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Abstract Fuzzy Description Logics (f-DLs) have been proposed as logical formalisms ca-
pable of representing and reasoning with vague/fuzzy information. They are envisioned to be
helpful for many applications that need to cope with such type of information such as mul-
timedia processing, decision making, automatic negotiation and more. Recent results have
provided with many tableaux algorithms for supporting reasoning over quite expressive f-
DLs. However, no (direct) tableaux algorithm for reasoning with fuzzy extensions of DLs
such as SHOIQ and SROIQ exist today. SHOIQ and SROIQ are particularly interest-
ing formalisms as they constitute the logical underpinnings of the Web ontology languages
OWL DL and OWL 2 DL. In the current paper we present an algorithm for reasoning with
the fuzzy DLs f-SHOIQ and f-SROIQ. In addition, we also provide provide a tableaux
algorithm for fuzzy nominals, thus providing reasoning support for the fuzzy DL language
(we call) f-SHOfIQ.

Keywords Fuzzy Description Logics · Reasoning · Fuzzy Nominals · fuzzy-SHOIQ ·
fuzzy-SROIQ

1 Introduction

Description Logics (DLs) [1] are a family of class-based (concept-based) logical formalisms
equipped with well-defined model-theoretic semantics. Nowadays, DLs have gained con-
siderable attention due to their application in the context of the Semantic Web. More pre-
cisely, both W3C’s standards for representing ontologies in the (Semantic) Web—that is,
OWL DL [28] and OWL 2 DL [38], are based on the very expressive Description Logics
SHOIN (D+) [30] and SROIQ(D+) [31], respectively. Furthermore, the (robust) decid-
ability of DLs and the existence of practically efficient and scalable reasoning systems has
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made them attractive to researchers from many research areas who have applied them in do-
mains like, bio-medical information systems [42,23,40], astronomy [19], defence [34] and
more.

Since classical DLs do not provide means for representing fuzzy/vague information,
fuzzy DLs [36,50,51] and fuzzy OWL [12,47] have been proposed, which extend classical
DLs and OWL using the theory of fuzzy sets [33]. Using fuzzy DLs one can directly rep-
resent fuzzy concepts such as ‘Tall’, ‘Blue’, ‘Hot’, ‘Large’, for which a clear and precise
definition is difficult (if not impossible). Fuzzy DLs are also gaining significant attention
and have been used in many applications due to the fact that they combine the flexibility of
fuzzy sets with the formality and scalability of Description Logics. Examples of such appli-
cations are multimedia processing and retrieval [17,37,43], semantic portals [26], ontology
mapping [21], decision making [54] and negotiation [9].

Several theoretical works have been carried out towards providing reasoning support for
expressive fuzzy DL languages. More precisely, Straccia [51] presented the first tableaux-
based reasoning algorithm for fKD-ALC. fKD-ALC is the fuzzy-ALC DL that uses specific
fuzzy operators, namely min for conjunction, max for union, and 1− x for negation, also
called standard fuzzy operators. Later Stoilos et al. [50] extended this algorithm for the
fuzzy DLs fKD-SI and fKD-SHIN . Also recently a tableaux algorithm for SHI with se-
mantics based on a complete residuated finite De Morgan lattice has been presented [14]. In
a different approach, Bobillo et al. [6,7,11] have presented techniques that translate fuzzy
DL knowledge bases to classical DLs. The motivation of this approach is to use existing
classical DLs to provide reasoning support for fuzzy DLs. However, the reduced ontology
is quadratically larger than the input fuzzy one, mainly due to additional axioms that are
required in order to capture the relations between the fuzzy degrees. Hence, on the one
hand, preliminary evaluation has shown that these additional axioms do affect performance
in practice [16]. On the other hand, direct tableaux-based techniques are amenable to direct
(internal) optimisations techniques [44], hence tableaux-based algorithms are still relevant
for fuzzy DL research. Moreover, there have been many recent undecidability results for
fuzzy DLs that use operators other than the standard fuzzy ones [2,3,13,15]. Hence, one
can still advocate in favour of studying fuzzy DLs under the standard fuzzy operators.

Although tableaux algorithms for quite expressive fuzzy DLs have been presented there
is still no tableaux reasoning algorithm that supports nominals (denoted in DLs by O). Nom-
inals is an important feature of OWL DL as one could use them to specify enumerations of
elements. For example, we can define the concept of European Countries as follows:

EUCountries≡ {greece}t{germany}t . . .t{italy}

where EUCountries is a concept (unary predicate), greece,germany, . . . , italy are individuals
(objects) and ≡ is an equivalence axiom. In the current paper we first contribute to the state-
of-the-art of fuzzy DLs by extending the reasoning algorithm of fKD-SHIN [50] in order
to support nominals. Additionally, we also integrate the results for tableaux reasoning with
qualified cardinality restrictions (denoted in DLs by Q) presented in [45], thus we present
a reasoning algorithm for the fuzzy DL fKD-SHOIQ. To the best of our knowledge this
is the first tableaux algorithm for fKD-SHOIQ, i.e. for fKD-OWL extended with qualified
cardinality restrictions.1

The reasoning algorithm presented for fKD-SHOIQ treats nominals in a crisp (non-
fuzzy) way, based on the semantics presented in [47]. However, Bobillo et al. [5] presented a
fuzzy extension of nominals, creating fuzzy nominals. Fuzzy nominals are defined by {o,n},

1 Note that a preliminary and incomplete account for nominals appeared in [47].
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where o is an individual and n ∈ (0,1]. The intuition of fuzzy nominals is quite similar to
that of classical nominals. More precisely, one can explicitly enumerate the members of a
fuzzy set, thus also the membership degrees of objects need to be specified. For example,
using fuzzy nominals one is able to define the concept of Vulcan Mediterranean Countries
as:

VulcanMed≡ {(greece,1)}t{(albania,0.8)}t{(montenegro,0.7)}u{(croatia,0.6)}

saying that Albania, Montenegro and Croatia are to some extend Mediterranean countries.
Although the semantics of fuzzy nominals were presented in [5], no direct tableaux reason-
ing algorithm was given. In the current paper we will extent the algorithm of fKD-SHOIQ
in order to also provide reasoning support for fuzzy nominals.

In addition, there is currently no direct tableaux reasoning algorithm for reasoning with
fuzzy extensions of OWL 2 DL. OWL 2 DL extends OWL DL with new concept construc-
tors and many new role axioms that can be particularly usefull for many applications that use
fuzzy DLs, like multimedia analysis. More precisely, with OWL 2 DL we can describe the
fact that the (fuzzy) role containsRegion is irreflexive and antisymmetric or capture complex
partonomic and spatial relations between multimedia objects with the aid of complex role
inclusions, like the following:

isAboveOf ◦ isRightOf v isAboveRightOf

which states that a region which is above and right of some other region in an image, then it
is also above-right,

In summary the current paper makes the following major contributions:

– It presents a tableaux reasoning algorithm for supporting nominals in fuzzy Description
Logics. It then combines this algorithm with the algorithm about qualified cardinality
restrictions [45] and General Concept Inclusion axioms [48], thus presenting a reason-
ing algorithm for the fuzzy DL language fKD-SHOIQ. This language is particularly
important since, discarding datatypes, it consists to the fKD-OWL fuzzy ontology lan-
guage [49].

– It extends the reasoning algorithm of fKD-SHOIQ in order to provide reasoning support
for fuzzy nominals [5] for which, to the best of our knowledge, no tableaux reasoning
algorithm exists in the literature.

– It further extends these tableaux algorithms presenting a tableaux reasoning algorithm
for fKD-SROIQ, a fuzzy extension of the SROIQ DL. To do so, we first extend a
central result from [32] which shows that the same automata technique used in [32]
to capture the semantics of complex role inclusions can also be used in the case of
fKD-SROIQ. Second, we provide a technique by which complex role inclusion axioms
can be encoded as normal fKD-SHOIQ axioms following the results in [18]. Conse-
quently, our tableaux algorithm for fKD-SROIQ only has minor extensions compared
to the one presented for fKD-SHOIQ. This algorithm is particularly important since
given the previous transformations we can provide reasoning support for fKD-OWL 2
DL.

The rest of the paper is organized as follows. In Section 2.1 we give a quick look to
the classical SHOIQ language which will later be extended using notions from fuzzy set
theory, thus creating the fuzzy DLs fKD-SHOIQ and fKD-SHOfIQ, while in Section 2.2
we give a brief introduction to fuzzy set theory. In Section 3 we first present the syntax
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and semantics of fKD-SHOIQ and its reasoning problems, while later we present the fuzzy
DL fKD-SHOfIQ. Then, in Section 4 we present a reasoning algorithm that decides the key
inference problems of fKD-SHOIQ and prove its correctness. Subsequently, in Section 5 we
present all the necessary extensions required on the fKD-SHOIQ algorithm to support fuzzy
nominals. Finally, in Section 6 we extend this algorithm even further in order to provide a
reasoning algorithm for the fuzzy DL fKD-SROIQ, while Section 7 concludes the paper.
Proofs of key results are given in an Appendix.

2 Preliminaries

2.1 The Description Logic SHOIQ

In this section, we will briefly introduce the SHOIQ DL, which will be extended later.
A description language consists of an alphabet of distinct concept names (or atomic

concepts) (C), role names (R) and individual names (or individuals) (I) together with a set
of constructors to construct concept and role descriptions. Let RN ∈ R be a role name and
R a SHOIQ-role. SHOIQ-roles are defined (inductively) by the syntax S → RN | R−,
where R− represents the inverse of R. The inverse relation of roles is symmetric and to avoid
considering roles such as R−− we define the function Inv which returns the inverse of a role.
More precisely, Inv(R) := RN− if R = RN, while Inv(R) := RN if R = RN−. Let A be a
concept name, R a SHOIQ-role, S a simple SHOIQ-role,2 p ∈ N and o ∈ I. SHOIQ-
concepts are defined inductively as follows:

C,D −→ > | ⊥ | A | ¬C |CuD |CtD | ∃R.C | ∀R.C |≥ pS.C |≥ pS.C | {o}

Note that the concept = pS.C can be used as an abbreviation of ≥ pS.Cu ≤ pS.C.
Description Logics have a model theoretic semantics, which are defined in terms of

interpretations. An interpretation I consists of nonempty set of objects ∆I called domain,
and an interpretation function ·I which maps each individual name a ∈ I to an object aI ∈
∆I , each concept name A ∈ C to a subset AI ⊆ ∆I , and each role name RN ∈ R to a
binary relation RNI ⊆ ∆I × ∆I . Furthermore, for x,y ∈ ∆I , 〈x,y〉 ∈ RI if and only if
(iff) 〈y,x〉 ∈ (R−)I . The interpretation of SHOIQ-concepts is presented in Table 1, where
x,y ∈ ∆I .

A SHOIQ TBox T is a finite set of concept inclusion (also called subsumption) axioms
of the form C v D, where C,D are SHOIQ-concepts. We also often write C ≡ D instead
of C v D and D v C. An interpretation I satisfies C v D if CI ⊆ DI . Note that concept
inclusion axioms of this form are called General Concept Inclusions (GCIs) [1].

A SHOIQ RBox R is a finite set of transitive role axioms of the form Trans(R), and
Role Inclusion Axioms (RIAs) of the form R v S. An interpretation I satisfies Trans(R) if,
for all x,y,z ∈ ∆I , {〈x,y〉,〈y,z〉} ⊆ RI → 〈x,z〉 ∈ RI , and it satisfies R v S if RI ⊆ SI .
A set of role inclusion axioms defines a role hierarchy. For a role hierarchy we denote
by v* the transitive-reflexive closure of v over the set {R v S, Inv(R) v Inv(S) | R v S ∈
R}. At last, observe that if R v S, then the semantics of role inclusion axioms imply that
Inv(R)I ⊆ Inv(S)I .

