent

to Q′1 can be obtained simply by discarding Athlete(x1) from

query Q1, while a query equivalent to Q′2 can be obtained by re-

moving from Q3 the atom Athlete(x1)τ3 where τ3 = {x1 7→ x3}

is defined using  R. Finally, we note that queries Q2 and

Q4 need to be discarded since for any mapping σ we have

Athlete(x1)σ < bd(Q2) and Athlete(x1)σ < bd(Q4). Intu-

itively, this is because the removed atom Athlete(x1) “partici-

pated” in the inference 〈Q1, (8),Q2〉, i.e., Athlete(x1) ∈ A2, and

in the inference 〈Q3, (8),Q4〉, i.e., Athlete(x1)τ3 ∈ A5, where

τ3 = {x1 7→ x3}. Hence, in the reduced query these inferences

are not possible. (Note that Q4 is also produced by the infer-

ence 〈Q2, (7),Q4〉; however, since Q2 is discarded this infer-

ence should also be discarded). ♦

The previous example suggests that given a rewriting R for

a query Q, a key operation in computing a rewriting for a query

Q′ such that bd(Q′) = bd(Q) \ α is by “removing” atom ατ

from each CQ Qi ∈ R such that ατ ∈ bd(Q′), where τ is a

proper mapping defined using R; otherwise Qi should be dis-

carded. Moreover, it shows that the algorithm can also exploit
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additional information produced during the computation of a

rewriting R, like the sets Ai, in order to decide if an inference

is still possible after the removal of some atom.

The following example illustrates a second technical case

that can arise when computing the rewriting of a reduced query,

and which again requires using additional input information.

Example 12. Consider the following ontology and query:

O = {Student(x)→ ∃y.takesCourse(x, y),

GradStudent(x)→ Student(x)}

Q1 = Student(x1) ∧ takesCourse(x1, y1)→ QA(x1)

A rewriting for Q1 w.r.t. O consists of the set R =

{Q1,Q2,Q3}, where Q2 = Student(x2) → QA(x2) and Q3 =

GradStudent(x3) → QA(x2). More precisely, Q2 is produced

by an inference with main premise Q1 and Υ2 = {〈A2,B2〉}

where A2 = {takesCourse(x1, y1)} and B2 = {Student(x2)},

and Q3 is produced by an inference with Q2 as a main

premise and Υ3 = {〈A3,B3〉}, where A3 = {Student(x2)}

and B3 = {GradStudent(x3)}. Moreover, we have  R=

{〈x1, x2〉, 〈x1, x3〉}.

Consider now that we want to remove atom α = Student(x1)

and thus compute a rewriting for Q′1 = takesCourse(x1, y1) →

QA(x1) w.r.t. O, like, e.g., the rewriting R′ = {Q′1,Q2,Q3}.

Suppose that we want to compute R′ using our approach.

First, we remove atom Student(x1) from Q1 and thus ob-

tain Q′1. Subsequently, for τ = {x1 7→ x2} we can remove

Student(x1)τ from Q2; however, this would not produce a valid

rule. Instead, we observe that atom Student(x1)τ appears in

Q2 because it has been added by an inference with Q1 as the

main premise and over an atom of Q1 that is “different” than the

one that is being removed, i.e., A2 = {takesCourse(x1, y1)} =

Student(x1)τ and Student(x1)τ ∈ B2. Intuitively, this implies

that the construction of this part by the inference system is in-

dependent from the removal of atom α. Hence, our algorithm

should “copy” the respective queries, i.e., Q2 and Q3 (the lat-

ter produced from Q2) to the result, constructing the desired

rewriting. ♦

A similar situation arises when we have an inference of the

form 〈Q1,C,Q2〉 where Q1 = R(x, y) ∧ R(z, y) → QA(x),

C = A(x) → ∃y.R(x, y), Q2 = A(x) → QA(x) and A1 =

{R(x, y),R(z, y)}, while the atom that is being removed is R(z, y).

Although R(z, y) < bd(Q2) and R(z, y) ∈ A1, i.e., the removed

atom participates in the inference that produced Q2, the infer-

ence can still be performed even after removal, and hence the

algorithm should again copy A(x) → QA(x) to the result. In

both this and the case of Example 12 the intuition is that there

are queries which are “independent” from the removal of an

atom and hence these should be copied to the result. This is

formalised next.

Definition 13. Let Q be a CQ, let O be an ontology, and let

R = RD ] RQ be a rewriting for Q w.r.t. O returned by a

rewriting algorithm using an inference system Γ. A query Q′ ∈

RQ is called independent from α if either conditions hold:

• Q′ is the conclusion of an inference from some Q′′ ∈ RQ

with annotation Υ such that for τ′′ := {x 7→ y | x ∈

var(Q), y ∈ var(Q′′), x R y} we have ατ′′ ∈ bd(Q′′) and

for some 〈A,B〉 ∈ Υ and τ′ := {x 7→ y | x ∈ var(Q), y ∈

var(Q′), x R y} we have A ⊃ {ατ′′} or ατ′ ∈ B, or

• there exists Q j ∈ RQ such that Q j is independent from α

and Q′ is derivable from O ∪ {Q j} by Γ.

In Example 12, query Q2 is independent from Student(x1);

Q2 is derived by an inference with main premise Q1,

Student(x1) ∈ bd(Q1) and for τ = {x1 7→ x2} and Υ2 =

{〈A2,B2〉} the annotation of the inference (cf. also Example 12)

we have Student(x1)τ ∈ B2. Moreover, Q3 is also independent

from Student(x1), since Q3 is derived from Q2 which as shown

before is independent from α.

