
Ontology-Based Data Access Using Rewriting,
OWL 2 RL Systems and Repairing

Giorgos Stoilos

School of Electrical and Computer Engineering
National Technical University of Athens, Greece

Abstract. In previous work it has been shown how an OWL 2 DL on-
tology O can be ‘repaired’ for an OWL 2 RL system ans—that is, how
we can compute a set of axioms R that is independent from the data
and such that ans that is generally incomplete for O becomes complete
for all SPARQL queries when used with O ∪ R. However, the initial
implementation and experiments were very preliminary and hence it is
currently unclear whether the approach can be applied to large and com-
plex ontologies. Moreover, the approach so far can only support instance
queries. In the current paper we thoroughly investigate repairing as an
approach to scalable (and complete) ontology-based data access. First,
we present several non-trivial optimisations to the first prototype. Sec-
ond, we show how (arbitrary) conjunctive queries can be supported by
integrating well-known query rewriting techniques with OWL 2 RL sys-
tems via repairing. Third, we perform an extensive experimental evalua-
tion obtaining encouraging results. In more detail, our results show that
we can compute repairs even for very large real-world ontologies in a rea-
sonable amount of time, that the performance overhead introduced by
repairing is negligible in small to medium sized ontologies and noticeable
but manageable in large and complex one, and that the hybrid reasoning
approach can very efficiently compute the correct answers for real-world
challenging scenarios.

1 Introduction

The use of OWL ontologies to provide a formal and semantically rich conceptu-
alisation of the underlying data sources is becoming the basis in many modern
applications [7, 10]. However, the expressive power of OWL 2 DL comes at a price
of high computational complexity [12], hence, even after intense implementation
work and the design of modern optimisations, fully-fledged OWL 2 DL reasoners
are still not able to cope with large datasets containing billions of triples.

As a consequence, in real-world applications, developers often employ efficient
and provably scalable query answering systems which usually support only the
OWL 2 RL fragment of OWL 2 DL. Prominent examples include OWLim [7],
Oracle’s Semantic Graph [19], Apache Jena,1 and many more. Such systems can
load any OWL ontology but they will ignore all its parts that do not fall within

1 http://jena.apache.org/

the fragment they support. As a result they are incomplete—that is, for some
ontology, query and dataset they will fail to compute all certain answers.

Although scalability is very attractive, incomplete query answering may, on
the one hand, not be acceptable in several critical applications like healthcare
or defense and, on the other hand, improving completeness by computing as
many ‘missed’ answers as possible without affecting performance would be ben-
eficial for many applications. Hence, approaches for improving the completeness
of incomplete reasoners have recently been investigated [20, 13, 8]. A common
technique in most of these works is to use a fully-fledged OWL 2 DL reasoner to
‘materialise’ certain kinds of axioms which, when taken together with the input
ontology and the data, will ‘help’ the system compute more answers than it would
normally do. However, in all previous approaches there are still combinations of
inputs for which the systems would miss answers even after materialisation.

Stoilos et al. [17] investigated whether it is possible to compute all query
answers by using the materialisation approach. They introduced the notion of a
repair of an ontology O for an incomplete system ans which, roughly speaking, is
an ontologyR such that ans that is generally incomplete for O becomes complete
for all SPARQL queries and datasets when used with O ∪ R. Interestingly, by
recent results [4, 3] it follows that repairs always exists for Horn fragments of
OWL 2 DL and in many cases even for arbitrary OWL 2 DL ontologies. Moreover,
since repairs are independent from the data and the query, they only need to be
computed once at a pre-processing step. Hence, repairing is a promising approach
to scalable and complete query answering and ontology-based data access.

However, despite initial encouraging results there are still several open issues
and questions. First, computing a repair is a computationally very expensive pro-
cess and the original implementation was using arguably obsolete systems and
featured no optimisations. Second, the experimental evaluation was very prelim-
inary and it used two rather small and simple ontologies, namely LUBM and a
(very small) fragment of Galen. Hence, the practicality of the approach when
it comes to large and complex ontologies is unclear. Third, although instance
(SPARQL) queries are highly important the approach still does not support
arbitrary queries which are needed in several real-world applications.

In the current paper we extensively study repairing as an approach to scal-
able (and complete) query answering. First, we investigate on how to efficiently
compute repairs by providing several optimisations to the first prototype. Sec-
ond, we show how general queries can be supported by integrating well-known
query rewriting techniques [2] with OWL 2 RL systems, hence, providing a hy-
brid approach to query answering. Third, we perform an extensive experimental
evaluation using both synthetic and real-world benchmarks. More precisely, first,
we apply our tool over a large number of well-known ontologies to see how effi-
ciently repairs can be computed in practice. Interestingly, our results show that
computing repairs is practically feasible even for large and complex ontologies
mostly due to the new optimisations. Second, we investigate how much repair-
ing affects the performance of the OWL 2 RL reasoner in practice. Our results
show that in medium sized ontologies the overhead is negligible, while in very

2

large ones it can become noticeable. Still, however, this overhead regards only
a pre-processing (loading) step and, in return, after repairing the system is in-
distinguishable from two OWL 2 DL reasoners over a well-known benchmark
(UOBM). Third, we evaluate our hybrid query answering approach obtaining
encouraging results. In more detail, the system computed all correct answers
over a real-world highly expressive ontology almost instantaneously. Our current
repair tool supports the DL language ELHI, hence, given the proven scalability
of the used OWL 2 RL system it is safe to conclude that this is currently one of
the most scalable approaches to answering arbitrary queries over an important
fragment of OWL 2.