A SHOIQ ABox A is a finite set of individual axioms (or assertions) of the form a : C,
called concept assertions, or (a,b) : R, called role assertions, or a 6 .= b, stating that two

2 A role is called simple if it is neither transitive nor it has any transitive subrole. This is important to
ensure decidability [30].
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Table 1: Semantics of SHOIQ-concepts

Constructor Syntax Semantics
top > ∆I

bottom ⊥ /0

general negation ¬C ∆I \CI

conjunction CuD CI ∩DI

disjunction CtD CI ∪DI

exists restriction ∃R.C {x | ∃y.〈x,y〉 ∈ RI ∧ y ∈CI}
value restriction ∀R.C {x | ∀y.〈x,y〉 ∈ RI → y ∈CI}
at-most ≤ pS.C {x | ]{y | SI(x,y)∧CI(y)} ≤ p}
at-least ≥ pS.C {x | ]{y | SI(x,y)∧CI(y)} ≥ p}
nominal {o} {o}I = {oI}

individuals are different. An interpretation I satisfies a : C if aI ∈ CI , it satisfies (a,b) : R
if 〈aI ,bI〉 ∈ RI and it satisfies a 6 .= b, if aI 6= bI .

Finally, a SHOIQ knowledge base (KB) consists of a tuple 〈T ,R,A〉 where T is a
TBox R is an RBox, and A is an ABox.

2.2 Fuzzy Sets

Fuzzy set theory is an extension of classical set theory [55]. While in crisp sets an object
either belongs (to a degree 1) or not (to a degree 0) to a crisp set S, in fuzzy set theory
this notion is extended in a way such that an object belongs to a fuzzy set to any degree
between 0 and 1. This membership degree is defined by a membership function of the form
µA : X → [0,1], or simply A : X → [0,1], where X is the universal set and A is a fuzzy subset
of X . Then, given an object x ∈ X , µA returns the membership degree of x to the fuzzy set
A. For example we can say that John belongs to the set of Tall people to a degree of 0.7,
writing Tall(John) = 0.7. Similarly a fuzzy relation R is defined by a function of the form
R : X ×X → [0,1].

The classical set theoretic operations of complement, union, intersection and the logical
implication are also extended to the framework of fuzzy set theory and logic [33]. In the new
context they are performed by special mathematical functions over the unit interval called
triangular norm operations [33]. Though there is a wealth of norm operations defined in
the literature, reasoning with arbitrary such operators in fuzzy DLs is an extremely diffi-
cult task [25] and has led to many undecidability results [2,3,13,15]. Thus, in the current
paper we focus only on specific norms, namely on the Lukasiewicz negation, given by func-
tion c(a) = 1−a, the Gödel t-norm for conjunction, given by function t(a,b) = min(a,b),
the Gödel t-conorm for disjunction, given by function u(a,b) = max(a,b), and the Kleene-
Dienes fuzzy implication, given by function J (a,b) = max(1−a,b).

From a mathematical point of view, these functions satisfy the following properties. The
Lukasiewicz negation satisfies the boundary conditions, c(0) = 1 and c(1) = 0, is mono-
tonic decreasing, for a ≤ b, c(a)≥ c(b), continuous and finally involutive—that is, for each
a ∈ [0,1] we have c(c(a)) = a. The Gödel t-norm (t-conorm) satisfies the standard properties
of norm operation, namely the boundary condition, t(a,1) = a (u(a,0) = a), is monotonic
increasing, for b ≤ d then t(a,b)≤ t(a,d) (u(a,b)≤ u(a,d)), commutative, t(a,b) = t(b,a)
(u(a,b) = u(b,a)), and associative, t(a, t(b,c)) = t(t(a,b),c) (u(a,u(b,c)) = u(u(a,b),c)).
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Moreover, due to the boundary conditions it holds that t(a,0) = 0 (u(a,0) = a). Addition-
ally, it is the only t-norm (t-conorm) that is idempotent, i.e., min(a,a) = a (max(a,a) = a).
Now, we recall a property of the max operator that we are going to use in Section 6. For
any a,b ∈ [0,1], where j takes values from the index set J, the max operation satisfies the
following Property:

(�) : inf
j∈J

max(a,b j) = max(a, inf
j∈J

b j)

Finally, we also recall some properties and notions for fuzzy relations. A fuzzy rela-
tion R over X × X is called sup-t transitive, or simply transitive if ∀a,b ∈ X ,R(a,c) ≥
supb∈X{t(R(a,b),R(b,c))}. R is reflexive if ∀a ∈ X ,R(a,a) = 1, while it is called irreflex-
ive if ∀a ∈ X ,R(a,a) = 0.3 The inverse of a fuzzy relation R : X ×Y → [0,1] is a fuzzy
relation R− : Y × X → [0,1] defined as R−(b,a) = R(a,b). Finally, given two fuzzy re-
lations R1 : X ×Y → [0,1] and R2 : Y × Z → [0,1] we define the sup-t composition as,
[R1 ◦t R2](a,c) = supb∈Y{t(R(a,b),R(b,c))}. The operation of sup-t composition satisfies
the following properties:

(R1 ◦t R2)◦t R3 = R1 ◦t (R2 ◦t R3), (R1 ◦t R2)
− = (R−

2 ◦t R−
1 )

Due to the associativity property we can extend the operation of sup-t composition to any
number of fuzzy relations; hence, we will simply write [R1 ◦t R2 ◦t . . .◦t Rn](a,b).

3 The fuzzy DLs fKD-SHOIQ and fKD-SHOfIQ

In this section we present the fuzzy DLs fKD-SHOIQ and fKD-SHOfIQ. The former ex-
tends the syntax of SHOIQ with membership degrees in concept and role assertions, thus
adding fuzziness at the instance level. The latter extends fKD-SHOIQ with the fuzzy nomi-
nal constructor [5], which is defined by adding fuzziness on a specific concept constructor.
The syntax and semantics of these fuzzy DLs have been presented before in various works
[52,46,5]; we recall them here for the sake of completeness. Additionally we introduce some
useful simplifications that would make the presentation of the algorithms easier and finally
show how the inference problems can be reduced to KB satisfiability.

3.1 The Fuzzy DL fKD-SHOIQ

As with classical DLs we have an alphabet of distinct concept names, role names, and indi-
vidual names. fKD-SHOIQ-roles and fKD-SHOIQ-concepts are defined in the same way
as their crisp SHOIQ counterparts. The semantics, however, are provided by the means of
fuzzy interpretations [51]. A fuzzy interpretation is a pair I = (∆I , ·I) where the domain
∆I is a non-empty set of objects and ·I is a fuzzy interpretation function which maps:

– an individual a to an element of aI ∈ ∆I ,

– a concept name A to a membership function AI : ∆I → [0,1], and

– a role name R to a membership function RI : ∆I ×∆I → [0,1].

3 Note that in most fuzzy textbooks this property is referred to as antireflexivity [33], but in order to be
aligned with the semantics of OWL 2 DL [31] we call it irreflexivity.
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Table 2: Semantics of fKD-SHOIQ-concepts and fKD-SHOIQ-roles

Constructor Semantics
top >I(a) = 1
bottom ⊥I(a) = 0
general negation (¬C)I(a) = 1−CI(a)
conjunction (CuD)I(a) = min(CI(a),DI(a))
disjunction (CtD)I(a) = max(CI(a),DI(a))
exists restriction (∃R.C)I(a) = supb∈∆I {min(RI(a,b),CI(b))}
value restriction (∀R.C)I(a) = infb∈∆I {max(1−RI(a,b),CI(b))}
at-most QCR (≤ pS.C)I(a) = inf

b1 ,...,bp+1∈∆I

p+1
max
i=1

{max(1−SI(a,bi),1−CI(bi))}

at-least QCR (≥ pS.C)I(a) = sup
b1 ,...,bp∈∆I

p
min
i=1

{min(SI(a,bi),CI(bi))}

nominal {o}I(a) = 1 if a ∈ {oI}, otherwise {o}I(a) = 0
inverse roles (R−)I(b,a) = RI(a,b)

Using the fuzzy set theoretic operations, fuzzy interpretations can be extended to interpret
fKD-SHOIQ-concepts and roles. The semantics are depicted in Table 2. Note that, in the
semantic of QCRs, all bi are pair-wise different, i.e. bi 6= b j, i 6= j. These semantics are based
on those presented in [52]. As it was later shown [50] under these semantics deciding the
key inference problems in fKD-DLs can be done effectively by tableaux-based algorithms
using a form of counting (as in the crisp case). For other types of semantics the reader is
referred to [41,20,10].

An fKD-SHOIQ TBox T is a finite set of concept inclusion axioms of the form C v D,
for C,D fKD-SHOIQ-concpets, like in classical SHOIQ. A fuzzy interpretation I satisfies
C v D if ∀a ∈ ∆I ,CI(a) ≤ DI(a). If I satisfies each axiom in T then I is called a model
of T . Note that we do not use graded (fuzzy) subsumption axioms [52,5]. As it was shown
in [5], fuzzy subsumption axioms in fuzzy DLs where implication is interpreted using the
Kleene-Dienes fuzzy implication can lead to counter-intuitive semantics.

An fKD-SHOIQ RBox R is a finite set of role axioms of the form Trans(R), called
transitive role axioms, or of the form R v S, called role inclusion axioms, where R,S are
fKD-SHOIQ-roles. A fuzzy interpretation I satisfies Trans(R) if for every a,c ∈ ∆I we
have RI(a,c) ≥ supb∈∆I{min(RI(a,b),RI(b,c))}, while it satisfies R v S if ∀a,b ∈ ∆I ,
RI(a,b)≤ SI(a,b). If a fuzzy interpretation I satisfies each axiom in R, then it is called a
model of R.

An fKD-SHOIQ ABox A is a finite set of fuzzy assertions and (in)equality axioms. For
a,b ∈ I, a fuzzy assertion [51] is of the form (a : C)./n, ((a,b) : R)./n, or ((a,b) : ¬R)./n
where ./ ∈ {≥,>,≤,<} and n ∈ (0,1] if ./ ∈ {≥,<}, while n ∈ [0,1) if ./ ∈ {≤,>}. We
call assertions defined by ≥,>, positive assertions, while those defined by ≤,< negative
assertions. An (in)equality axiom is of the form a .

= b, or a 6 .= b. A fuzzy interpretation I
satisfies (a : C) ≥ n ((a,b) : R ≥ n) if CI(aI) ≥ n (RI(aI ,bI) ≥ n), it satisfies a .

= b if
aI = bI and it satisfies a 6 .= b if aI .

= bI ; similarly with the other inequalities. A fuzzy
interpretation satisfies a fuzzy ABox A if it satisfies all fuzzy assertions in A. In this case,
we say I is a model of A. If A has a model then we say that it is consistent, otherwise it is
inconsistent. Finally, for an ABox A let NA denote the following set of degrees:

NA = {0,0.5,1}∪{1−n,n | (a : C./n) ∈A or ((a,b) : R)./n ∈A} (1)

A fuzzy knowledge base Σ is a triple 〈T ,R,A〉, where T is an fKD-SHOIQ TBox,
R an fKD-SHOIQ RBox and A an fKD-SHOIQ ABox. If a fuzzy interpretation I is a
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model of T , R, and A, then I is called a model of Σ . Note that models can be arbitrary.
However, it has been shown in the literature [25] that in fuzzy DLs under the standard fuzzy
operators, if Σ has a model, then Σ also has a so-called witnessed model, i.e., one where if
(∃R.C)I(a) = n then there exists b ∈ ∆I (the witness) such that min(RI(a,b),CI(b)) = n.
Hence, in the following, when we speak of a ‘model’ we always assume a witnessed one.