As the following example illustrates, the operations we have

illustrated before might not be enough to compute a rewriting

for the new (reduced) query. In addition, like in the case of

query projection, there are cases that we need to apply addi-

tional inferences over the reduced queries.
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Example 14. Consider the following ontology and query:

O = {A(x)→ ∃y.R(x, y)}; Q1 = R(x1, y1) ∧ B(y1)→ QA(x1)

The set R = {Q1} is a rewriting of Q1 w.r.t. O.

Consider now that we want to compute a rewriting for Q′1 =

R(x′1, y
′
1) → QA(x′1) using the approach illustrated above. This

would yield the set R′ = {Q′1} which is clearly not a rewriting

for Q′1 w.r.t. O. More precisely, for the instance I = {A(a)} we

have cert(Q′1,O ∪ I) = {a}, while cert(R′, I) = ∅.

To compute a rewriting for Q′1 we need to further apply the

inference rules of a rewriting algorithm on query Q′1. This

would produce query Q′2 = A(x′2)→ QA(x′2) from Q′1 and it can

then be verified that R′ = {Q′1,Q
′
2} is a rewriting for Q′1,O. ♦

Again we rely on the following function to check the cases

where additional inferences need to be applied.

Definition 15. Let Q be a CQ, let α be an atom of Q and let

O be an ontology. Then, function needsRewriting(Q, α,O) re-

turns true if there exists inference with query
∧

bd(Q)\{ατ} →

hd(Q) as a main premise and annotations σα,Υα and there ex-

ists 〈Aα,Bα〉 ∈ Υα such that for every inference with Q as a

main premise and annotations σ,Υ and every 〈A,B〉 ∈ Υ either

A , Aα or B , Bα. Otherwise it returns false.

Finally, similar to the case of extending queries with new

answer variables, the following example illustrates that the in-

put rewriting needs to be inference-closed, otherwise one might

need to exhaustively apply inferences over all reduced queries.

Example 16. Consider O and Q from Example 8 as well as the

inference-closed rewriting R = {Q1,Q2}, where Q2 = A(x2)→

QA(x2) and the non-inference-closed one R′ = {Q2}.

Now suppose that we want to remove atom α = A(x1), i.e.,

we want to compute a rewriting for Q′1 = R(x1, y1) → QA(x1).

One such rewriting computed using any state of the art system

or algorithm is R′′ = {Q′1,Q2}. However, we can easily see that

using the method illustrated above we cannot obtain R′′ from

R′; however, it can be computed from R. ♦

Algorithm 3 presents our approach for computing a rewriting

for a reduced ontology by exploiting previously materialised in-

Algorithm 3 RemoveAtom(O,Q,R, R, α)

input: An ontology O, a query Q, a rewriting 〈R, R〉 of

Q w.r.t. O with partition RD]RQ, and an atom α ∈ bd(Q).

1: Initialise R′ := RD

2:  R′ := {〈x, y〉 | x R y and x ∈ var(bd(Q) \ {α})}

3: Let a proj. operator π to include a position k for all avar(Q)

4: if y ∈ var(α) with y ∈ avar(Q) ∧ y < var(bd(Q) \ α) then

5: Remove from π each position jk s.t. x jk = y

6: end if

7: for Qi ∈ RQ do

8: τ := {x 7→ y | x ∈ var(Q), y ∈ var(Qi) and x R y}

9: if Qi is independent from α then

10: Add Qi to R′Q
11: else if ατ ∈ bd(Qi) then

12: Q′i := π(
∧

bd(Qi) \ {ατ} → hd(Qi))

13: Add Q′i to R′Q
14: if needsRewriting(Qi, ατ,O) then

15: 〈Rn, Rn〉 := rew(Q′i ,O)

16: R′ := R′ ∪Rn and R′ := R′ ∪ Rn

17: end if

18: end if

19: end for

20: return 〈R′, R′〉

formation and is based on the intuitions outlined before. The al-

gorithm accepts as input an ontology O, a query Q a rewriting

R of Q w.r.t. O and an atom α ∈ Q. It also relies on a typ-

ical query rewriting algorithm rew in order to apply rewriting

whenever required.

The algorithm first initialises a new rewritng R′ := RD and

the relation R′ as R but restricted to the variables that ap-

pear in bd(Q) \ α. Before proceeding as illustrated above, the

algorithm first checks if the atom that is being removed contains

a distinguished variable of Q that does not appear in any other

atom of Q (line 4). In this case, besides removing the atom

from each query, the algorithm also needs to delete this vari-

able from the head of the reduced query. This is accomplished

by constructing a proper projection operator π.
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Subsequently, the algorithm enters the main loop. It iterates

over each query Qi ∈ RQ and creates an appropriate map-

ping τ of the variables of Qi w.r.t. the variables of Q (line 8).

Next, it checks if Qi is independent from α (line 9) and if

this is the case it adds Qi to the output. Otherwise if α ap-

pears in the body of Qi (line 11) it creates the new query

Q′i :=
∧

bd(Qi) \ {ατ} → hd(Qi) (line 12) and adds it to the

output. Finally, it uses function needsRewriting to check if Q′i
needs to be further rewritten and if so it appends the produced

rewriting to the output (lines 14–17).