2 Preliminaries

We use standard notions from first-order logic, like variable, predicate, atom,
constant, satisfiability, and entailment (denoted by |=).

Description Logics and OWL 2. We assume that the reader is familiar with
the basics of the OWL 2 DL language2 and its relation to Description Logics
(DLs) [1]. As usual, we make a distinction between the schema of an ontology,
called TBox T , which consists of all class and property axioms, and the data,
called ABox A, which consists of all class and property assertions (we assume
only simple assertions). Then, an ontology is a set of the form O = T ∪ A.

Due to the high computational complexity of query answering over OWL 2
DL ontologies [12] a number of profiles have been defined. A prominent example
is the OWL 2 RL language3 for which many empirically scalable systems have
been implemented and deployed in real-world applications.

Datalog and Conjunctive Queries. A datalog rule r is an expression of
the form H ← B1 ∧ . . . ∧Bn where H, called head, is a function-free atom,
{B1, . . . , Bn}, called body, is a set of function-free atoms, and each variable in
the head also occurs in the body. A datalog program P is a finite set of datalog
rules. A union of conjunctive queries (UCQ) Q is a set of datalog rules such
that their head atoms share the same predicate, called query predicate, which
does not appear anywhere in the body. A conjunctive query (CQ) is a UCQ with
exactly one rule. Variables that appear in the body and not the head are called
non-distinguished variables. CQs with no non-distinguished variables form the
basis of SPARQL hence. in the following, we call them SPARQL queries.

We often abuse notation and identify a CQ with the only rule it contains
instead of a singleton set. For a query Q with query predicate Q, a tuple of
constants ~a is an answer of Q w.r.t. a TBox T and an ABox A if the arity of ~a
agrees with the arity of Q and T ∪A∪Q |= Q(~a). We denote with cert(Q, T ∪ A)
the answers to Q w.r.t. T ∪ A.
Ontology and Query Rewriting. Rewriting is a prominent approach to query
answering over ontologies. In such an approach the input TBox T (and query Q)
2 http://www.w3.org/TR/owl2-syntax/
3 http://www.w3.org/TR/owl2-profiles/

3

is transformed into a new set of sentences that capture all the information that
is relevant from T for answering any SPARQL CQ (resp. answering Q) over an
arbitrary ABox A [9, 2]. The typical target language for computing rewritings
is datalog in an effort to exploit mature (deductive) database technologies to
compute the answers over the original TBox.

Definition 1. Let T be a TBox. A T -rewriting is a datalog program RewD such
that for each A consistent with T and each SPARQL CQ Qg we have:

cert(Qg, T ∪ A) = cert(Qg,RewD ∪ A)

Let in addition Q be a CQ with query predicate Q. A (Q, T)-rewriting is a
set of the form RewD]RewQ with RewD a set of datalog rules not mentioning Q
and RewQ a UCQ with query predicate Q, and where for each ABox A consistent
with T we have:

cert(Q, T ∪ A) = cert(RewQ,RewD ∪ A)

Note that a T -rewriting is only complete for all SPARQL queries.

Example 1. Consider the TBox T consisting of the following axioms:

PhDSt v GradSt GradSt v ∃takes.Course
∃takes.Course v Student Student v Person

and consider also the CQ Q = Q(x)← takes(x, y) ∧ Course(y).
The set Rew1 = {Q,Q1,Q2}, where Q1,Q2 are presented next, is a (Q, T)-

rewriting while the set Rew2 = {r1, r2, r3, r4} is a T -rewriting.

Q1 = Q(x)← GradSt(x) Q2 = Q(x)← PhDSt(x)

r1 = Person(x)← Student(x) r2 = Student(x)← takes(x, y) ∧ Course(y)

r3 = Student(x)← GradSt(x) r4 = GradSt(x)← PhDSt(x)

It can be seen that Rew1 (Rew2) captures all information that is relevant for
answering Q (any SPARQL CQ) over T . For example, Q1 captures the fact that
according to T graduate students take some course, hence, in any ABox that
contains an assertion of the form GradSt(a), a is a certain answer. Similarly, r3
captures the fact that graduate students are also students.

Abstract query answering systems. In the following, in order to abstract
away from concrete systems we recall the notion of a query answering system [17].

Definition 2. A (query answering) system ans is a procedure that takes as in-
put an OWL 2 DL TBox T , an ABox A, and a CQ Q and returns a set of
tuples ans(Q, T ∪ A) that have the same arity as the query predicate of Q. Let
L be a fragment of OWL 2 DL and let T |L denote all L-axioms of a TBox
T . Then, ans is called complete for L if for each CQ Q and ABox A we have
cert(Q, T |L ∪ A) ⊆ ans(Q, T ∪ A).
Most OWL 2 RL reasoners known to us can be captured by the above definition.
More precisely, for T |rl all the OWL 2 RL-axioms of a TBox T , these systems
essentially return cert(Q, T |rl ∪ A). Note that ans need not be sound.