In the rest of the paper we will make use of the following notation: Let B ∈ {≥,>}
and C ∈ {≤,<}. By ¬./ we denote the negation of an inequality—that is, ¬ ≥=< and
¬<=≥ (the rest of the cases are defined in a similar way). Additionally, by ./− we denote
the reflexion of inequalities—that is, ≥−=≤, <−=> and so on. Finally, we use the symbol
+ to denote the strengthening or weakening of an inequality—that is, +≥=> (strengthens)
and +<=≤ (weakens) (the rest of the cases are defined similarly). We also use notation like
+B and B−; this is to be understood as follows: if B =≥, then +B =>, while if B =>,
then +B=≥ (similarly for B−).

3.1.1 Syntactic Simplifications

Now we introduce several assumptions that do not affect the generality of our results and
which would significantly simplify the presentation of our algorithms.

We can assume, without loss of generality, that A does not contain axioms of the form
a .
= b or c 6 .= d as such axioms can be expressed using the assertions a : {b} ≥ 1 and

c : ¬{d} ≥ 1, respectively.
Additionally, we can assume that no fuzzy assertions with inequality < or ≤ exist. On

the one hand, an assertion of the form (a : C) ≤ n can be transformed to the equivalent
assertion (a : ¬C) ≥ 1−n. On the other hand, an assertion of the form ((a,b) : R) ≤ n can
be transformed into a : ∀R.¬{b} ≥ 1− n; similarly for assertions that use <. Using this
assumption we are able to reduce the number of tableaux expansion rules of the presented
algorithm to half and considerably simplify the presentation.

Moreover, as it has been shown in the literature [35,48], we can also assume that no
assertions with the inequality > appear in an ABox A. More precisely, an assertion of the
form (a : C)> n ∈A can be replaced by an assertion of the form (a : C)≥ n+ε , where ε is
a small number converging to 0. An actual value for ε can be computed for A by the set NA

defined as in equation (1): first we order the values in NA and then we take a fraction of the
smallest difference ni+1 −ni for each ni,ni+1 ∈ NA. It has been shown that the initial fuzzy
ABox is consistent iff the normalised one is [35]; hence, in the following we only assume
ABoxes with assertions of the form (a : C)≥ n and ((a,b) : R)≥ n′, where n,n′ ∈ (0,1].

Finally, we also assume that concepts are in their negation normal form (NNF) [27], i.e.,
negations occur only in front of concept names or nominals. An fKD-SHOIQ-concept can
be transformed into an equivalent one in NNF by pushing negations inwards making use of
the De Morgan laws, which are satisfied by the standard fuzzy operators, and the dualities
between concepts > and ⊥, between the operators ∃ and ∀, and between ≥ and ≤. Also
concepts of the form (a : ¬(≥ 0R.C))Bn are replaced by, (a : ⊥)≥ 1. For a fuzzy concept
D, we use ∼D to denote the NNF of ¬D.

3.1.2 Inference Problems and their Reduction

Now we define the inference problems of fuzzy DLs as well as how these are reduced to KB
(un)satisfiability.

An fKD-SHOIQ-concept C is called n-satisfiable if there exists some fuzzy interpreta-
tion I and some a ∈ ∆I such that CI(a) = n and n ∈ (0,1]. A fuzzy knowledge base Σ is
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satisfiable if there exists a fuzzy interpretation I which satisfies all axioms in Σ . Further-
more, a concept C is subsumed by a concept D w.r.t. T if for all models I of T and all
a ∈ ∆I we have CI(a)≤ DI(a). Finally, for Φ a fuzzy assertion or a concept subsumption,
Σ entails Φ , written Σ |= Φ , iff any model of Σ also satisfies Φ .

As with classical DLs in fuzzy DLs inference problems can be reduced to to fuzzy
knowledge base satisfiability [51,49]. This is important in order to devise one algorithm that
can decide all problems. Let Σ = 〈T ,R,A〉 be a fuzzy KB (with A normalised). Then, C
is n-satisfiable w.r.t. Σ iff 〈T ,R,A∪{(a : C) ≥ n}〉 is satisfiable. Moreover, for a classical
SHOIQ assertion a : C, we have Σ |= (a : C) ≥ n iff 〈T ,R,A∪ {(a : ¬C) ≥ n+ ε}〉 is
unsatisfiable. Furthermore, for C and D two fKD-SHOIQ-concepts Σ |= C v D iff Σn =
〈T ,R,A∪ {(a : C) ≥ n,(a : ¬D) ≥ 1 − n + ε}〉 for every n ∈ (0,1]. Clearly the last re-
duction is not suitable for a practical implementation. As shown by Straccia, for fKD-ALC
KBs it suffices to check the unsatisfiability of Σn only for two arbitrarily selected degrees
n ∈ (0,0.5] and n ∈ (0.5,1]. Stoilos et al. [49] later observed that for fKD-SHOIQ KBs we
need to check for additional degrees since in the presence of nominals the ABox (and hence,
the degrees in its fuzzy assertions) can interact with (a : C) ≥ n and (a : ¬D) ≥ 1− n+ ε .
More precisely, we need to check for each n ∈ NA where NA is as defined in equation (1).
Note that for the latter approach to work it is essential that A is normalised. This is not
observed in [49].

3.2 The Fuzzy Nominal Constructor: fKD-SHOfIQ

Bobillo et al. [5] proposed a fuzzy extension of the nominal concept constructor called fuzzy
nominals. Assume that we want to describe the concept of the German speaking countries
as the set that contains the element ‘germany’, to a degree 1, ‘austria’ also to a degree 1 and
‘switzerland’ to a degree 0.67 since only 67% of the population of Switzerland speak Ger-
man. This is not possible using the constructors of the fuzzy DL fKD-SHOIQ. More pre-
cisely, an axiom of the form GermanSpeaking ≡ {germany} t {austria} t {switzerland}
would imply that switzerlandI belongs to GermanSpeakingI to a degree 1; similarly, the
fuzzy assertions (germany : GermanSpeaking) ≥ 1, (austria : GermanSpeaking) ≥ 1, and
(switzerland : GermanSpeaking)≥ 0.67 do not give the intended semantics as then we can-
not guarantee that only these are the members of the concept GermanSpeaking. However,
this is easily expressible using fuzzy nominals using the following axiom:

GermanSpeaking ≡ {germ,1}t{aus,1}t{switz,0.67}.

where the degrees next to the individuals denote the degree to which the objects belong in
the set GermanSpeakingI .

Formally, let o ∈ I be an individual and let n ∈ (0,1] be a degree. Then, {o,n} is an
fKD-SHOfIQ-concept. The semantics of the fuzzy nominal constructor is given by the
following equation:

{o,n}I(a) =
{

n, a = oI

0, otherwise

In the following, in order to distinguish the fuzzy DL that uses nominals with the one
that does not we call the former language fKD-SHOfIQ.

As shown in [49], in the presence of fuzzy nominals the reduction of concept subsump-
tion to KB satisfiability needs to be revised. More precisely, Σ |= C v D if and only if
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〈T ,R,A∪{(a : C)≥ n,(a : ¬D)≥ 1−n+ ε}〉 is unsatisfiable for each n in the set:

XΣ = NΣ ∪{ni | {oi,ni} appears in C}∪{ni + ε | {oi,ni} appears in D}

where NΣ = NA∪{ni | {oi,ni} ∈ Σ} and ε is again a small number converging to 0.

4 Reasoning in fKD-SHOIQ

In Section 3 we have shown how all inference problems can be reduced to the problem of
fuzzy knowledge base satisfiability. To check satisfiability of a fuzzy KB we use tableaux
algorithms for expressive fuzzy DLs, like those presented for fKD-SI and fKD-SHIN [45],
fKD-ALCIQ [45], and for general TBoxes [48], but extended appropriately to cover the
new constructors of fKD-SHOIQ. Tableaux algorithms are model-constructing calculi [24]
that given a knowledge base they try to construct a finite structure which consists of an
abstraction of a model of the KB [29].

First, we define the notions of subconcepts of a concept D and subconcepts of a knowl-
edge base and then proceed with the definition of a tableau, which gives a characterisation
of models of fKD-SHOIQ KBs.

Definition 1 Let D be an fKD-SHOIQ-concept. The set of subconcepts of D, denoted by
sub(D), is inductively defined as follows:

sub(A) = {A} for every atomic concept A ∈ C,

sub({o}) = {{o}},

sub(CuD) = {CuD}∪ sub(C)∪ sub(D),

sub(CtD) = {CtD}∪ sub(C)∪ sub(D),

sub(∃R.C) = {∃R.C}∪ sub(C),

sub(∀R.C) = {∀R.C}∪ sub(C),

sub(≥ pR.C) = {≥ pR.C}∪ sub(C), and

sub(≤ pR.C) = {≤ pR.C}∪ sub(C)

Let additionally R be an RBox. Then, cl(D,R) is the smallest set of fKD-SHOIQ-concepts
that satisfies the following:

– D ∈ cl(D,R),

– cl(D,R) is closed under subconcepts and application of ∼, and

– if ∀R.C ∈ cl(D,R), P v* R and Trans(P), then ∀P.C ∈ cl(D,R)

Finally, let cl(Σ) = ∪
(a:D)Bn∈A

cl(D,R) ∪
CvD∈T

cl(C,R)∪ cl(D,R). ♦

Definition 2 Let Σ = 〈T ,R,A〉 be an fKD-SHOIQ KB, let RΣ be the set of roles occurring
in Σ together with their inverses, and let IΣ be the set of individuals appearing in Σ (either in
assertions or in nominal concepts); then, a fuzzy tableau T for Σ is defined to be a quadruple
(S, L, E , V) such that, S is a set of elements, L : S× cl(Σ)→ [0,1] is a function that maps
each pair of elements of S and cl(Σ) to a degree, E : RΣ ×S×S → [0,1] is a function that
maps each role of RΣ and pair of elements to a degree, and V : IΣ → S maps individuals
occurring in Σ to elements of S.