Theorem 17. Let Q be a CQ, let O be an ontology, let α be

an atom such that α ∈ bd(Q) and let R, R be the output

of a rewriting algorithm when applied to Q,O such that R

is inference-closed. Let R′ be the rewriting returned by Al-

gorithm 3 when applied to O,R, R, and α; then R′ is an

inference-closed rewriting of
∧

bd(Q) \ {α} → hd(Q) w.r.t. O.

Proof. Termination follows by the fact that Algorithm 3 iterates

over each member of a finite set (RQ) and because the rewriting

algorithm rew terminates.

Consider, O, 〈R, R〉, Q, and α to be the input of Algo-

rithm 3, where 〈R, R〉 is an inference-closed rewriting com-

puted by an algorithm rew and α ∈ bd(Q).

Assume now that the output of Algorithm 3 is the pair

〈R′, R′〉 and assume also that 〈Ri, Ri〉 is the rewriting com-

puted after i steps of the rewriting algorithm rew when applied

to Q′ =
∧

bd(Q) \ {α} → hd(Q) and O.

Completeness follows by the following property, which we

show using induction over i. To simplify notation and without

loss of generality we assume that no projection is needed.

(AR): For all i ≥ 0 and Q′l ∈ Ri there exists Ql ∈ R

such that one of the following conditions hold:

1. Ql is independent from α and subsumes Q′l , or

2. for τ as in line 8 of Algorithm 3 we have ατ ∈

bd(Ql) and for Qr
l =
∧

bd(Ql) \ {ατ} → hd(Ql)

either of the following hold:

(a) Qr
l subsumes Q′l , or

(b) needsRewriting(Ql, α,O) returns true and

some Q′′l ∈ rew(Qr
l ,O) subsumes Q′l .

Base Case (i = 0): At the begining R0 = {Q′} where Q′ =∧
bd(Q) \ {α} → hd(Q), hence, Property (AR) is satisfied.

Induction Step: Assume that Property (AR) holds at step i

for each Q′l ∈ Ri—that is, either Item 1., Item 2(a), or Item

2(b) of Property (AR) hold. Next, assume that at step i + 1

algorithm rew applies an inference step on some query Q′l pro-

ducing Q′l+1. We now examine seperately all the cases of the

induction hypothesis:

1. Ql is independend from α and it subsumes Q′l . By known

properties of subsumption this implies that either Ql sub-

sumes Q′l+1 or an inferece is applicable to Ql and the re-

sult, call it Q0, subsumes Q′l+1. If the former case is true

then we are done. If the second case is true then again we

are done because we will have that Q0 ∈ R and, more-

over, by Definition 13 Q0 is also independent from α (it is

produced by a query that is independent from α).

2. ατ ∈ bd(Ql), where τ := {x 7→ y | x ∈ var(Q), y ∈

var(Ql) and x  R y} and either Qr
l subsumes Q′l or

needsRewriting(Ql, α,O) returns true and there exists

query Q′′l ∈ rew(Qr
l ,O) that subsumes Q′l . We examine

the two cases sepereatelly:

(a) Qr
l subsumes Q′l . This implies that either Qr

l sub-

sumes Q′l+1 or an inference is applicable to Qr
l and

the result, call it Qr
0 subsumes Q′l+1. If the for-

mer case is true then we are done. Assume that

the latter is true. Recall that Ql contains the same

body atoms as Qr
l except for ατ. Since rewriting

algorithms perform inferences using only the body

atoms, we have that all the inferences that are ap-

plied to Qr
l can also be applied to Ql producing

Ql+1. For these inferences
∧

bd(Ql+1) \ {ατ′′} →

hd(Ql+1) subsumes Q′l+1, where τ′′ = {x 7→ y |

x ∈ var(Q), y ∈ var(Ql+1) and x  R y}. How-

ever, in Ql an inference can also be applied to ατ.

Finally in case an inference is applied on an atom
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different from ατ that cannot be applied to Ql func-

tion needsRewriting(Ql, α,O) returns true and then

we clearly have Qr
0 ∈ rew(Qr

l ,O). Hence, Property

(AR) holds.

(b) Similar to case 2. from proof of Theorem 5.

This concludes the proof of Property (AR). Assume that, when

applied to Q′,O, the rew algorithm terminates after n steps

computing Rn. Property (AR) implies that upon termination

of Algorithm 2 for each query Ql ∈ Rn a query Q′ in R′ would

exists that subsumes Ql.

A potential performance bottleneck of Algorithm 3 is in line

9 where it checks if a query is independent from α by checking

the conditions of Definition 13. As shown in the definition this

involves checking various derivation relations between mem-

bers of RQ. To efficiently implement this step we can assume

that the rewriting algorithm used to compute the input rewriting

R can also provide us with additional information that is pro-

duced during the computation of R. More precisely, besides R

and R we can assume that a rewriting algorithm also returns

(or provides acess to) a relation H and a mapping S such that

if Q′ is the conclusion of an inference with main premise Q

and annotation Υ, then 〈Q,Q′〉 ∈ H and S(〈Q,Q′〉) = Υ. Our

algorithm can exploit such additional information to efficiently

check if a query Qi is derivable from O∪{Q j} by, e.g., checking

if Qi is reachable from Q j in the relation H. Moreover, it can

use S to have access to the various annotations without needing

to execute inferences. Regarding line 15 and the sub-routine

rew the same discussion as in the end of Section 3 applies.