4

3 Repairing Incompleteness in a Nutshell

Stoilos et al. [17] provided the first systematic approach to improving the com-
pleteness of (incomplete) OWL 2 RL systems via ABox independent materialisa-
tion. They have introduced the notion of a repair of a TBox T for a system ans
which, roughly speaking, is a set of axioms R such that i) T |= R and ii) for each
SPARQL CQ Q and ABox A we have cert(Q, T ∪ A) ⊆ ans(Q, T ∪ R ∪A). For
example, the setR = {GradSt v Student} is a repair of the TBox T of Example 1
for an OWL 2 RL system ans.

It was additionally shown that for systems complete for OWL 2 RL a repair
exists if a T -rewriting for the input TBox exists. Interestingly, by recent results
such rewritings always exist for TBoxes expressed in Horn-SHIQ [4] (a fairly
expressive fragment of OWL 2) and they might also exist even for arbitrary
OWL 2 TBoxes [3]. Hence, repairing is a promising approach to scalable (and
complete) ontology-based data access. Finally, it was shown how to minimise a
repair (cf. steps 2. and 3. next). Overall the procedure of computing a repairR of
a TBox T for an OWL 2 RL system ans, denoted by Repair(T), is summarised
by the following three steps:

1. Compute an initial repair R1 using a T -rewriting Rew.
2. Remove from R1 all axioms α such that T |rl |= α. Moreover, for each pair of

distinct axioms α1, α2 remove α2 if T |rl∪{α1} |= α2. Let R2 be the resulting
set of this step.

3. Finally, perform again a similar procedure like that in step 2 but this time
using ans. For example, roughly speaking, remove from R2 all elements α
such that T |rl |=ans α and remove all α2 such that for some α1 we have
T |rl ∪ {α1} |=ans α2.

4 The result of this step is the desired repair.

4 Computing Repairs in Practice

In previous work it was argued that computing a repair can be done easily by
using any state-of-the-art (query) rewriting system, OWL 2 DL reasoner, and
OWL 2 RL system in order to implement steps 1, 2, and 3 of procedure Repair,
respectively [17]. However, this is far from being true for at least two reasons
that are related to the efficiency of steps 1 and 2.

Regarding step 1 the issue is that, before computing a T -rewriting, many
state-of-the-art systems would normalise an input TBox T by replacing complex
classes with fresh atomic ones. For example, if T contains ∃R.(E u F) v A then
this axiom would be transformed into the pair ∃R.A0 v A and EuF v A0, where
A0 is a new class. Hence, the computed rewriting, call it Rew′

D in the following,
would also mention such fresh predicates, e.g., in this case it would contain the
rules A(x) ← R(x, y) ∧ A0(y) and A0(x) ← E(x) ∧ F (x) (we informally call
such rewritings normalised). As a consequence, Rew′

D cannot be used as a basis
for computing a repair—that is, if R is the output of procedure Repair(T)
4 The reader is referred to [17] for details about how |=ans can be checked in practice.

5

when computing Rew′
D at step 1, then we will generally have cert(Q, T ∪ A) *

ans(Q, T ∪ R ∪A) for some ABox A.
The obvious solution to the above problem is to eliminate the fresh symbols

in Rew′
D by ‘unfolding’ their definitions creating new rules which contain only

symbols from T (we informally call such rewritings unfolded). In the previous
example by unfolding the rule containing A0(x) into the one containing A0(y)
we can compute the new rewriting RewD that instead contains the rule A(x)←
R(x, y) ∧ E(y) ∧ F (y). Clearly, T |= RewD and hence RewD can be used to
compute an initial repair. However, first, it is well known that this unfolding
transformation can cause an exponential blow-up in the size of the rewriting [16,
6] (and hence of the repair) and, second, experimental evaluation has shown that
it is very time consuming or even impossible to complete within a reasonable
amount of time in large and complex TBoxes.

Although normalised rewritings would generally not lead to repairs of the
input TBox, as shown next, they do lead to repairs of the normalised input TBox,
which provides a way to apply repairing even on large and complex TBoxes.

Proposition 1. Let T be an OWL 2 DL TBox, let ans be an OWL 2 RL system,
let Rew′ = Rew′

D] Rew′
Q be a T -rewriting computed by some query rewriting

system, and let T ′ be the version of T that it used to compute Rew′, i.e., let T ′

be such that for each A and SPARQL CQ Q cert(Q, T ∪ A) = cert(Q, T ′ ∪ A)
and cert(Q, T ′ ∪ A) = cert(Rew′

Q,Rew
′
D ∪ A). Finally, let R′ be the output of

Repair(T) when Rew′ is computed at step 1. Then, for every Q and A we have
cert(Q, T ∪ A) ⊆ ans(Q, T ′ ∪R′ ∪ A).

Besides computational efficiency, as shown next, normalised repairs also tend to
be smaller in size.

Example 2. Consider the following TBox T and CQ Q:

T = {A v B u ∃R.({o} tD), B v C} Q = Q(x)← C(x)

Since the first axiom is not in OWL 2 RL we have T |rl = {B v C} and hence
any OWL 2 RL system ans would be in general incomplete; e.g., for A = {A(a)}
we have cert(Q, T |rl ∪ A) = ∅ while cert(Q, T ∪ A) = {a}. Hence, any repair R
of T for ans must contain the axiom A v C; then, cert(Q, T |rl ∪R ∪A) = {a}.