Let ] denote the cardinality of a set and for a role R and tableau T let also the function RT

defined as follows: RT (s,B,n,C) = {t ∈ S | E(R,〈s, t〉)Bn and L(s,C)Bn}. For all s, t ∈ S,
C,E ∈ cl(Σ), n ∈ NA and R ∈ RΣ , a fuzzy tableau T satisfies the following conditions:
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1. L(s,⊥) = 0 for all s ∈ S,

2. L(s,>) = 1 for all s ∈ S,

3. If L(s,¬C)Bn, then we don’t have L(s,C)+B1−n,

4. If L(s,CuE)Bn, then L(s,C)Bn and L(s,E)Bn,

5. If L(s,CtE)Bn, then L(s,C)Bn or L(s,E)Bn,

6. If L(s,∀R.C)Bn, then either E(R,〈s, t〉)B− 1−n or L(t,C)Bn,

7. If L(s,∃R.C)Bn, then there exists t ∈ S such that E(R,〈s, t〉)Bn and L(t,C)Bn,

8. If L(s,∀R.C)Bn and for some P v* R we have Trans(P), then either E(P,〈s, t〉)B− 1−n,
or L(t,∀P.C)Bn,

9. E(R,〈s, t〉)Bn iff E(Inv(R),〈t,s〉)Bn,

10. If E(R,〈s, t〉)Bn and R v* S, then E(S,〈s, t〉)Bn,

11. If L(s,≥ pR.C)Bn, then ]RT (s,B,n,C)≥ p,

12. If L(s,≤ pR.C)Bn, then ]RT (s,+B,1−n,C)≤ p,

13. If L(s,≤ pR.C)Bn and E(R,〈s, t〉)+B1−n, then either L(t,¬C)Bn or
L(t,C)+B1−n,

14. If L(x,{o}) = 1 and L(y,{o}) = 1, for some o ∈ IΣ , then x = y,

15. If L(x,{o})Bn, then L(x,{o}) = 1,

16. If C v D ∈ T , then either L(s,¬C)> 1−n or L(s,D)≥ n, for all s ∈ S and n ∈ NA,

17. If (a : C)≥ n ∈A, then L(V(a),C)≥ n,

18. If ((a,b) : R)≥ n ∈A, then E(R,〈V(a),V(b)〉)≥ n,

19. If (a : C)≥ n ∈A, (((a,b) : R)≥ n ∈A), then L(V(a),{a}) = 1 (L(V(a),{a}) = 1 and
L(V(b),{b}) = 1)

♦

The conditions that a fuzzy tableau needs to satisfy are motivated by the semantics of fuzzy
interpretations and the properties of the fuzzy operators that are used by the fKD-SHOIQ
language. For example, Property 4 dictates that if some object s belongs to CuE to a degree
greater or equal (strictly greater) than n, then s must belong to both C and E to a degree
greater or equal (strictly greater) than n. This is because, by the semantics, (CuD)I(s)Bn
implies min(CI(s),EI(s))B n, hence we must have both CI(s)B n and EI(s)B n. Sim-
ilarly, Property 12 is a result of the semantics of cardinality restrictions analysed in [50];
if L(s,≤ pR.C)≥ n then there are at-most p elements t ∈ S such that E(R,〈s, t〉) > 1− n
and L(t,C) > 1−n (+ ≥≡>), and if L(s,≤ pR.C) > n, then there are at-most p elements
t ∈ S such that E(R,〈s, t〉) ≥ 1− n and L(t,C) ≥ 1− n (since + >≡≥) as it was shown in
[50]. Additionally, Property 16 is required in order to faithfully capture the semantics of the
axioms in the TBox [48]. This property is based on the observation that a fuzzy interpre-
tation I satisfies C v D ∈ T iff it satisfies either (a : C)I < n (i.e. (a : ¬C)I > 1− n), or
(a : D)I ≥ n for every n ∈ (0,1]. However, as shown in [35], one can restrict n to vary over
the finite set NA.

The next lemma, which proof is given in the appendix, shows the desirable connection
between the existence of a model for an fKD-SHOIQ KB and a fuzzy tableau.

Lemma 1 An fKD-SHOIQ knowledge base Σ is satisfiable iff there exists a fuzzy tableau
T for Σ .
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4.1 A Tableaux Algorithm for fKD-SHOIQ

In order to decide knowledge base satisfiability a procedure that constructs a fuzzy tableau
for an fKD-SHOIQ KB has to be devised. Such a procedure will be based on tableaux algo-
rithms. In the current section we will provide the technical details of the tableaux algorithm
for fKD-SHOIQ.

Like the algorithm presented in [30], our algorithm works on a completion-graph G—
that is, a graph whose vertices correspond to individuals labelled with concepts and degrees
of memberships and whose edges correspond to relations between individuals, also labelled
with degrees of membership. Moreover, due to the presence of transitive roles the termina-
tion of the algorithm is ensured by the use of blocking, which stops the algorithm after a spe-
cific type of cycle has been detected in the expansion process. Additionally, as fKD-SHOIQ
provides inverse roles, transitive role axioms and qualified number restrictions it lacks the
finite-model property, that is, there are fKD-SHOIQ-concepts that are satisfiable w.r.t. a
knowledge base only in infinite interpretations and thus only an infinite tableau (model)
exists for them. One such concept is the following [29]:

F ≡ ¬Cu∃P−.(Cu ≤ 1P)u∀S−.(∃P−.(Cu ≤ 1P))

with R= {Trans(S),Pv S}. Hence, in order to construct a correct tableau out of the possibly
blocked graph one needs to repeatedly copy (unravel) the sub-graph underneath the node
that causes blocking. The appropriate blocking technique which allows such unravelling is
called pair-wise blocking [29].

Furthermore, since fKD-SHOIQ provides also nominals we have to ensure that the un-
ravelling process does not violate possible number restrictions on roles that connect nodes
of the completion-graph with nominals. This problem was illustrated in [30] using the fol-
lowing example:

Example 1 Let Σc be a knowledge base that contains the following set of axioms:

>v ∃R−.{o}
{o} v≤ 3R.>

and let also the fuzzy assertion (a : F) ≥ 0.6 ∈ A, where F is the fKD-SHOIQ-concept
defined previously. The first axiom implies that every object of ∆I is connected with oI

through role (R−)I . The second axiom specifies that there exist at-most 3 objects in ∆I

connected to oI with this role. As we noted before F is satisfiable only into an infinite
interpretation, consequently the above KB is unsatisfiable (since infinite number of objects
implies infinite number of roles (R−)I with oI , but only 3 are allowed). Nevertheless, in
order for the tableaux algorithm to correctly identify this unsatisfiability it should not apply
blocking before enough individuals have been introduced. a

In order to correctly reason with such knowledge bases, Horrocks and Sattler [30] propoed
the NN-rule which forces a form of locality when number restrictions are related with
nominals. In the following we will extend the NN-rule to address this problem also in
fKD-SHOIQ. In Example 2 we will show how this rule can detect the unsatisfiability of
the above knowledge base.

Definition 3 Let Σ be an fKD-SHOIQ knowledge base, let RΣ be the set of roles appearing
in Σ and let I be a set of individuals. A completion-graph G for an fKD-SHOIQ knowledge
base Σ is a directed graph G = (V,E,L, 6 .=,

.
=), where each node x ∈V is labelled with a set

of pairs 〈C,n〉 ∈ L(x) such that
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C ∈ cl(Σ)∪{{a} | a ∈ I}∪{≤ p′R.C | (≤ pR.C) ∈ cl(Σ) and p′ ≤ p}

called concept pairs, and each edge 〈x,y〉 ∈ E is labelled with a set of role names L(〈x,y〉) =
{〈R,n〉}, where R ∈ RΣ are possibly inverse roles occurring in Σ , called role pairs.

If nodes x and y are connected by an edge 〈x,y〉 with 〈P,n〉 ∈L(〈x,y〉), and P v* R, then y
is called an Rn-successor of x and x is called an Rn-predecessor of y. If y is an Rn-successor
or an Inv(R)n-predecessor of x, then y is called an Rn-neighbour of x. As usual, ancestor is
the transitive closure of predecessor.

For y an Rn-neighbour of x, we say that the edge 〈x,y〉 conjugates with the pair 〈¬R,m〉4

if n+m > 1. The notion of conjugation can be straightforwardly extended to concept pairs.
For two roles P, R, a concept C, a node x in G and a membership degree n we de-

fine: RG
c (x,n,C) = {y | y is an Rn′ -neighbour of x, 〈x,y〉 is conjugated with 〈¬R,n〉, and

L(y)∪{〈¬C,n〉} contains a conjugation}.
A node y is called blockable if it contains no nominals in its label L(y), otherwise it is

called nominal. A node x is label blocked iff it has ancestors x′, y and y′ such that

1. x is a successor5 of x′ and y a successor of y′,
2. L(y) does not contain a pair with a nominal,
3. y,x and all nodes on the path from y to x are blockable,
4. L(x) = L(y) and L(x′) = L(y′) and,
5. L(〈x′,x〉) = L(〈y′,y〉).

In this case we say that y blocks x. A node y is indirectly blocked iff one of its ancestors is
blocked.

For a node x, L(x) is said to contain a clash if it contains one of the following:

– two conjugated pairs,

– a pair 〈⊥,n〉, with n > 0, or

– some pair 〈≤ pR.C,n〉 and x has p+1 Rni -neighbours y0, . . . ,yp, all 〈x,yi〉 are conjugated
with 〈¬R,n〉, L(yi)∪{〈¬C,n〉} contains a clash and yi 6= y j, for all 0 ≤ i < j ≤ p, or

– for some o ∈ I, there are x 6= y with 〈{o},1〉 ∈ L(x)∩L(y).

♦

Intuitively, a completion-graph encodes information about the membership of individuals in
concepts as well as the various fuzzy relations between pairs of individuals. For example,
〈C,n〉 ∈ L(x) implies that x belongs to C to a degree greater or equal than n. Additionally,
6 .= ( .=) keep track of the inequalities (equalities) between nodes of G.

We will now define the tableaux algorithm for fKD-SHOIQ knowledge bases.

Definition 4 Let Σ = 〈T ,R,A〉 be an fKD-SHOIQ knowledge base. A tableaux algorithm
initialises a graph G to contain:

1. a root node xai , for each individual ai ∈ IΣ appearing in the KB Σ , labelled with L(xai)
such that for each (ai : Ci)≥ n ∈A we have {〈{ai},1〉,〈C,n〉} ⊆ L(xai),

2. an edge 〈xai ,xa j 〉, for each ((ai,a j) : Si) ≥ n ∈ A, labelled with a set L(〈xai ,xa j 〉) such
that for each ((ai,a j) : Si)≥ n ∈A we have 〈Si,n〉 ∈ L(〈xai ,xa j 〉),

3. the relations 6 .= and .
= to be empty.

4 Note that this is an artificial pair used to check if a certain condition in L(〈x,y〉) holds.
5 A node x2 is a successor of a node x1 if 〈x1,x2〉 ∈ E.
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G is then expanded by repeatedly applying the tableaux rules from Table 3. The graph is
complete when, for some node x, L(x) contains a clash, or none of the tableaux rules is appli-
cable. The algorithm stops when a clash occurs; it answers ‘Σ is satisfiable’ iff the tableaux
rules can be applied in such a way that they yield a complete and clash-free completion-
graph, and ‘Σ is satisfiable’ otherwise.

The algorithm additionally uses the following functions.
Merging: Merging a node y into a node x, means that we add L(y) to L(x), “move”

all the edges leading to y so that they lead to x and “move” all the edges leading from y to
nominal nodes so that they lead from x to the same nominal nodes; then if y is not a root
node we remove y (and blockable sub-trees below y) from the completion-graph, otherwise
we set L(y) to the empty set and assert that x .

= y. More precisely, merging a node y into a
node x (written Merge(y,x)) in G = (V,E,L, 6 .=,

.
=) yields a graph that is obtained from G as

follows:

1. For all nodes z such that 〈z,y〉 ∈ E
– If {〈x,z〉,〈z,x〉}∩E = /0, then add 〈z,x〉 to E and set L(〈z,x〉) = L(〈z,y〉),
– if 〈z,x〉 ∈ E, then set L(〈z,x〉) = L(〈z,x〉)∪L(〈z,y〉),
– if 〈x,z〉 ∈ E, then set L(〈x,z〉) = L(〈x,z〉)∪{〈Inv(R),n〉 | 〈R,n〉 ∈ L(〈z,y〉)} and
– remove 〈z,y〉 from E;

2. For all nominal nodes z such that 〈y,z〉 ∈ E
– If {〈x,z〉,〈z,x〉}∩E = /0, then add 〈x,z〉 to E and set L(〈x,z〉) = L(〈y,z〉),
– if 〈x,z〉 ∈ E, then set L(〈x,z〉) = L(〈x,z〉)∪L(〈y,z〉),
– if 〈z,x〉 ∈ E, then set L(〈z,x〉) = L(〈z,x〉)∪{〈Inv(R),n〉 | 〈R,n〉 ∈ L(〈y,z〉)} and
– remove 〈y,z〉 from E;

3. set L(x) = L(x)∪L(y);
4. add x 6 .= z for all z s.t. y 6 .= z;
5. if y is a root node then set x .