6. Rewriting Minimisation

Besides computing a rewriting, an important issue in

rewriting-based query answering is evaluating the computed set

of sentences over a (deductive) database. As stated in Theo-

rems 10 and 17, Algorithms 2 and 3 return an inference-closed

rewriting R′, which implies that R′ might contain redundant

queries. As explained in the previous sections these additional

queries are important if we wish to subsequently call these algo-

rithms again to add more distinguished variables or delete fur-

ther atoms from the query. However, when we want to evaluate

R′ over a database, it is preferable to compute a mimimal set

R′′ that is equivalent to R′. One important, data-independent

technique to mimimise R′ is by applying the well-known re-

dundancy elimination algorithm removeRedundant(R′) which

checks if a query Qi ∈ R′ is subsumed by a query Q j ∈ R′ (and

vice versa) and then removes the proper query [31].1

Hence, before evaluating the returned rewriting we can use

this procedure to eliminate the redundant queries. However,

as it has been shown before [10, 41] this method might not per-

form well in practice because it consists of two nested for-loops

over the (potentially large) computed rewriting R′. Let R be

the input to Algorithms 2 or 3 and R′ their respective output.

In [41], studying a different problem, we have shown how prior

knowledge about the subsumption relations in R can speed up

the discovery of subsumption relations in R′ and hence build

a non-redundant rewriting R′′ very efficiently. Following the

ideas set in [41] we use the following three approaches:

1. Using information about redundant queries in R we try to

identify queries that are also redundant in R′.

2. Using information about non-redundancy of a query in R

we try to decide the non-redundancy of certain queries in

R′.

3. Using information about non-subsumers in R, we can try

to decide if certain queries in R′ are also non-subsumers.

The above three approaches can be used by algorithm

removeRedundant as follows: given a set R′nr ⊆ R′ of non-

redundant queries and a set R′ns ⊆ R′ of non-subsumer queries,

removeRedundant(R′) can check only if a query in R′ \ R′nr

is subsumed by some query in R′ \R′ns and dispense with other

checks. As shown in [41] these techniques can significantly

improve the efficiency of removeRedundant.

1We do not comment here on other techniques which are based on the struc-

ture and design of the database schema [35, 36]. These are independent of the

rewriting algorithm and can be used here as well.
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Next we provide properties that can be used to identify re-

dundant, non-redundant, and non-subsumer queries during the

execution of the main loop of Algorithms 2 and 3.

Proposition 18. Let O be an ontology, Q be a CQ, let R =

RD ]RQ be a rewriting of Q w.r.t. O, and let R′ be the output

of Algorithm 2 when run for R and some arbitrary tuple of

variables ~y s.t. ~y ⊆ var(Q). Let Q1 be a CQ in R. Then the

following hold:

1. If there exists Q2 ∈ R that subsumes Q1 and if both exten-

sions Q′1 and Q′2 of Q1 and Q2 by ~y, respectively, are safe,

then Q′1 is redundant in R′.

2. If Q1 is non-redundant in R, then the safe extension of Q1

is also non-redundant in R′.

3. If Q1 is a non-subsumer in R, then the safe extension of

Q1 is also non-subsumer in R′.

The proof is quite straightforward.

Next we deal with body atom removal and Algorithm 3.

Proposition 19. Let Q be a CQ, let O be an ontology, let

〈R, R〉 be the output of a rewriting algorithm when applied

to Q and O, and let α be an atom of Q. Let also 〈R′, R′〉 be

the output of Algorithm 3 when applied to O,R, R, and α,

let Qi ∈ R be some CQ, and let τ = {x 7→ y | x ∈ var(Q), y ∈

var(Qi) and x  R y}, and assume that Algorithm 3 never exe-

cutes line 15.

If Qi is non-redundant in R and for each Q j ∈ R the map-

ping τi defined as {x 7→ y | x ∈ var(Q), y ∈ var(Q j) and x  R

y} is one-to-one, then the following properties hold:

(N1) If ατ ∈ bd(Qi), then Qi is non-redundant in R′

(N2)
∧

bd(Qi) \ {ατ} → hd(Qi) is non-redundant in R′

If Qi is non-subsumer in R, then the following holds:

(S) Qi is also non-subsumer in R′.

Finally, if there exists Q j ∈ R that subsumes Qi, then the

following properties hold, where τ′ = {x 7→ y | x ∈ var(Q), y ∈

var(Q j) and x R y}:

(R1) If Q j ∈ R′ or
∧

bd(Q j) \ {ατ′} → hd(Q) ∈ R′, then Qi

is also redundant in R′,

(R2) If Q j ∈ R′ (resp.
∧

bd(Q j) \ {ατ′} → hd(Q) ∈ R′) and

for all α′ ∈ bd(Q j) (resp. α′ ∈ bd(Q j) \ {ατ′}) atom α′ has

a different predicate name than α then
∧

bd(Qi) \ {ατ} →

hd(Q) is redundant.

Proof. First, we consider Properties (N1) and (N2).

(N1): Let Q j be an arbitrary query in R different from Qi.

Upon termination, either Q j or
∧

bd(Q j) \ {ατ j} → hd(Q),

for τ j a substitution that maps the variables of Q to those of

Q j, is added to R′ by Algorithm 3. Since Qi is non-redundant

in R, Q j cannot subsume Qi. Hence, we need to show that∧
bd(Q j) \ {ατ j} → hd(Q) also does not subsume Qi.