However, after normalisation we have T ′ = {A v B,A v ∃R.({o} tD), B v
C}, hence also T ′|lr = {A v B,B v C} and thus ans(Q, T ′|lr ∪ A) = {a}.
Consequently, the empty set is a repair of T ′ for ans. ♦

Unfortunately, the normalised TBox can be quadratically larger than the input
TBox. Hence, reasoning over the former and the respective repair might be more
time consuming compared to reasoning over the input TBox and the standard
repair. Indeed, as our evaluation will show, such repairs should be used only in
cases where an unfolded rewriting for a (complex) TBox cannot be computed.

Regarding the efficiency of step 2, as can be seen, this step consists of two
loops (the second one of which is quadratic) over the set R1, in which a number

6

of entailment checks using a fully-fledged OWL 2 DL reasoner are performed.
Since the computation of R1 is based on a T -rewriting Rew, then R1 can be ex-
ponentially larger than T . Hence, despite how optimised an OWL 2 DL reasoner
is, the number of entailment checks in large and complex TBoxes would simply
be too much for this step to behave well in practice.

Fortunately, its performance can be significantly improved by observing that
most parameters in these entailment checks are fixed or rarely changing. More
precisely, in both entailment checks the TBox (T |rl) is always fixed and in the
quadratic loop, the axiom α1 changes only when all entailments T |rl∪{α1} |= α2

for each α2 ∈ R1 have been checked. This can be exploited as follows. First, we
can exhaustively apply the calculus of the OWL 2 DL reasoner over T |rl and mark
the completion of the execution. Then, in the first case, we can check T |rl |= α
by resuming the execution from the previous point while, in the second case, the
same strategy can be followed for T |rl ∪ {α1} and each check T |rl ∪ {α1} |= α2.
As we will see, this strategy leads to significant time savings.

Finally, we note that similar observations can also be made for the for-loops
in step 3. However, due to the minimisations performed in step 2 we expect that
the size of the repair at this point is quite small and hence this step should
behave well in practice.

5 Supporting Queries With Non-Distinguished Variables

Despite the fact that, after repairing, the OWL 2 RL system can answer correctly
all SPARQL queries, there are still certain applications where answering queries
containing non-distinguished variables is of great importance. For these cases
the straightforward approach would be to compute a (Q, T)-rewriting Rew and
then use a datalog engine to evaluate Rew over the given dataset A. However, in
many cases Rew can be large and complex and hence this process might not scale
well in practice, requiring the integration of techniques for minimising and/or
simplifying the structure of Rew [14, 15]. Although to a great extent successful,
these techniques usually depend on the data assuming also additional conditions
on them which in some cases might not hold, they so far have been designed to
work only over ontologies expressed in rather inexpressive languages (e.g., OWL
2 QL), and they require manual effort to implement and integrate.

Interestingly, repairing can potentially provide the basis for a practical ap-
proach to efficiently answer arbitrary CQs. It suffices to observe that R to-
gether with T capture all ground entailments—that is, for any (Q, T)-rewriting
RewD]RewQ, any ABox A, and any assertion α such that T ∪A |= α, we have
RewD∪A |= α if and only if T ∪R∪A |= α. Hence, we have the following result.

Proposition 2. Let T be an OWL 2 DL TBox, let Q be a CQ, and let ans be
a query answering system complete for OWL 2 RL. Let also RewD] RewQ be a
(Q, T)-rewriting and let R be a repair of T for ans. Then, for every ABox A we
have cert(Q, T ∪ A) ⊆ ans(RewQ, T ∪ R ∪A).
The previous proposition suggests the following approach to answering queries
with non-distinguished:

7

1. Compute a repair R of T for ans using procedure Repair.
2. Load the dataset A, the input TBox T , and the repair R to ans.
3. For a CQ Q with non-distinguished variables, compute a (Q, T)-rewriting

RewD]RewQ using any rewriting system and then evaluate RewQ using ans.

The above approach has at least three advantages: first, for a TBox T steps 1
and 2 need to be done only once as a pre-processing step; second, RewQ is usually
expected to be small and simple in structure, hence, step 3 would potentially
behave well in practice; and third, the approach is very easy to implement and
it can easily exploit any existing and future development in query rewriting and
OWL 2 RL systems without requiring to adapt or modify them.

6 Implementation and Evaluation

We have implemented a prototype ontology repair and query answering tool
called Hydrowl.5 The tool uses Rapid [18], a highly-optimised query rewriting
system,6 the OWL 2 DL reasoner HermiT [11], and the OWL 2 RL reasoner
OWLim [7].

Regarding whether an unfolded or a normalised rewriting was used at step 1
of Repair, our system supports three modes, namely no-normalisation, where
the rewriting is unfolded as much as possible, lite-normalisation, where only some
parts are unfolded, and full-normalisation, where no unfolding occurs. Further-
more, to implement our incremental optimisation for step 2 we have modified
HermiT internally to mark the completion of the application of the calculus and
to be able to backtrack to such points after each entailment check.

Regarding experimental evaluation we performed three experiments which
we will present next. First, we evaluated how efficiently repairs can be computed
in practice by applying our tool over a large ontology corpus containing many
challenging ontologies. Second, we loaded some of the repaired ontologies into
OWLim to see how much loading is affected by repairing. Since most OWL 2
RL systems perform reasoning during loading then, w.r.t. SPARQL CQs, this
reflects the total performance overhead introduced by repairing. Finally, we used
the approach illustrated in the previous section to answer queries with non-
distinguished variables over a real-world large and complex ontology.