= y; and
6. Prune(y).

Prune: Pruning a node y from a completion-graph G, yields a new graph that is obtained
from G as follows:

1. for all successors z of y, remove 〈y,z〉 from G, and if z is blockable Prune(z);
2. if y is a root node set L(y) = /0, otherwise remove y.

Strategy of Rule Application: As noted in [30] in order to ensure termination, and in
particular to fix an upper bound on the number of application of the NN-rule, the expansion
rules must be applied according to the following strategy:

1. the {o}2-rule is applied with highest priority,

2. then, the {o}1-rule is applied,

3. next, the ≤ and NN-rules are applied, and they are applied first to nominal nodes with
lower levels. In case they are both applicable to the same node, the NN-rule is applied
first.

4. all other rules are applied with a lower priority. ♦

There are several remarks regarding the above definition. First, it is important to note that
due to initialisation root nodes represent individuals that exist in some fuzzy assertion in the
ABox and additionally are nominal nodes. Second, our definitions of the methods Merge and
Prune slightly differ from the ones presented in [30]. More precisely, when merging y into x
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Table 3: Tableaux rules for fKD-SHOIQ

Rule Description
u if 1. 〈C1 uC2,n〉 ∈ L(x), x is not indirectly blocked, and

2. {〈C1,n〉,〈C2,n〉} 6⊆ L(x)
then L(x) := L(x)∪{〈C1,n〉,〈C2,n〉}

t if 1. 〈C1 tC2,n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1,n〉,〈C2,n〉}∩L(x) = /0

then L(x) := L(x)∪{C} for some C ∈ {〈C1,n〉,〈C2,n〉}
∃ if 1. 〈∃R.C,n〉 ∈ L(x), x is not blocked,

2. x has no Rn-neighbour y with 〈C,n〉 ∈ L(y)
then create a new node y and set L(〈x,y〉) := {〈R,n〉}, L(y) := {〈C,n〉}

∀ if 1. 〈∀R.C,n〉 ∈ L(x), x is not indirectly blocked, and
2. x has an Rn1 -neighbour y with 〈C,n〉 6∈ L(y) and
3. 〈x,y〉 conjugates with 〈¬R,n〉

then L(y) := L(y)∪{〈C,n〉}
∀+ if 1. 〈∀S.C,n〉 ∈ L(x), x is not indirectly blocked, and

2. there is some R, with Trans(R), and R v* S,
3. x has a Rn1 -neighbour y with 〈∀R.C,n〉 6∈ L(y), and
4. 〈x,y〉 conjugates with 〈¬R,n〉

then L(y) := L(y)∪{〈∀R.C,n〉}
choose if 1. 〈≤ pR.C,n〉 ∈ L(x), x is not indirectly blocked

2. there is an R-neighbour y of x, with {〈¬C,n〉,〈C,1−n+ ε〉}∩L(x) = /0, and
3. 〈x,y〉 conjugates with 〈¬R,n〉

then L(y) := L(y)∪{E}, for some E ∈ {〈¬C,n〉,〈C,1−n+ ε〉}
≥ if 1. 〈≥ pR.C,n〉 ∈ L(x), x is not blocked,

2. there are no p RBn-neighbours y1, . . . ,yp of x with 〈C,n〉 ∈ L(yi) with
yi 6= y j for 1 ≤ i < j ≤ p

then create p new nodes y1, . . . ,yp, with L(〈x,yi〉) = {〈R,n〉},
L(yi) := {〈C,n〉} and yi 6= y j for 1 ≤ i < j ≤ p

≤ if 1. 〈≤ pR.C,n〉 ∈ L(z), z is not indirectly blocked,
]RG

c (z,n,C)> p, there are two of them x, y, with no y 6 .= x
then 1. if x is a nominal or root node, then Merge(y,x)

2. else if y is a nominal or a root node or an ancestor of x, then Merge(x,y)
3. else Merge(y,x)

{o}1 if for some o ∈ I there are two nodes x,y with 〈{o},1〉 ∈ L(x)∩L(y) and not x 6 .= y
then Merge(x,y)

NN if 1. 〈≤ pR.C,n〉 ∈ L(x), x is a nominal node, and there is a blockable
node y of x in the set RG

c (x,n,C) and x is a successor of y,
2. there is no m such that 1 ≤ m ≤ p, 〈≤ mR.C,n〉 ∈ L(x)

and ]RG
c (x,n,C)≥ m, m are nominal nodes z1, ...,zm of x,

with zi 6
.
= z j , for all 1 ≤ i < j ≤ m

then 1. guess m, with 1 ≤ m ≤ n and set L(x) := L(x)∪{〈≤ mR.C,n〉}
2. create m new nodes z1, ...,zm, and set L(〈x,zi〉) := {〈R,1−n+ ε〉},
L(zi) := {〈{oi},1〉,〈C,1−n+ ε〉} for each oi ∈ I new in G, and
zi 6

.
= z j for 1 ≤ i < j ≤ m

≤{o} if. 1. 〈≤ pR.C,n〉 ∈ L(x), x is a nominal node, and there is a blockable
node y of x in the set RG

c (x,n,C)
2. there exist m nominal R1−n+ε -neighbours z1, . . . ,zm of x

with 〈C,1−n+ ε〉 ∈ L(zi) and zi 6
.
= z j with 1 ≤ i < j ≤ m and

3. there is a nominal R-neighbour z of x contained in RG
c (x,n,C) and not z 6 .= y

then Merge(z,y)
{o}2 if 1. 〈{o},n〉 ∈ L(x) (〈¬{o},n〉 ∈ L(x)), and

2. 〈{o},1〉 6∈ L(x) (〈¬{o},1〉 6∈ L(x))
then L(x) := L(x)∪{〈{o},1〉} (L(x) := L(x)∪{〈¬{o},1〉})

v if 1. C v D ∈ T , x is not indirectly blocked, and
2. {〈¬C,1−n+ ε〉,〈D,n〉}∩L(x) = /0 for some n ∈ NA

then L(x) := L(x)∪{E} for some E ∈ {〈¬C,1−n+ ε〉,〈D,n〉}
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if y is a root node, then (L(y)) is set to /0 and we also have x .
= y, whereas in [30] the node y

is removed from the graph. The reason for this difference is that the algorithm in [30] deals
with concept satisfiability, while here our algorithm directly works over ABox assertions.
While in classical SHOIQ the presence of nominals allows one to ‘absorb’ an ABox into
a single concept, this is not possible in fKD-SHOIQ due to the fuzzy semantics. Third,
although A is normalised (it only contains assertions that use the inequality ≥), the algorithm
still needs to introduce assertions of the form (a : C) > 1−n due to the semantics of some
constructors (cf. Definition 2, Property 16). Hence, in order keep the pairs normalised and
avoid the need to use triples 〈C,./,n〉 (as it has been done in previous works [50]) the
algorithm introduces pairs of the form 〈C,1−n+ ε〉 for some ε . Note also that in this case,
in order to identify a clash one does not necessarily need to compute an actual value for ε .
If {〈A,n〉,〈¬A,1−n+ ε〉} ⊆ L(x) then clearly n+1−n+ ε > 1.

Example 2 We will apply our tableaux algorithm on the KB Σc defined in Section 4.1.
Firstly, the algorithm initialises a completion-graph G to contain the following nodes

and node labels: L(xa) = {〈F,0.6〉,〈{a},1〉} and L(ro) = {〈{o},1〉}. Moreover, the set of
relative membership degrees is as follows: NA = {0,0.4,0.5,0.6,1}. Subsequently, the al-
gorithm expands G by applying the tableaux rules from Table 3.

When the v-rule is applied to the axiom >v ∃R−.{o} it either adds 〈¬>,1−n+ ε〉 or
〈∃R−.{o},n〉 to L(xa). Since this non-deterministic step is performed for every n ∈ NA at
some point the algorithm chooses n= 0.6. Then, clearly 〈¬>,0.6〉 is a clash leaving only the
choice 〈∃R−.{o},0.6〉 ∈ L(xa). Then, we have the following application of tableaux rules:

(1) L(〈xa,x〉) := {〈R−,0.6〉},L(x) := {〈{o},0.6〉}, x is new ∃
(2) L(x) := L(x)∪{〈{o},1〉} {o}2

(3) Merge(x,ro) {o}1

Subsequently, (step (4)) suppose that the v-rule is applied to the axiom {o} v≤ 3R.>
adding either 〈¬{o},1− n+ ε〉 or 〈≤ 3R.>,n〉 for all n ∈ NA to the labels of all nodes.
Consider node ro and that the algorithm has selected value n = 0.6. In that case adding
〈¬{o},0.4+ ε〉 to L(ro) creates a clash since L(ro) already contains 〈{o},1〉. Hence, it pro-
ceeds by adding 〈≤ 3R.>,0.6〉 to L(ro). Then, (step (5)) the NN-rule is applied; this is
because 〈≤ 3R.>,0.6〉 ∈ L(ro) and ro is a nominal node for which RG

c (ro,0.6,>)> 1. (The
latter is due to the merging of x and ro, which made xa an R0.6-neighbour of ro and 〈xa,ro〉
is conjugated with 〈¬R−,0.6〉) Thus, the algorithm guesses m (say m = 3) and creates three
nodes zi, setting L(〈ro,zi〉) := {〈R,1−0.6+ε〉}, L(zi) := {〈>,1−0.6+ε〉,〈{oi},1〉} for oi
new in G and zi 6= z j for 1 ≤ i < j ≤ 3. Then, we have the following application of tableaux
rules:

(6) Merge(xa,z1) ≤{o}

(7) L(z1) := L(z1)∪{〈¬C,0.6〉,〈∃P−.(Cu ≤ 1P),0.6〉 u
〈∀S−.(∃P−.(Cu ≤ 1P)),0.6〉}

(8) L(〈z1,y1〉) := {〈P−,0.6〉},L(y1) := {〈Cu ≤ 1P,0.6〉} ∃
(9) L(y1) := L(y1)∪{〈C,0.6〉,〈≤ 1P,0.6〉} u
(10) L(y1) := L(y1)∪{〈∃P−.(Cu ≤ 1P),0.6〉} ∀
(11) L(y1) := L(y1)∪{〈∀S−.(∃P−.(Cu ≤ 1P)),0.6〉} ∀+
(12) L(y1) := L(y1)∪{〈∃R−.{o},0.6〉} v
(13) L(〈y1,y2〉) := {〈R−,0.6〉},L(y2)∪{〈{o},0.6〉} ∃
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Fig. 1: Illustration of the expansion process

At this point, the {o}2 and {o}1-rule will be applied to y2 merging it into ro, as in steps
(2) and (3) for x. Thus, L(〈y1,ro〉) = {〈R−,0.6〉} is created and again the ≤-rule would be
applied to ro merging y1 into either z2 or z3. Note that if it merged y1 into z1, then L(z1)
would contain a clash since {〈¬C,0.6〉,〈C,0.6〉} ⊆ L(z1) and we would need to backtrack
to merge y into one of z2, z3.