Since Qi is non-redundant this means that for every Q j in R

and every θ there exists At ∈ Q j s.t. Atθ < Qi. Let θ′ be such

that τ = τ jθ
′. This is possible since τ j is one-to-one; hence,

there exists an inverse τ−j and then we can set θ′ = τ−j τ. By

condition of non-redundancy of Qi we also have that for this θ′

there exists At ∈ Q j s.t. Atθ′ < Qi. Consider now this specific

At. It suffices to show that At ∈ Q j\ατ j. Assume to the contrary

that At < Q j \ατ j. Since At ∈ Q j this implies that At = ατ j. By

Atθ′ < Qi we also have ατ jθ
′ < Qi, however, by construction

of θ′ we have ατ < bd(Qi) which leads to a contradiction.

(N2): It follows from Property N1 that since
∧

bd(Q j) \

{ατ j} → hd(Q) does not subsume Qi then clearly it also does

not subsume
∧

bd(Qi) \ {ατ} → hd(Q).

Now we consider Property (S). Since Qi does not subsume

any CQ in R, we have Qiθ * Q j for all Q j ∈ R different from

Qi and for all substitutions θ. Hence, for each θ there exists

at least one atom At in the body of Qi such that At ∈ Qiθ and

At < Q j. Upon termination, Algorithm 3 can add to R′ either

the CQ Q j or the CQ
∧

bd(Q j) \ {ατ′}, for a substitution τ′ that

maps the variables of Q to the variables of Q j. It is obvious that

in both cases for any θ there would stil exist an atom At ∈ Qiθ

such that At < Q j.

Finally, we consider Properties (R1) and (R2). First, since

Qi is subsumed by Q j there exists θ such that for each At ∈
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Q jθ we have At ∈ Qi. Now, Property (R1) is straightforward

since for the same θ that we have that for each At ∈ Q jθ (or

At ∈ (Q j \ ατ
′)θ) we still have At ∈ Qi.

Finally, for Property (R2), assume that Q j ∈ R′; the case

with
∧

bd(Q j) \ {ατ′} ∈ R′ is similar. By assumption we have

that for each At ∈ Q jθ also At ∈ Qi. Consider an arbitrary

atom At. We can only have At < bd(Qi) \ {ατ} if At = ατ,

i.e., the atom that is removed is some atom of Q jθ. However,

by assumption At has a different predicate than α, hence we

trivialy have that At , ατ for any τ.

7. Evaluation

We have implemented Algorithms 1–3 in prototype systems.

In order to implement the function rew that is used, we have

done one implementation using Rapid [10], a very fast rewrit-

ing system for DL-Lite ontologies, and one using Requiem,

a rewriting system for the much more expressive language

ELHI [31]. In the following we call the first implementation

RefL and the second RefE .

We have compared RefL against Rapid and RefE against

Requiem. For the first comparison we used the evaluation

framework proposed in [31]. It consists of eight DL-Lite on-

tologies, namely V, P5, P5X, S, U, UX, A, and AX, and five

test queries for each of them. For the second comparison we

used the LUBM benchmark [17], a well-known benchmark that

consists of one ontology (L) and 14 test queries, as well as

three ELHI fragments extracted from the GALEN ontology

(G), a well-known biomedical ontology with complex structure,

called G1, G2, and G3.2 For GALEN we have manually created

five test queries which are given in Table 1.

Since the problems we study involve the addition or removal

of variables or removal of body atoms we have sometimes dis-

carded those test queries that have only one distinguished vari-

able; regarding our custom GALEN queries we have changed

them accordingly to suit our purposes. Moreover, in case that a

2The fragments are available at http://image.ece.ntua.gr/~gstoil/

CQ_Refinement

Table 1: Queries for G1, G2, and G3

Q(x)← FunctionalAttribute(x, y)

Q(x)← isCountConcentrationOf(x, y) ∧ Cell(y)∧

isMixedThroughout(y, z) ∧ Tissue(z)

Q(x)← hasFeature(x, y) ∧ ProcessFeature(y)

Q(x)← Displacement(x) ∧ isOutcomeOf(x, y)∧

hasDuration(y, z) ∧ ErythrocyteSedimentation(y)∧

Duration(z) ∧ hasQuantity(z, k) ∧ OneHour(k)

Q(x)← Behaviour(x) ∧ hasGoal(x, y)

(a) G1

Q(x)← BodyPart(x), hasIntrinsicAbnormalityStatus(x, y)

Q(x)← Artery(x), hasFeature(x, y)

Q(x)← GenericBodyStructure(x),FeatureStateAttribute(x, y)

Q(x)← leftRightPaired(x), hasIntrinsicAbnormalityStatus(x, y)

Q(x)← SolidBodxyStructure(x), hasState(x, y)

(b) G2

Q(x)← MicroOrganism(x) ∧ playsPhysiologicalRole(x, y)

Q(x)← MicroscopicStructure(x) ∧ actsOn(x, y)

Q(x)← Process(x) ∧ hasGoal(x, y)

Q(x)← Feature(x) ∧ hasFeature(x, y)

Q(x)← Process(x) ∧ hasOutcome(x, y)

(c) G3

query has more than one variable (atom) or it can be extended

in more than one way we have performed all possible refine-

ments and hence the numbers we will present are averages over

all runs. All experiments were conducted on a Mac Book Pro

with a 2.66GHz processor and 4GB of RAM with a time-out of

600 seconds.