Our test dataset contains 145 ontologies from the Gardiner corpus, a well-
known library [5] that consists of many real-world ontologies containing more
than 1000 axioms (we discarded all ontologies for which we either encountered a
parsing error or they are expressed in OWL full) and the well-known ontologies
FoodWine, UOBM, Propreo, CIDOC-CRM, nci 3.09d, Galen-doctored, and Fly;
hence we have a total of 152 ontologies.

All experiments were conducted on an average speed machine (Intel c© CoreTM

2 Duo E8400 3.00GHz) with 2GB of memory assigned to the JVM.

5 http://www.image.ece.ntua.gr/~gstoil/hydrowl/
6 Since Rapid currently supports the DL ELHI, our tool is guaranteed to repair
only the ELHI fragment of an ontology. However, as mentioned, repairing larger
fragments is theoretically possible and work towards practical algorithms is ongoing.

8

6.1 Repairing a Large Ontology Corpus

From our 152 ontologies, we managed to compute a repair using no-normalisation
for 146 of them, while for the remaining 6 we had to use some of the two nor-
malisation modes (no-normalisation either threw an out of memory exception or
after 45 minutes it was still at a very early stage of step 1, hence we aborted).
This also verifies in practice that there are ontologies for which completing step
1 of Repair is not trivial and using normalisation is a necessity.

Regarding computation time, all aforementioned 146 ontologies were pro-
cessed in about 13 minutes with only four requiring more than a minute. More
precisely, nci required 251 seconds (the longest time), GO 179 seconds, propreo
155 seconds, and Family 116 seconds. Moreover, only two required more than
10 seconds, namely UOBM which required 16.1 seconds and MadCows which
required 10.6 seconds. All other ontologies required less than a couple of seconds
and in most cases just a few milliseconds. Hence, we see that for many real-world
ontologies repairs can be computed very efficiently in practice.

Regarding the size of the repairs, interestingly for 134 out of the 146 ontolo-
gies we computed an empty repair. For the remaining 12 we ran Hydrowl using
all normalisation modes in order to investigate on the differences and properties
of the different modes. The results are summarised in Table 1 where |T | denotes
the number of axioms of the ELHI fragment of the input ontology (recall that
Hydrowl currently supports ELHI), |T ′| the number of axioms of the normalised
ontology, t the computation time in seconds, |R| the number of axioms of the
repair, the columns denoted by v, u, and ∃, denote how many axioms of the
form A v B, A u B v C, and ∃R.C v B, respectively the repair has, ‘d’ the
maximum depth encountered in axioms of the form ∃R.C v B, and Inv the
number of inverse object properties in R. The results for each ontology are split
into three lines which correspond to no-, light-, and full-normalisation, respec-
tively; we do not present results for full-normalisation over Koala, FoodWine,
mindswappers, and Family since lite-normalisation computed an empty repair.

From the table we can observe that in general repairs are rather small and
simple and usually contain axioms of the first two forms, however, only half of
them contain only axioms of the form A v B; hence, previous approaches [20,
13, 8] that mainly classify the input are indeed going to miss answers in many
practical cases. The most complex repair was computed for propreo using no-
normalisation which was the only ontology where a depth of 2 in axioms of the
form ∃R.C v B was observed. Moreover, we note that normalisation usually
doubles the size of the ontology which is better than a quadratic increase, how-
ever, it is noticeable. Finally, repairs computed using normalisation are usually
smaller and simpler as they rarely contain axioms of the form ∃R.C v B.

For the cases where using different modes of our tool has yielded differences
in the repairs (e.g., differences with respect to size) we have performed a further
analysis. More precisely, for each of the axioms of each repair, we extracted
a justification—that is, a minimal subset J ⊆ T such that J |= α, and we
have manually examined them to get an insight about their differences. In the
following we present our conclusions for some interesting cases.

9

Table 1. Results for the 12 ontologies with non-empty repairs.

T |T | |T ′| t |R| v u ∃ Inv d T |T | |T ′| t |R| v u ∃ Inv d

mged-1 449 456
1.7

2 2 0 0 0 0 CopyRight 193 266
0.9

3 3 0 0 0 01.4 1.2
0.8 0.6

mged-2 407 415
0.8

1 1 0 0 0 0 PeoplePets 53 130
3.2 1 1 0 0 0 0

0.9 1.3 19 16 0 3 0 1
0.6 0.7 18 18 0 0 0 0

Travel 48 68
3.1 4 0 1 3 1 1

MadCows 48 129
10.6 13 12 0 1 1 1

0.2 3 0 3 0 0 0 0.3 15 12 0 3 0 1
0.2 2 2 0 0 0 0 0.5 15 15 0 0 0 0

Koala 22 31
2.2 2 0 0 2 1 1

FoodWine 166 212
5.6 1 1 0 0 0 0

0.1 0 - - - - - 2.6 0 - - - - -

Propreo 450 715
155.1 15 0 0 15 18 2

UOBM 118 161
16.1 9 5 1 3 1 1

4.3 2 2 0 0 0 0 0.5 6 6 0 0 0 0
1.4 2 2 0 0 0 0 0.3 6 6 0 0 0 0

Mindsw. 101 125
0.5 1 0 0 1 1 2

Family 48 95
116.4 13 13 0 0 0 0

0.2 0 - - - - - 1.4 0 - - - - -

Interestingly, in FoodWine the no-normalisation mode computed a repair
containing a single axiom while the two normalisation modes computed an
empty repair. The additional axiom computed was α = WhiteNonSweetWine v
PotableLiquid and its justification consisted of the following axioms:

WhiteNonSweetWine ≡WhiteWine u ∃hasSugar.{dry, offDry}
WhiteWine ≡Wine u ∃hasColor.{white}

Wine v PotableLiquid

Consequently, the reasons for the observed differences are similar to those high-
lighted in Example 2—that is, since concept {dry, offDry} is outside OWL 2
RL, then the TBox T |rl will not contain the first axiom which is important for
deducing α. In contrast, in the normalised TBox T ′ the former axiom is trans-
formed (amongst others) to WhiteNonSweetWine vWhiteWine which is in OWL
2 RL and hence for the OWL 2 RL fragment of T ′ we have T ′|rl |= α. Con-
sequently, in the first case the repair contains α while in the latter it doesn’t.
Similar observations can also be made for Koala, mindswapper, Family, for the
13 additional axioms computed for propreo, and for the 3 additional axioms
computed for UOBM by the no-normalisation mode.

Another noteworthy case is observed in PeoplePets where the repair com-
puted using no-normalisation contains a single axiom while the repairs in both
normalisation modes many more. One extra axiom in the two normalisation
modes is OldLady v CatOwner and its justification is the following:

OldLady v ∃hasPet.Animal u ∀hasPet.Cat
CatOwner ≡ ∃hasPet.Cat

10

Table 2. Results for the ontologies that can only be processed using normalisation.

T |T | |T ′| mode t′ t |R| v u ∃ d

DOLCE-lt 260 350 lite 9.0 0 - - - -

xobjects 264 1087 lite 13.1 0 - - - -

Not-Galen 5471 10967 full 1706 298(42) 3015(4153) 3015 0 0 0

Galen 4229 8559 full 1157 257(24) 3012(3062) 2667 345 0 0

Galen-doc 4229 8763 full 3427 1152(28) 6051(6176) 3743 1412 896 1

Fly 19845 24594 full 13758 2884(178) 10361(12368) 10361 0 0 0

Although, the first axiom contains an existential restriction and hence is outside
OWL 2 RL, we concluded that when there is a pair of axioms of the form
A v ∃R.C u ∀R.D and ∃R.D v B, OWLim is able to deduce that A v B.
In contrast, in the normalised ontology the first axiom in the justification is
split into OldLady v ∃hasPet.Animal and OldLady v ∀hasPet.Animal, then the
former is discarded and hence the interaction is not identified. Indeed, we have
verified our speculations using two small tests. Similar observations also apply
to the discrepancies observed in the MadCows ontology. Consequently, besides
increasing the completeness of an OWL 2 RL reasoner normalisation can in some
rare cases also decrease it and hence force repairs to be larger.

Finally, Table 2 presents the results for the 6 challenging ontologies, where all
columns are like in Table 1 with the addition of column ‘mode’, which denotes
which normalisation mode was used, and column ‘t′’, which denotes the time to
compute a repair without our optimisations for step 2. As can be seen, even for
these very challenging ontologies we were able to compute a repair in a fairly
reasonable amount of time given the size and complexity of each ontology. This
is mostly due to normalisation and our optimisation for step 2 which as shown
by contrasting columns ‘t′’ and ‘t’ makes a large difference in practice. Moreover,
due to the size and complexity of these ontologies the computed repairs are quite
large (about half the size of the input ontology), however, they are usually simple
in structure (an exception being Galen-doc) and are never exponentially large.

It is also interesting to note that most of the computation time was spent in
the second part of step 2 (the quadratic loop). In columns ‘t’ and |R| in paren-
thesis we give the computation time and the size of the repair after executing
only step 1 and the first part of step 2, discarding its second phase. As can be
seen these steps are completed in a matter of seconds and the respective re-
pairs are not much larger than the optimal one. As we will see next, using these
non-optimal repairs does not seem to have a huge difference in practice.

6.2 Loading Under the Presence of Repairs

From our ontology dataset we selected the Fly ontology which comes with an
ABox containing more than 6,000 assertions and UOBM for which there exists a
data generator7 that can be used to generate ABoxes of arbitrary size. For these

7 http://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/

11

Table 3. Loading times for Fly and UOBM for the various ABoxes.

1 2 5 10 20

UOBM 4.1 6.8 16.2 31.9 73.2

UOBM∪R 4.4 8.3 24.3 44.9 108.1

UOBM′ ∪R′ 5.6 13.0 40.0 98.9 276.9

A1 A2 A3 A4 A5

Fly 14.0 21.9 22.7 27.9 31.5

Fly∪R 31.9 55.1 68.5 93.0 119.3

Fly∪R− 33.2 62.1 70.1 100.6 118.2

(a) UOBM (b) Fly

ontologies we load the TBox with and without the repair together with ABoxes
of varying size and measure the time that OWLim requires to load the data.