Hence, assume that y1 is merged into z2. Then, z2 becomes an P−
0.6-neighbour of z1 and

L(z2) now contains {〈∃P−.(Cu ≤ 1P),0.6〉,〈∀S−.(∃P−.(Cu ≤ 1P)),0.6〉}. Consequently,
similar tableaux rules as in steps (8)–(13) would be applied for z2—that is, a neighbour y3
would be created which would eventually be merged into z3 making z2 an P−

0.6-neighbour of
z3. Similarly as before, if y3 was merged in either z1 or z2 we would have a clash. The latter
clash would be because the merge would make z2 an P−

0.6-neighbour of itself, thus it would
have two P0.6-neighbours which leads to a clash due to 〈≤ 1P,0.6〉. Subsequently, following
similar steps, a new neighbour y4 of z3 would be created, which then leads to a clash since it
cannot be merged with any node of the completion-graph. Finally, the algorithm backtracks
to the choice of m and selects a smaller value, but obviously this would again lead to a clash
following similar reasoning. a

Figure 1 depicts the most important parts of the completion-graph of the above example
for two different points in time. Note that for clarity reasons we do not show the node and
edge labels. The leftmost part depicts the graph until step (11). Originally ro was an R−

0.6-
neighbour of xa, due to the merge of x into ro (step (3)). Then, the NN-rule applied and
created z1,z2 and z3, thus ro contained four R0.6-neighbours causing the ≤-rule to be applied
merging xa into z1, and removing xa. Then, expansion of node z1 that contains 〈F,0.6〉
creates node y1 and then also y2 is created. Then, the algorithm merges y2 into ro making
y1 an R0.6-neighbour of ro. Then, again ro has 4 R0.6-neighbours and thus y1 needs to be
merged into z2.

The rightmost part illustrates the completion-graph from step (14) until the end. Note
that we have inverted the edges from ro to all zi for clarity reasons and to stress the fact
that r0 has four incoming R− edges. Similarly to steps (8)–(13) the algorithm would create
node y3 which will be eventually merged into z3. Finally, also y4 is created, and for similar
reasons it needs to be merged with an existing node, but all choices lead to a clash.
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Correctness and termination of the tableaux-based algorithm for deciding satisfiability
of fKD-SHOIQ knowledge bases is made formal in the lext lemma which is proven in the
appendix.

Lemma 2 Let Σ be an fKD-SHOIQ knowledge base. Then

1. Termination: when started for Σ the tableaux algorithm terminates.

2. Correctness: Σ has a fuzzy tableau iff the tableaux algorithm for fKD-SHOIQ can be
applied to Σ such that it yields a complete and clash-free completion-graph.

5 A Reasoning Algorithm for fuzzy nominals

Although the fuzzy nominal constructor was initially proposed in [5] the authors did not
present a tableaux decision procedure for handling them. Instead they presented a reduction
technique that translates an f-SHOfIN knowledge base into a (crisp) SHOIN knowledge
base. Preliminary evaluation [16] has shown that the additional axioms needed in order
to reduce the fuzzy knowledge base affect the reasoning performance. In constrast, direct
tableaux algorithms can be directly optimised and exhibit acceptable performance [44]. In
the following we will modify the reasoning algorithm of fKD-SHOIQ in order to provide
a direct tableaux-based reasoning algorithm that decides fKD-SHOfIQ knowledge base
satisfiability.

First, we need to modify Definition 2 and more precisely Properties 14 and 15 since an
element s ∈ S of the fuzzy tableau can belong to a fuzzy nominal to any degree from (0,1].

Definition 5 Let Σ be an fKD-SHOfIQ knowledge base and XΣ as defined in Section 3.2.
A fuzzy tableau T for Σ is defined similarly to an fKD-SHOIQ fuzzy tableau for Σ but
instead of Properties 14–16 of Definition 3.2 it satisfies the following (modified) properties:

14’. If L(x,{o,n}) = n and L(y,{o,n}) = n, for some o ∈ I and n ∈ (0,1], then x = y.

15’. If L(x,{o,n})B k, with kB− n, then L(x,{o,n}) = n.

16’. If C v D ∈ T , then either L(s,¬C)> 1−n or L(s,D)≥ n, for all s ∈ S and n ∈ XΣ

♦

Lemma 3 An fKD-SHOfIQ knowledge base Σ is satisfiable iff there exists a fuzzy tableau
for Σ .

Proof The modified Properties 14’ and 15’ ensure the correct interpretation of fuzzy nom-
inals, while Property 16’ ensures that the model induced by T is a model of the TBox T .
Hence, the claim follows straightforwardly by the proof of Lemma 1. ut

As a consequence, some modification in the definitions of completion-graph and tab-
leaux algorithm for fKD-SHOIQ knowledge bases are required in order to support fuzzy
nominals. More precisely, we need to modify the tableaux expansion rules, the clash condi-
tions, and the initialisation of the completion-graph.

Definition 6 A completion-graph G for an fKD-SHOfIQ knowledge base Σ is similar to
an fKD-SHOIQ completion-graph but with the following modifications:

For some node x, we say that L(x) contains a clash if it satisfies one of the clash condi-
tions of fKD-SHOIQ in Definition 3, or if one of the following holds:
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Table 4: Tableaux rules for the fuzzy nominals of fKD-SHOfIQ

Rule Description
{o,n}1 if for some {o,n} there exist two nodes x,y with 〈{o,n},k〉 ∈ L(x)∩L(y) and not x 6 .= y

then Merge(x,y)
{o,n}2 if 〈{o,n},k〉 ∈ L(x), and {〈{o,n},n〉,〈¬{o,n},1−n〉}* L(x) = /0

then L(x) := L(x)∪{〈{o,n},n〉,〈¬{o,n},1−n〉}

– for some o ∈ I and n ∈ (0,1], there exist nodes x 6= y with 〈{o,n},n〉 ∈ L(x)∩L(y).
– L(x) contains a pair of the form 〈{o,n},k〉 with k > n.

A completion-graph for fKD-SHOfIQ is initialised in a similar way as a completion-
graph for fKD-SHOIQ but each 〈{ai},1〉 in the initialisation is replaced to the equivalent
fuzzy nominal 〈{ai,1},1〉 and additionally, for each fuzzy nominal {oi,n} that appears in Σ
a nominal node roi with L(ri)= {〈{oi,n},n〉,〈¬{oi,n},1−n〉〈{oi,1},1〉} is created. Finally,
Table 4 presents the tableaux expansion rules that are needed for correctly handling fuzzy
nominals. ♦

It is interesting to note that, according to the above, if for some o ∈ I and node x we have
{〈{o,0.5},0.5〉,〈{o,0.7},0.7〉} ⊆L(x), then L(x) does not contain a clash. This is in accor-
dance to the semantics as {o,0.5} denotes a different fuzzy concept than {o,0.7} and hence
for x= o the constraints are satisfied. In general any node can belong to an infinite number of
fuzzy nominal concepts of the form (¬){o,ni} for ni ∈ (0,1], since different degrees imply
a different fuzzy set.

The following follows straightforwardly from the proof of correctness of the algorithm
for fKD-SHOIQ and the modified Definition 3.

Lemma 4 Let Σ be an fKD-SHOfIQ knowledge base. Then

1. Termination: when started for Σ the tableaux algorithm terminates.

2. Correctness: Σ has a fuzzy tableau iff the tableaux algorithm for fKD-SHOfIQ can be
applied to Σ such that it yields a complete and clash-free completion-graph.

In the following we present some examples of the reasoning algorithm for fuzzy nomi-
nals. First, we show how the new rules work with a simple example.

Example 3 Let the knowledge base Σ = 〈T ,A〉, where T and A are defined as follows:

T = {GermanSpeaking ≡ {germany,1}t{austria,1}t{switzerland,0.67}}
A = {(a : GermanSpeaking) = 0.67}

We want to prove that a is Switzerland—that is, whether Σ |= a .
= switzerland, which is

equivalent to checking whether Σ |= a : {switzerland,1} ≥ 1. This query is reduced to
checking the unsatisfiability of Σ ′ = 〈T ,A∪{a : ¬{switzerland,1} ≥ ε}〉, for some value
ε > 0.

Firstly, the algorithm initialises a completion-graph G to contain the following nodes
with the respective node labels:

(1) L(xa) := {〈GermanSpeaking,=,0.67〉,〈{a,1},1〉,〈¬{switz,1},ε〉}
(2) L(rgerm) := {〈{germ,1},1〉,〈¬{germ,1},0〉}
(3) L(raus) := {〈{aus,1},1〉,〈¬{aus,1},0〉}
(4) L(rswitz) := {〈{switz,0.67},0.67〉,〈¬{switz,0.67},0.33〉,〈{switz,1},1〉}
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Table 5: Expansion of completion-graph from Example 3

(5) L(xa) := L(xa)∪{〈¬{ger,1},0.33〉,〈¬{aus,1},0.33〉,
〈¬{switz,0.67},0.33〉} 2×u : (1)

(6a) L(xa) := L(xa)∪{〈{ger,1},0.67〉} t : (1)

(6b) L(xa) := L(xa)∪{〈{aus,1},0.67〉} t : (1)

(6c) L(xa) := L(xa)∪{〈{switz,0.67},0.67〉} t : (1)

(7a) L(xa) := L(xa)∪{〈{ger,1},1〉,〈¬{ger,1},0〉} {o,n}2 : (6a)

(7b) L(xa) := L(xa)∪{〈{aus,1},1〉,〈¬{aus,1},0〉} {o,n}2 : (6b)

(7c) L(xa) := L(xa)∪{〈{switz,0.67},0.67〉,〈¬{switz,0.67},0.33〉} {o,n}2 : (6c)

(8a) L(xa) contains a clash: 〈{ger,1},1〉 and 〈¬{ger,1},0.33〉
(8b) L(xa) contains a clash: 〈{aus,1},1〉 and 〈¬{aus,1},0.33〉
(8c) Merge(xa,rswitz) {o,n}1 : (7c),(3)

(9b) L(xa) contains a clash: 〈{switz,1},1〉 and 〈¬{switz,1},ε〉

and also the relation 6 .= to be empty.
Due to the equivalence axiom of the TBox, concept GermanSpeaking in the label of

xa is replaced with its definition. Moreover, (a : GermanSpeaking) = 0.67 is equivalent to
two fuzzy assertions of the form (a : GermanSpeaking)≥ 0.67 and (a : GermanSpeaking)≤
0.67 → (a : ¬GermanSpeaking)≥ 0.33. Hence, we finally have the following:

〈{ger,1}t{aus,1}t{switz,0.67},0.67〉 ∈ L(xa) and

〈¬{ger,1}u¬{aus,1}u¬{switz,0.67},0.33〉 ∈ L(xa)

Then, we repeatedly apply the rules in Tables 3 and 4, obtaining the expansion depicted
in Table 5, where the application of rule t creates 3 different alternatives, namely 6a, 6b
and 6c. a

The above example illustrates the importance of the {o,n}2-rule for correctly identifying
the inconsistencies that exist within the completion-graph.

Next we give an example that shows reasoning over general TBox axioms and fuzzy
nominals.

Example 4 Let the following fKD-SHOfIQ TBox:

T = {{greece,1}t{albania,0.8}t{montenegro,0.7}t{croatia,0.6} v VulcanMed}.