All tables we present next use the following notation. Re-

garding our prototypes, with ]R we denote the size of the

rewriting that is the input to our algorithms, with talg we denote

the computation time that either of the Algorithms 1–3 needs

(without the final redundancy elimination step). Additionally,

for the tables reported for Algorithms 1 and 3, with trew we de-

note the time consumed by the sub-routine rew. Regarding the

systems Rapid and Requiem, with tR we denote the computa-

tion time again without redundancy elimination. For all sys-

tems, tsub denotes the time for subsumption deletion. After this
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Table 2: Evaluation of Algorithm 1 using DL-Lite ontologies

O Q
RefL, Algorithm 1 Rapid

]R trew talg tsub tR tsub

V

2 10 5,0 7,0 2,0 17,5 0,5

3 72 0,0 2,0 8,0 14,5 0,0

4 185 0,0 4,5 27,5 25,5 0,5

S

2 7 1,5 2,0 0,5 19,0 1,0

3 8 13,8 14,3 0,8 6,3 0,2

4 11 8,3 8,7 0,2 19,2 0,3

5 14 16,7 17,0 0,9 39,9 1,1

U

2 3 0,5 0,5 0,0 3,0 0,0

3 8 3,3 3,5 0,0 4,2 0,0

4 8 11,0 11,0 0,0 12,5 0,0

UX

2 3 0,0 0,0 0,0 4,5 0,0

3 16 0,0 0,2 0,3 10,5 0,0

4 11 0,5 0,5 0,5 26,0 0,0

step all systems return rewritings of the same size, hence the

numbers are not presented. All times are in milliseconds.

7.1. Answer Variable Removal

Table 2 presents the comparison between RefL and Rapid

over the DL-Lite ontologies. As we can observe RefL is gener-

ally faster than Rapid (with the exception of ontology V query

4 where tsub dominates the total time). Notable cases are query

5 over ontology S and queries 3 and 4 over UX. The reason for

this is that Algorithm 1 iterates over a small rewriting applying

the projection operator. Moreover, very little time is spent in ex-

ecuting function rew as a sub-routine which was called at most

three times in ontology S and on average less than 1.5 times.

Table 3 presents the comparison between RefE and Requiem

over the ELHI ontologies. For query 9 Requiem could not

compute a rewriting within the time-out of 600 seconds and

thus we could also not run RefE (no input rewriting available).

Again we can observe that our system is in most (if not all

cases) much faster than Requiem. Notable cases are queries

1, 2, 5 and 13 over the LUBM ontology for which it is almost

25 times faster, queries 1 and 3 over G1, all queries over G2,

and queries 1, 3, and 5 over G3. Like above, the reason for this

is that our algorithm iterates over a small input rewriting and

performs simple operations. Only exceptions are queries 4, 7,

Table 3: Evaluation of Algorithm 1 using ELHI ontologies

O Q
RefE , Algorithm 1 Requiem

]R trew talg tsub tR tsub

L

1 3 42,5 42,5 0,0 159,0 110,0

2 10 33,0 33,7 2,0 88,2 3,5

3 1 0,0 0,0 0,0 1,5 1,0

4 348 38,9 39,8 1,7 27,6 29,8

5 334 31,0 33,0 2,5 46,0 56,0

7 334 110,5 110,5 4,3 15,5 10,3

8 347 19,7 20,3 0,6 15,9 11,4

9 - - - - - -

10 331 10,5 10,5 0,5 16,5 10,0

11 3 0,0 0,0 0,0 0,0 0,0

12 333 13,3 13,3 0,2 14,8 11,5

13 330 0,5 0,5 0,0 27,5 20,5

G1

1 10 101,0 101,5 4,5 658,0 100,0

2 62 185,0 186,0 21,0 266,0 106,5

3 124 180,0 181,5 18,0 361,0 134,5

4 4 84,5 84,5 2,0 126,5 30,5

5 12 76,0 76,0 1,5 121,5 0,5

G2

1 373 1 591,0 1 591,5 1,0 4 038,5 68,0

2 395 2 818,0 2 818,5 1,5 3 835,5 24,0

3 484 1 574,0 1 575,5 5,0 3 850,0 28,0

4 685 1 688,0 1 692,5 43,0 4 149,0 63,0

5 443 1 632,5 1 634,0 1,5 3 889,5 16,0

G3

1 11 72,5 72,5 1,0 334,5 24,0

2 128 112,0 114,8 4,7 163,3 18,7

3 63 20,0 20,5 1,5 101,5 3,5

4 79 96,2 96,5 1,4 82,2 3,3

5 165 19,0 19,0 0,5 47,5 5,0

and 8 over L and query 4 over G3. With careful analysis we

concluded that in these tests RefE executed the sub-routine rew

quite a lot of times. For example, in queries 7 and 8 over L rew

was called on average 4 times in each case, as opposed to an

average of less than one in all other queries over L. Similarly in

query 4 over G3 rew was called twice with an average of 0.5 in

all other cases. Note finally that trew usually dominates the total

computation time and that in most pathological cases it already

exceeds Requiem’s time.

7.2. Variable Extensions

Table 4 presents the comparison between RefL and Rapid

over the DL-Lite ontologies. We can observe that in the ma-
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Table 4: Evaluation of Algorithm 2 using DL-Lite ontologies.