We used the UOBM data generator to generate ABoxes for 1, 2, 5, 10, and
20 universities. Then, we loaded them to OWLim using the original ontology
and two repaired versions of UOBM, one computed using no-normalisation and
one computed using lite-normalisation. Table 3(a) presents the results where
UOBM′∪R′ denotes the normalised ontology and the repair computed using lite-
normalisation. As we can see, repairing does introduce some additional overhead,
however, this is relatively small (loading UOBM∪R was at most 50% slower than
without the repair). The penalty when using UOBM′∪R′ was much larger, which
suggests that normalisation should be used mainly when unfolded rewritings
cannot be computed. Moreover, we have tested the completeness of OWLim for
the 13 test queries of UOBM.8 When using the original ontology OWLim was
found incomplete for three of them, while when we also loaded the repairs it
computed the same answers as HermiT and Pellet for all of them.

Regarding Fly, we have replicated the original ABox up to 5 times.9 Ta-
ble 3(b) shows the loading time for each ABox using the original ontology and
two repairs, the minimal one (R) computed after completing all steps of Repair
and a non-minimal one (R−) computed discarding the second phase of step 2.
As can be seen, in contrast to UOBM, there is a relatively significant increase in
loading time which reflects the size and complexity of Fly. However, since load-
ing is performed only once and, as we will see in the next section, despite the
high expressivity of this ontology afterwards we are able to compute all answers
to user queries in a matter of milliseconds, we feel that this penalty is worth
it. Moreover, interestingly, using the non-minimal instead of the minimal repair
does not seem to make a large difference in practice. Hence, this suggests that
one could perhaps completely dispense with the second phase of step 2 if this
takes a considerable amount of time in the computation of a repair.

6.3 Evaluating Hybrid Query Answering

The Fly ontology comes with five real-world queries, four of which contain non-
distinguished variables. As illustrated in Section 5, to compute answers for them,
we first loaded Fly together with its repair and the ABox to OWLim and then

8 The UOBM benchmark has two more test queries but computing answers for them
requires reasoning over constructors which Hydrowl does not support yet.

9 To the best of our knowledge, no better method to ‘scale-up’ an ABox exists.

12

Table 4. Results for Answering the Fly Queries

Q1 Q2 Q3 Q4 Q5

|RQ| trew tans |RQ| trew tans |RQ| trew tans |RQ| trew tans |RQ| trew tans
64 0.31 0.31 2880 0.90 1.28 1 0.00 0.00 91 0.07 0.04 6 0.05 0.02

for each query we computed a (Q, T)-rewriting Rew using Rapid and evaluated
only its UCQ part over the initialised OWLim. Table 4 presents the size of the
UCQ part of the rewriting (RQ), the time Rapid required to compute it (trew),
and the time OWLim required to evaluate it over the loaded ontology, repair,
and data (tans).

As we can see the results are highly promising. In most cases we can compute
and evaluate a rewriting almost instantaneously with the exception of query Q2

where, due to the large size of RQ, it required around two seconds; still a small
number though. Furthermore, our system computed the same answers as the
ones reported in [21] (i.e., all the correct answers) even though, interestingly, the
Fly ontology is expressed in the highly expressive DL SRI. All in all, computing
a non-optimal repair, loading it into OWLim together with the original Fly TBox
and ABox, loading Fly on Rapid and, finally, computing the answers for all 5
queries required a total of 233.2 seconds (computing the repair required 178
seconds, loading into OWLim and Rapid around 48.2 seconds and computing
and evaluating all rewritings over OWLim around 7 seconds). In contrast, as
mentioned in [21, 22], over a much faster machine than the one used here, HermiT
requires several hours to compute the answers, while the approach proposed
in [21, 22] requires 657 seconds to pre-process the Fly ontology and an average
of 117 seconds per query to compute the answers.

7 Conclusions

In this paper we investigate on ontology repairing for OWL 2 RL reasoners as a
practical approach to scalable (and complete) ontology-based data access. First,
we revisit our previous implementation and propose novel optimisations for its
two complex and time consuming steps, namely steps 1 and 2, in order to be
able to cope with large and complex ontologies. More precisely, for step 1 we
show how datalog rewritings (which can be computed efficiently by state-of-
the-art rewriting systems) can be used to compute repairs, while, for step 2 we
show how the internals of an OWL 2 DL reasoner can be changed in order to
avoid repeating much of the necessary work. Second, we push the envelope of
ontology repairing by showing how we can also support queries containing non-
distinguished variables by integrating query rewriting with (repaired) OWL 2 RL
systems. Our techniques have many advantages as they delegate most of the hard
work to a pre-processing step (i.e., computing the repairs and loading everything
to the OWL 2 RL system) that can be performed only once and leave for on-
line processing either the task of simply matching the query to the data (case of
SPARQL CQs) or computing the UCQ part of a rewriting and matching that over

13

the data (case of non-distinguished variables). Moreover, our approach is easy
to implement and reuses existing technology without any internal modifications
(only HermiT was modified for the goal of further optimising it).

Finally, our experimental evaluation has provided with very promising re-
sults. First, we were able to compute repairs very efficiently (in a matter of
milliseconds) for the vast majority of ontologies and even able to process large
and complex ones in a reasonable amount of time (in less than 1 hour). Since for
a fixed or rarely changing ontology computing repairs is performed mostly once
as a pre-processing step we feel that this is a tolerable time. Even more, our re-
sults suggest that the most expensive step of the repair computation procedure
can possibly be discarded, in which case repairs even for large ontologies can
be computed in a matter of seconds. Second, our experiments also showed that
loading the repair in addition to the standard input provides with an additional
overhead only in very large ontologies (e.g., Fly) while in UOBM the penalty
was fairly unimportant. Still, even in large ontologies, if we take into account
that loading is performed mostly once and that, after repairing, the OWL 2 RL
system is indistinguishable from OWL 2 DL reasoners w.r.t. SPARQL queries we
feel that this extra overhead is worth paying for. Finally, with respect to queries
containing non-distinguished variables, we were able to compute all the correct
answers to the queries of the Fly ontology almost instantaneously although Fly
is expressed in the highly expressive DL SRI. To the best of our knowledge, no
other system can match these times.