Obviously, T entails the fuzzy assertion (albania : VulcanMed)≥ 0.8. We can now use the
rules for fuzzy nominals together with the technique for handling GCIs in order to answer
this query. Firsly, we reduce it to the problem of checking the unsatisfiability of the ABox
A = {(albania : ¬VulcanMed) ≥ 0.2+ ε}. Then we construct the set of relevant member-
ship degrees which is the set. NΣ = {0,0.2,0.2+ε,0.3,0.4,0.5,0.6,0.7,0.8−ε,0.8,1} and
consequently we initialise a completion-graph to contain the following nodes with the re-
spective node labels (for brevity reasons we do not show all of the nominal nodes; these are
initialised in a similar way):

(1) L(xalb) := {〈¬VulcanMed,0.2+ ε〉,〈{alb,1},1〉}
(2) L(ralb) := {〈{alb,0.8},0.8〉,〈¬{alb,0.8},0.2〉,〈{alb,1},1〉}
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Subsequently, we repeatedly apply the expansion rules of Tables 3 and 4. Then, we
obtain the following steps of rule applications:

(3) Merge(xalb,ralbania) {o,n}1 : (1),(2)

(4a) L(xalb) := L(xalb)∪{〈¬{gre,1},1−n+ ε〉,

v: (3)
〈¬{alb,0.8},1−n+ ε〉,
〈¬{mont,0.7},1−n+ ε〉,
〈¬{cro,0.6},1−n+ ε〉}

(4b) L(xalb) := L(xalb)∪{〈VulcanMed,n〉}

Similar disjunction as above (steps 4a and 4b) will be performed for every n ∈ NΣ . Conse-
quently, at some point we will chose the value n = 0.8 and both alternatives will lead to a
clash. At step (4b) node L(xalb) would contain a clash due to the pairs {〈¬VulcanMed,0.2+
ε〉,〈VulcanMed,0.8〉} ⊆ L(xalb), while at step (4a) L(xalb) also contains a clash due to the
pairs {〈¬{alb,0.8},1 − n + ε〉,〈{alb,0.8),0.8〉} ⊆ L(xalb) since n = 0.8 ⇒ 1 − n + ε =
0.2+ ε > 0.2, consequently 1−n+0.8 > 1. a

6 Extending Reasoning to fKD-SROIQ

In this section we extend the tableaux reasoning algorithm we presented in the previous
sections further, providing reasoning support for fKD-SROIQ knowledge bases. SROIQ
is a very expressive DL [31] forming the logical underpinnings of the relatively new W3C
standard OWL 2 DL [38]. In the following we first recapitulate the syntax and semantics of
fKD-SROIQ [7] and then present our reasoning approach.

Consider again an alphabet of distinct concept names (C), role names (R) together with
the universal role U [31],6 and individuals (I). As with fKD-SHOIQ, fKD-SROIQ-roles
are defined (inductively) by the syntax S → RN | R−, where RN ∈ R and R− represents the
inverse of R. Let A ∈ C, R ∈ R, o ∈ I, and p ∈ N; then, fKD-SROIQ-concepts are defined
inductively as follows:

C,D −→ ⊥ | > | A |CtD |CuD | ¬C | ∀R.C | ∃R.C |≥ pR.C |≤ pR.C | {o} | ∃R.Self

As can be noted, fKD-SROIQ-concepts are defined similarly as fKD-SHOIQ-concepts
with the additional concept constructor ∃R.Self. Moreover, note again that in concepts of the
form ≥ pR.C, ≤ pR.C, and ∃R.Self, R needs to be simple. In the case of fKD-SROIQ the
definition of simple roles is more involved and is given below.

Let R1, . . . ,Rn,S with n ≥ 1 be fKD-SROIQ-roles. A role hierarchy Rh is a set of
complex role inclusion axioms (cRIAs) of the form R1 . . .Rn v S. Intuitively, such axioms
state that the composition of roles R1, . . . ,Rn imply the role S. We often use the notation
w v R, where w is a finite string of roles not including U . For R,S 6= U fKD-SROIQ-
roles, Ra is a set of role properties of one of the following forms: Trans(R), Ref(R), Irr(R),
Sym(R), ASym(R), and Dis(R,S). Intuitively, these axioms state that R is transitive, reflexive,
irreflexive, symmetric, antisymmetric, and disjoint from S, respectively. Next, we define the
notion of simple roles in fKD-SROIQ.

Definition 7 ([31]) Given a role hierarchy Rh and a set of role properties Ra the set of
simple roles is inductively defined as follows:

6 Intuitively, the universal role is a role that connects all objects of ∆I with each other.



22 G. Stoilos and G. Stamou

– A role name R in Rh or Ra is simple if it does not occur on the right hand side of a cRIA
in Rh.

– A role R− is simple if R is simple, and
– If R occurs on the right-hand aide of a cRIA in Rh, then R is simple if, for each

w v R ∈Rh, w = S and S is simple.

Apart from undecidability stemming from the use of non-simple roles in concepts of the
form ≥ pR.C, ≤ pR.C, and ∃R.Self, cRIAs impose new (un)decidability issues. To ensure
decidability the role hierarchy needs to be regular [31] in the sense defined below.

Definition 8 ([31]) A strict partial order ≺ over a set V is an irreflexive and transitive rela-
tion on V . A strict partial order ≺ over the set of fKD-SROIQ roles R∪{R− | R ∈ R} is
called regular if S ≺ R ⇐⇒ S− ≺ R.

Let ≺ be a regular order over fKD-SROIQ-roles. A cRIA w v R is ≺-regular if R ∈ R,
and

1. w = RR, or
2. w = R−, or
3. w = S1 . . .Sn and Si ≺ R for all 1 ≤ i ≤ n, or
4. w = RS1 . . .Sn and Si ≺ R for all 1 ≤ i ≤ n, or
5. w = S1 . . .SnR and Si ≺ R for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is called regular if there exists a regular order ≺ such that each
cRIA in Rh is ≺-regular. ♦

Given the above, an fKD-SROIQ RBox consists of a pair 〈Rh,Ra〉, where Rh is a
regular role hierarchy and Ra is a finite set of role properties such that the roles that appear
in axioms of the form Irr(R), ASym(R), and Dis(R,S) are simple.

An fKD-SROIQ TBox is defined exactly as in fKD-SHOIQ. An fKD-SROIQ ABox
is a set of fuzzy assertions and (in)equality axioms (like in fKD-SHOIQ), as well as fuzzy
assertions of the form ((a,b) :¬R)≥ n called simple role negations [31]. Note, however, that
the latter are simply syntactic sugar of fKD-SHOIQ assertions of the form ((a,b) : R) ≤
1−n which, for the purposes of reasoning, can then be normalised as shown in Section 3.1.
In addition, in all concepts of the form ∃R.Self, ≥ pR.C, and ≤ pR.C that appear in either T
or A, R is a simple role.

Let I = (∆I , ·I) be a fuzzy interpretation as defined in Section 3. The semantics of
fKD-SROIQ-concepts are given by the equations depicted in Table 2 together with the
equation for concept ∃R.Self depicted in the upper part of Table 6. Since fKD-SROIQ
TBoxes and ABoxes are exactly as in fKD-SHOIQ the definition of models is exactly the
same. However, a fuzzy interpretation I satisfies an fKD-SROIQ RBox if I satisfies each
axiom in Rh and each axiom in Ra as shown in the lower part of Table 6. More precisely, I
satisfies an axiom of the left column of the lower part of Table 6 if the condition in the right
column holds, where R,Ri,S ∈ R for 1 ≤ i ≤ m and a,b ∈ ∆I ; satisfaction of axioms of the
form Trans(R) are as described for fKD-SHOIQ in Section 3.1.

As we can see cRIAs are interpreted as the sup-t composition of fuzzy relations, which
due to its associativity property [33] can be applied to any number of relations. Moreover,
from the properties of the sup-t composition [33] and the semantics of inverse roles it holds
that if I satisfies R1 . . .Rn v S, then it also satisfies Inv(Rn) . . . Inv(R1)v Inv(S).

Next, we show that similarly to crisp SROIQ [31], several role properties can be en-
coded with the aid of cRIAs or by using the new special concept constructor ∃R.Self.
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Table 6: Semantics of Additional constructors and role axioms of fKD-SROIQ

Concept Semantics
∃R.Self (∃R.Self)I(a) = RI(a,a)

Role Axiom Semantics
Ref(R) RI(a,a) = 1

Irr(R) RI(a,a) = 0

Sym(R) RI(a,b) = RI(b,a)

ASym(R) min(RI(a,b),RI(b,a)) = 0

Dis(R,S) min(RI(a,b),SI(a,b)) = 0

R1 . . .Rm v S [RI
1 ◦t . . .◦t RI

m ](a,b)≤ SI(a,b)

Proposition 1 (Reduction of Role Properties) Without loss of generality we can assume
that fKD-SROIQ RBoxes do not contain role properties of the form Irr(R), Ref(R), Sym(R),
or Trans(R).

Proof For the case of role properties of the form Sym(R) it has been shown already that any
fuzzy interpretation I satisfies Sym(R) iff it satisfies both R− v R and R v R− [47]. Now let
I be a fuzzy interpretation. Then,

– If I satisfies Trans(R), then for all a,b∈∆I ,RI(a,c)≥ supb∈∆I{t(RI(a,b),RI(b,c))}.
Clearly, this consists of a sup-t composition of the role R with itself, hence I satisfies
Trans(R) iff it satisfies [RI ◦t RI ](a,b)v RI(a,b) and, clearly, we can replace Trans(R)
with the role inclusion axiom RR v R.

– If I satisfies Ref(R), then for all a ∈ ∆I ,RI(a,a) = 1. Let a be an arbitrary object of
∆I . Subsequently, we have the following equivalences: RI(a,a) = 1 ⇔ RI(a,a)≥ 1 ⇔
(∃R.Self)I(a) ≥ >I(a). Since a is arbitrary, the last inequality holds for all objects in
∆I . Hence, we can abstract from interpretations and replace Ref(R) with >v ∃R.Self.

– If I satisfies Irr(R), then for all a ∈ ∆I .RI(a,a) = 0. Similarly, for some a ∈ ∆I

we have the following: RI(a,a) = 0 ⇔ RI(a,a) ≤ 0 ⇔ c((∃R.Self)I)(a) ≥ c(0) ⇔
(¬∃R.Self)I(a) ≥ 1 ⇔ (¬∃R.Self)I(a) ≥ >I(a). Thus, we can replace Irr(R) with
>v ¬∃R.Self. ut

Finally, as shown in [31], for the purposes of deciding satisfiability in SROIQ the uni-
versal role U can be simulated by a pseudo-universal role U ′. More precisely, given an
fKD-SROIQ KB Σ we can replace all occurrences of U in Σ with U ′, then add the role
properties {Trans(U ′),Sym(U ′),Ref(U ′)} to Ra and, finally, add a role inclusion axiom of
the form R vU ′ to Rh for each R that occurs in Σ .

6.1 Reasoning in fKD-SROIQ

A major issue in providing reasoning support for SROIQ is the management of complex
role inclusion axioms. More precisely, if we have the assertion a : ∀R.C ∈ A together with
cRIAs of the form w v R, i.e., that have R in the right-hand side, then the algorithm must
ensure that C is properly ‘propagated’ along paths of roles that possibly appear in the ABox
and which imply the existence of role R. For example, from the assertions a : ∀R.C,(a,b) :
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R1,(b,c) : R2, and axioms R1R2 v S,S v R one should infer c : C, i.e., propagate C along
the path (a,b) : R1,(b,c) : R2. This is because, for any interpretation I satisfying the above
axioms we must have 〈aI ,cI〉 ∈ SI and 〈aI ,cI〉 ∈ RI ; hence, since aI ∈ (∀R.C)I we must
have cI ∈CI . In the presence of many cRIAs it could be quite complicated to keep track of
which concept needs to be propagated along which path. To provide with a systematic way to
encode all possible paths that can imply the existence of a role, the use of non-deterministic
finite automata has been proposed in the literature [18,32]. Intuitively, an automaton BR
for a role R memorises the paths that are implied by the axioms in Rh and have R in the
righ-hand side.