O Q
RefL, Algorithm 2 Rapid

]R talg tsub tR tsub

V
2 10 1,0 0,0 56,0 1,0

5 30 3,1 1,6 27,4 0,0

P5

1 6 0,0 0,0 0,0 0,0

2 10 0,7 0,0 1,7 0,0

3 13 0,3 0,1 3,3 0,1

4 15 0,3 0,0 11,5 0,3

5 16 0,1 0,1 22,0 0,6

P5X

1 14 0,0 0,0 1,0 0,0

2 81 0,3 0,0 11,0 0,0

3 413 1,6 1,0 15,9 2,3

4 2 070 10,1 3,7 62,9 64,5

5 10 352 70,0 19,0 126,1 94,9

U
1 2 0,0 0,0 0,0 0,0

5 3 375 22,0 10,0 2,0 0,0

UX
1 5 0,0 0,0 0,3 0,0

5 8 955 27,0 26,0 2,0 0,0

A

1 378 1,0 0,0 2,0 0,0

2 103 1,0 0,0 1,0 0,0

3 104 1,0 1,0 3,0 0,3

4 471 3,0 2,0 16,0 1,0

5 624 5,7 2,3 20,0 1,7

AX

1 794 0,0 0,0 5,0 1,0

2 1 812 3,0 8,0 40,0 3,0

3 4 763 19,0 44,0 122,0 2,3

4 7 229 19,0 26,0 77,0 2,0

5 78 885 661,3 777,3 742,7 31,7

jority of cases our algorithm is much faster, something that can

again be justified by the simple structure of Algorithm 2 and the

fact that it does not require to call a rewriting algorithm. More-

over, we can observe that our techniques for optimizing the re-

dundancy elimination step presented in Section 6 improve the

performance of the redundancy elimination significantly. This

is mostly evident in queries 4 and 5 over ontology P5X, where

the subsumption deletion step takes a few milliseconds. Recall

that this algorithm requires the input rewriting to be inference-

closed. However, this is only reflected in the performance of

query 5 over ontologies U and UX and query 5 over AX, where

due to the size of the input rewriting our algorithm needs a sig-

nificant amount of time.

Table 5: Evaluation of Algorithm 2 using ELHI ontologies

O Q
RefE , Algorithm 2 Requiem

]R talg tsub tR tsub

L

1 5 1,0 0,0 192,0 1,0

2 32 0,7 1,3 105,0 20,0

3 17 0,0 0,0 1,0 2,0

4 155 0,0 1,0 33,0 196,0

5 158 1,0 0,0 24,0 17,0

7 27 0,0 0,0 14,0 11,0

8 23 0,0 0,0 18,0 12,0

9 - - - - -

10 11 0,0 0,0 15,0 13,0

11 3 0,0 0,0 0,0 0,0

12 8 0,0 0,0 24,0 11,0

13 191 1,0 1,0 27,0 20,0

G1

1 22 2,0 0,0 965,0 2,0

2 439 2,0 0,0 360,0 10,0

3 783 3,0 1,0 221,0 15,0

4 7 0,0 1,0 144,0 1,0

5 21 1,0 0,0 134,0 1,0

G2

1 98 1,0 0,0 3 488,0 78,0

2 60 0,0 0,0 2 802,0 51,0

3 461 2,0 1,0 2 906,0 33,0

4 622 3,0 3,0 3 151,0 64,0

5 210 0,0 1,0 2 962,0 22,0

G3

1 14 1,0 0,0 389,0 2,0

2 323 3,0 2,0 279,5 67,0

3 91 1,0 1,0 130,0 3,0

4 139 1,0 0,2 105,3 4,3

5 60 0,0 1,0 57,0 8,0

Table 5 presents the comparison between RefE and Requiem

over the ELHI ontologies. Since all variables in all LUBM

queries are distinguished, we first removed an arbitrary vari-

able, then computed a rewriting, and finally, run our algorithm

adding the variable that was previously removed. As we can

see our algorithm is in all queries much faster than Requiem

with notable cases all queries over GALEN where it is always

about three (in G2 even four) orders of a magnitude faster. Note

that, the better behaviour compared to DL-Lite can be justified

by the smaller computed rewritings.
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Table 6: Evaluation of Algorithm 3 using DL-Lite ontologies