Regarding directions for future work we plan to extend our implementation
to support more expressive fragments of OWL like Horn-SHIQ [4] or even non-
Horn fragments of OWL [3] and conduct further experiments. This is far from
trivial as, to the best of our knowledge, algorithms for computing rewritings in
such languages either do not exist or have not shown to scale over large and
complex ontologies.

Acknowledgements The work was funded by a Marie Curie FP7-Reintegration-
Grant within EU’s 7th Framework Programme (2007-2013) under REA grant
agreement 303914 and by project Europeana Fashion within EU’s Competitive-
ness and Innovation Framework Programme under grant agreement 297167. We
would also like to thank Yujiao Zhou for providing fly anatomy and its queries.

References

1. F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press, 2002.

2. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. of Autom. Reas., 39(3):385–429, 2007.

3. Bernardo Cuenca Grau, Boris Motik, Giorgos Stoilos, and Ian Horrocks. Comput-
ing datalog rewritings beyond horn ontologies. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (IJCAI 2013), 2013.

14

4. Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guohui
Xiao. Query rewriting for Horn-SHIQ plus rules. In Proc. of AAAI, 2012.

5. Tom Gardiner, Dmitry Tsarkov, and Ian Horrocks. Framework for an automated
comparison of description logic reasoners. In Proc. of the 5th International Seman-
tic Web Conference (ISWC 2006), pages 654–667, 2006.

6. Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, and Michael Za-
kharyaschev. Long rewritings, short rewritings. In Proc. of DL 2012, 2012.

7. Atanas Kiryakov, Barry Bishoa, Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev,
and Ruslan Velkov. The Features of BigOWLIM that Enabled the BBCs World
Cup Website. In Workshop on Semantic Data Management (SemData), 2010.

8. G. Meditskos and N. Bassiliades. Combining a DL reasoner and a rule engine for
improving entailment-based OWL reasoning. In ISWC 08, pages 277–292, 2008.

9. Boris Motik. Description Logics and Disjunctive Datalog—More Than just a Fleet-
ing Resemblance? In Proc. of M4M-4, volume 194, pages 246–265, 2005.

10. Boris Motik, Ian Horrocks, and Su Myeon Kim. Delta-Reasoner: A Semantic Web
Reasoner for an Intelligent Mobile Platform. In Proceedings of the 21st Interna-
tional World Wide Web Conference (WWW 2012), pages 63–72, 2012.

11. Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for Descrip-
tion Logics. Journal of Artificial Intelligence Research, 36:165–228, 2009.

12. Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query
answering in expressive description logics via tableaux. Journal of Automated
Reasoning, 41(1):61–98, 2008.

13. Zhengxiang Pan, Xingjian Zhang, and J. Heflin. DLDB2: A scalable multi-
perspective semantic web repository. In Proc. International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT ’08), pages 489–495, 2008.

14. Mariano Rodriguez-Muro and Diego Calvanese. Dependencies: Making ontology
based data access work. In Proc. of AMW 2011, 2011.

15. Riccardo Rosati. Prexto: Query rewriting under extensional constraints in dl-lite.
In 9th Extended Semantic Web Conference (ESWC 2012), pages 360–374, 2012.

16. Riccardo Rosati and Alessandro Almatelli. Improving query answering over DL-
Lite ontologies. In Proc. of KR 2010, 2010.

17. Giorgos Stoilos, Bernardo Cuenca Grau, Boris Motik, and Ian Horrocks. Repair-
ing ontologies for incomplete reasoners. In Proceedings of the 10th International
Semantic Web Conference (ISWC-11), Bonn, Germany, pages 681–696, 2011.

18. Depoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and Giorgos Stamou. Op-
timising resolution-based rewriting algorithms for DL ontologies. In Proceedings of
the 26th Workshop on Description Logics (DL 2013), 2013.

19. Zhe Wu, George Eadon, Souripriya Das, Eugene Inseok Chong, Vladimir Kolovski,
Melliyal Annamalai, and Jagannathan Srinivasan. Implementing an inference en-
gine for RDFS/OWL constructs and user-defined rules in oracle. In Proc. of ICDE,
pages 1239–1248. IEEE, 2008.

20. Jian Zhou, Li Ma, Qiaoling Liu, Lei Zhang, Yong Yu, and Yue Pan. Minerva: A
scalable OWL ontology storage and inference system. In Proceedings of the First
Asian Semantic Web Conference (ASWC 2006), pages 429–443, 2006.

21. Yujiao Zhou, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, and Jay Banerjee.
Making the most of your triple store: Query answering in owl 2 using an rl reasoner.
In Proc, WWW 2013, pages 1569–1580, 2013.

22. Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau, and Ian Horrocks. Complete
query answering over horn ontologies using a triple store. In Proc. of the 12th
International Semantic Web Conference (ISWC). Springer LNCS, 2013.

15