O Q
RefL, Algorithm 3 Rapid

]R trew talg tsub tR tsub

V

2 10 0,0 2,0 1,0 20,0 1,0

3 72 0,0 3,5 4,5 7,0 0,5

4 185 0,0 2,0 0,5 7,0 0,0

5 30 0,0 2,0 1,0 11,0 0,0

P5

2 10 1,0 1,0 0,0 1,0 0,0

3 13 4,0 4,0 1,0 3,0 0,0

4 15 6,0 6,0 1,0 5,0 1,0

5 16 10,0 10,0 1,0 15,0 1,0

P5X

2 81 2,0 3,0 0,0 3,0 0,0

3 413 8,0 8,0 1,0 16,0 1,0

4 2 070 21,0 21,0 5,0 28,0 11,0

5 10 352 211,0 211,0 81,0 159,0 120,0

S

2 204 0,0 2,5 1,0 2,5 0,0

3 864 0,0 40,0 7,3 2,3 0,3

4 1 428 0,0 15,0 5,7 2,0 0,0

5 6 048 0,0 96,8 149,4 6,0 0,0

U

1 2 2,0 2,0 1,0 4,0 0,0

2 190 0,0 1,0 0,5 1,5 0,0

3 300 0,0 7,3 2,5 2,3 0,3

4 1 688 0,0 16,5 0,0 1,5 0,5

5 3 375 0,0 51,3 38,5 6,0 0,0

UX

1 5 1,0 1,0 0,0 11,0 0,0

2 287 0,0 3,0 0,0 2,0 0,0

3 1 260 0,0 22,5 17,8 4,8 0,0

4 5 137 0,0 120,0 2,0 4,5 0,0

5 8 955 0,0 152,0 88,8 14,8 0,0

A

1 378 0,0 0,0 0,0 2,5 0,5

2 103 1,5 1,5 0,0 1,5 0,5

3 104 2,0 3,7 4,3 10,7 0,0

4 471 1,5 2,0 0,0 4,0 0,5

5 624 8,7 11,7 11,7 25,3 7,0

AX

1 794 0,0 1,0 0,5 5,0 0,0

2 1 812 1,5 2,0 1,0 6,5 0,5

3 4 763 4,7 88,0 3 228,3 296,3 8,7

4 7 229 2,0 5,0 9,5 27,0 5,5

5 78 885 50,3 59,5 356,0 349,7 24,3

Table 7: Evaluation of Algorithm 3 using ELHI ontologies

O Q
RefE , Algorithm 3 Requiem

]R trew talg tsub tR tsub

L

1 3 4,5 5,0 0,0 87,0 0,5

2 30 0,0 3,5 1,8 92,2 2,8

3 17 0,0 1,0 0,0 0,0 0,0

4 319 0,0 0,0 1,0 56,0 1,0

5 154 0,0 1,0 0,0 40,0 0,0

7 1 315 0,0 10,5 28,0 44,0 60,5

8 1 055 0,0 39,0 41,0 166,5 176,5

9 - - - - - -

10 264 0,0 0,0 0,0 17,0 0,0

11 3 0,0 0,0 0,0 0,0 0,0

12 156 0,0 4,0 1,0 22,5 6,0

13 185 0,0 1,0 0,0 1,0 0,0

G1

1 16 0,0 1,0 1,0 1 150,0 1,0

2 4 117 0,0 114,0 68,0 673,0 3,0

3 6 742 0,0 143,0 27,0 1 416,0 82,0

4 21 0,0 1,0 0,0 376,0 0,0

5 111 0,0 7,0 0,0 380,0 0,0

G2

1 80 0,0 5,0 1,0 694,0 2,0

2 54 0,0 1,0 0,0 245,0 0,0

3 26 859 0,0 120,0 7,0 669,0 67,0

4 380 0,0 2,0 1,0 251,0 2,0

5 152 0,0 0,0 0,0 169,0 1,0

G3

2 784 62,0 67,5 25,0 1 313,0 17,5

3 91 47,0 47,0 21,0 1 231,0 2,0

4 2 439 23,3 67,0 8,7 1 259,3 21,3

7.3. Body Atom Removal

Table 6 presents the comparison between RefL and Rapid

over the DL-Lite ontologies. We can observe that in most cases

our algorithm behaves as good as Rapid (recall that Rapid is

a highly optimised DL-Lite tailored system). However there

are some cases where Rapid is much faster, like in query 5 in

ontologies S and U, and queries 4 and 5 in UX. This is be-

cause, as noted, the input inference-closed rewriting is quite

large. Another performance bottleneck is when the output of

RefL is large, and hence the input to the subsumption deletion

algorithm is also large. This is for example the case in query 3

ontology AX, where the subsumption algorithm requires more

than 3 seconds, while Rapid only needs 8,7 milliseconds. Ap-

parently our optimisations for subsumption checking did not
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have any effects on this case.

Finally, Table 7 presents the comparison between RefE and

Requiem over the ELHI ontologies. We can observe that in

all cases our implementation outperforms Requiem with most

notable cases queries 1, 2, and 8 over the LUBM ontology and

again all queries over GALEN’s fragments where it can by sev-

eral orders of a magnitude faster. Note that, despite some large

input rewritings (queries 2 and 3 over G1 and query 3 over

G2), the performance was not affected much in comparison to

Requiem since the latter already requires several seconds due to

the more complex structure of GALEN. Finally, rew was called

at-most once, hence there was no overhead from repeated calls

to this sub-routine.

8. Conclusions

In the current paper we have studied the problem of comput-

ing a rewriting for a refined query—that is, a query some of

the answer variables of which have been removed (added) or

some body atoms removed, by exploiting as much as possible a

previously computed rewriting.

First, we studied the problem theoretically and have shown

that in all cases it is possible to exploit pre-computed infor-

mation giving detailed algorithms. However, in variable and

atom removal this is generally not possible without (at least to

some extent) making use of a standard rewriting algorithm rew.

We implemented all proposed algorithms in two prototype sys-

tems, one that supports DL-Lite and one that supports ELHI

and have conducted an extensive experimental evaluation. Our

results reflect the structure and properties of the proposed al-

gorithms. That is, variable additions that do not require the

use of a rewriting algorithm are in the vast majority of cases

much faster than existing systems. Variable removal is again

generally faster than the compared system and atom removal

was very competitive over the DL-Lite and much faster over the

ELHI ontologies. We have found that the performance of the

algorithms using rew can be influenced by the number of times

this sub-routine is executed, but with some simple optimisations

this number can be reduced significantly and adverse effects

were observed only a few times in our experiments. Moreover,

we have found that in some cases the requirement of inference-

closed rewritings can also influence the overall performance,

however, this was not an issue over the more complex GALEN

fragments where Requiem already requires quite some effort.

As part of future work we will investigate and devise further

optimisations for subsumption deletion, for reducing the num-

ber of times the sub-routine rew is called, as well as for the core

of our algorithms. Moreover, the extension to more expressive

ontology languages for which rewriting algorithms exist is also

an open problem.
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