Example 5 Consider the following role hierarchy:

Rh = {R1R2 v R,R v S,SS v S}

According to the automata construction method presented in [32], the automaton BR for R
w.r.t. Rh would consist of the following transitions:

δR = {iR →R1 s1, s1 →R2 fR, iR →R fR}

where iR,s1, fR are the states of BR, iR is its initial state, and fR is its final state. Intuitively,
the first two states are due to axiom R1R2 v R and encode the fact that from the initial state
of BR one can go to its final by a path of the form (a,b) : R1,(b,c) : R2.

Finally, the automaton BS for S w.r.t. Rh would consist of the following transitions:

δS = {iS →R fS, iS →S fS, fS → iS, iS → iR, fR → fS}∪δR

where iS is its initial and fS its final states. Again, the first transition is due to axiom R v S.
Moreover, due to this axiom BS also encodes the fact that we can go from iS to fS ‘through’
the automaton BR; hence, BS includes δR and empty transitions iS → iR and fR → fS. Finally,
note that in BS we can also go from fS to iS using an empty transition (iS → fS). This is due
to the axiom SS v S (recall that this means that S is transitive). a

For the details of the automata construction technique we refer the reader to [32] and
don’t repeat the construction here. Instead we show the next proposition (see appendix for
proof) which is an extension of Proposition 9 from [32] and states that indeed BS constructed
exactly as in [32] captures all implications between paths of roles that imply S.

Proposition 2 Let Rh be a regular role hierarchy, let BS be the automaton constructed for a
role S w.r.t. Rh according to the method in [32], and let L(BS) denote the language accepted
by BS. Then, I is a model of Rh if and only if for each role S occuring in Rh, each word
w ∈ L(BS) and each wI(a,b)≥ n we have SI(a,b)≥ n.

Given that BS correctly captures the semantic restrictions imposed by cRIAs, one can
subsequently use BS to provide reasoning support for such role axioms. There are two alter-
native ways to accomplish this. Horrocks and Sattler [32] proposed a direct tableaux-based
method which incorporates the automata within the tableaux calculus. During tableaux ex-
pansion the algorithm ‘reads’ the current state and transitions of an automaton and matches
it with role assertions in the completion-graph. If certain conditions are met then the automa-
ton changes state and is propagated to subsequent nodes of the completion-graph. Finally, if
a final state is reached then a concept C is added to the respective node of the completion-
graph, hence simulating the propagation of C. For example, if for an individual a we have
a : ∀S.C the algorithm first associates the pair 〈BS,C〉 with individual a and sets BS to its
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initial state. Then, if (a,b) : R1 and there exists a transition iS →R1 s1 ∈ BS (i.e., from the
initial state of BS with symbol R1 go to state s1) the algorithm associates to b the pair 〈BS,C〉
but with BS set to state s1. If 〈BS,C〉 is associated with an individual c and BS is in its final
state, then c : C is asserted. Such an approach has been implemented in the DL reasoner
FaCT++.

Alternatively, it has been shown in [18] that the propagation of 〈BS,C〉 and the change
of states can also be simulated by proper (TBox) axioms. In that way the initial knowledge
base can be transformed into an equisatisfiable one where Rh = /0. We call fKD-SHOIQ+

knowledge base an fKD-SROIQ knowledge base with an empty role hierarchy.

Definition 9 Let Σ = 〈T ,〈Rh,Ra〉,A〉 be an fKD-SROIQ knowledge base. Then, τ(Σ) is
the fKD-SHOIQ+ knowledge base 〈T ′,〈 /0,Ra〉,A′〉, where T ′ and A′ are constructed as
follows: For each occurrence of a concept ∀S.C ∈ Σ such that BS is non-empty associate a
unique index j for this occurrence, replace ∀S.C with the fresh concept i j

S, where iS is the
initial state of BS and do the following:

– For each transition s1 →R s2 ∈ BS, T ′ contains the axiom s j
1 v ∀R.s j

2, where s j
1,s

j
2 are

(fresh) concept names.
– For each (empty) transition s1 → s2 ∈ BS, T ′ contains the axiom s j

1 v s j
2, where s j

1,s
j
2

are (fresh) concept names.
– For each final state fS of BS, T ′ contains the axiom f j

S vC.

♦

Intuitively, if during reasoning an individual a is such that a : ∀S.C, then the algorithm
would mark a with a concept that denotes the initial state of BS. Then, axioms of the form
s j

1 v ∀R.s j
2 play the role of state propagation along paths of individuals starting from a. If

an individual c is marked with a final state of BS, then a : C would also be asserted by the
reasoning algorithm. Such an approach has been implemented in the DL reasoner HermiT
and despite the increase of TBox axioms due to the translation, experimental evaluation has
shown that this approach also performs well in practice [22].

Due to Proposition 2 there is strong evidence that either of the previous approaches can
be used to provide reasoning support for fKD-SROIQ. In the current paper we choose to
follow the latter approach and show that the translation given in Definition 9 indeed produces
an equisatisfiable fKD-SHOIQ+ knowledge base. Hence, to provide reasoning support for
fKD-SROIQ one can simply devise an algorithm for fKD-SHOIQ+. However, this can be
done easily by minor extensions of the already presented fKD-SHOIQ algorithm.

Before presenting the algorithm we show that τ(Σ) is equisatisfiable to Σ . First, how-
ever, we show an auxiliary lemma which extends the results for transitive roles shown in
[50]; see appendix for the proof.

Lemma 5 Let Rh be a role hierarchy, let S be a role in Rh, let BS be the automaton
for S w.r.t. Rh and let w ∈ L(BS), where w = R1 . . .Rm. If I satisfies Rh, then I satisfies
∀S.C v ∀R1.(∀R2.(. . .(∀Rm.C))).

Theorem 1 Let Σ be an fKD-SROIQ KB. Σ is satisfiable if and only if τ(Σ) is satisfiable.

Example 6 Consider the fKD-SROIQ KB Σ = 〈 /0,〈Rh, /0〉,A〉, where is as defined in Ex-
ample 5, while A is as follows:

A = {((a,b) : R1)≥ 0.4,((b,c) : R2)≥ 0.7,((c,d) : S)≥ 0.8,

(a : ∀S.C)≥ 0.7,(d : ¬C)≥ 0.6}
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Σ is unsatisfiable: For any interpretation I that satisfies A we must have RI
1 (a

I ,bI) ≥
0.4,RI

2 (b
I ,cI) ≥ 0.7,SI(cI ,dI) ≥ 0.8,(∀S.C)I(aI) ≥ 0.7, and (¬C)I(dI) ≥ 0.6. From

the latter we also get CI(d)≤ 0.4. Moreover, I must satisfy Rh; hence we have the follow-
ing:

– Due to R1R2 v R we must have RI(aI ,cI)≥ min(RI
1 (a

I ,bI),RI
2 (b

I ,cI))≥ 0.4.
– Due to R v S we must have SI(aI ,cI)≥ RI(aI ,cI)≥ 0.4.
– Due to SS v S we must have SI(aI ,dI)≥ min(SI(aI ,cI),SI(cI ,dI))≥ 0.4.

From the latter we also get 1−SI(aI ,dI))≤ 0.6; hence max(1−SI(aI ,dI),C(dI)≤ 0.6
which leads to a contradiction with (∀S.C)I(aI)≥ 0.7.

Now we show how we can transform the input knowledge base into an equisatisfiable
fKD-SHOIQ KB for which the tableaux algorithm for fKD-SHOIQ can be used to decide
unsatisfiability.

The automaton BS from Example 5 is the automaton for S w.r.t. Rh. Using BS and the
transformation procedure from Definition 9 we first re-rewrite (a : ∀R.C)≥ 0.7 as (a : iS)≥
0.7 and then T is expanded to to contain the following axioms:

iS v iR iR v ∀R1.s1 s1 v ∀R2. fR fR v fS
fS v iS iS v ∀S. fS fS vC

Then, the tableaux algorithm is applied: From (a : iS)≥ 0.7 and axiom iS v iR the algorithm
would infer (a : iR)≥ 0.7. By the latter together with iR v ∀R1.s1 and ((a,b) : R1)≥ 0.4 we
then get (b : s1) ≥ 0.7. By a similar reasoning at some point we will get (c : fR) ≥ 0.7 and
then due to fR v fS also (c : fS) ≥ 0.7. Subsequently, by fS v iS we also get (c : iS) ≥ 0.7,
while by the latter, by the axiom iS v ∀S. fS and by the assertion ((c,d) : S) ≥ 0.8 we get
(d : fS)≥ 0.7 and finally (d : C)≥ 0.7. It can be seen that the latter together with (d : ¬C)≥
0.6 creates a clash. a

Given the above, next, we only present a tableaux algorithm for fKD-SHOIQ+ knowl-
edge bases.

Definition 10 A completion-graph G for an fKD-SHOIQ+ knowledge base Σ is similar to
an fKD-SHOIQ completion-graph but with the following modifications:

G is said to contain a clash if one of the clash conditions of fKD-SHOIQ in Definition
3 are satisfied or if additionally one of the following holds for x,y nodes:

– Dis(R,S) ∈Ra and y is an Rn1 - and Sn2 -neighbour of x.
– ASym(R) ∈Ra, y is an Rn1 -neighbour of x and x an Rn2 -neighbour of y.
– 〈¬U ′,n〉 ∈ L(〈x,y〉), with n < 1 and U ′ the pseudo-universal role.

♦

Definition 11 A tableaux algorithm for fKD-SHOIQ+ initialises a completion-graph G for
an fKD-SHOIQ+ KB in the same way as in fKD-SHOIQ, with the additional step:

4. For each pair of nominal nodes ri,r j in G add 〈U ′,1〉 in L(〈ri,r j〉).

Finally, G is expanded using tableaux rules from Tables 3 and 7. ♦
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Table 7: Tableaux rules for role properties

Rule Description
Self If 〈∃R.Self,n〉 ∈ L(x), x is not blocked and x is not Rn-neighbour with itself

then L(〈x,x〉) := L(〈x,x〉)∪{〈R,n〉}
Ref If Ref(R) ∈Ra, x is not blocked and x is not R1-neighbour with itself

then L(〈x,x〉) := L(〈x,x〉)∪{〈R,1〉}
¬-Self If 〈¬∃R.Self,n〉 ∈ L(x), x is not blocked, and x is not ¬Rn-neighbour with itself

then L(〈x,x〉) := L(〈x,x〉)∪{〈¬R,n〉}

7 Conclusions

Fuzzy Description Logics are well-established extensions of classical Description Logics
for representing fuzzy (vague) knowledge in a formal machine understandable way. They
have already been used in many research applications, like multimedia processing and re-
trieval [17,37,43], semantic portals [26], ontology matching [21], decision making [54] and
negotiation [9].

Several reasoning algorithms for supporting inference services over fuzzy DL knowl-
edge bases have been presented the last decade. Straccia [51] presented a tableaux-based
reasoning algorithm for fKD-ALC, while later Stoilos et al. [50] extended this algorithm for
the fuzzy DLs fKD-SI, fKD-SHIN and then also for fKD-ALCIQ [45]. In a different ap-
proach, Straccia and Bobillo et al. [53,6,11] presented reduction algorithms that translate
fuzzy DLs based on the standard fuzzy operators to classical DLs. The motivation is to use
already implemented and highly optimised classical DL reasoners to support reasoning over
fuzzy DL knowledge bases. However, the translation introduces additional TBox axioms
(usually complex general axioms) and preliminary evaluation has shown that performance
is affected [16]. For fuzzy DLs that use different fuzzy operators than the standard fuzzy
ones, Straccia and Bobillo presented several reasoning algorithms for expressive DLs like
ALCQI [8,10], however, it was later shown that the algorithms are in general incomplete as
the extended languages are undecidable [2,3,13,15]; decidability (and hence completeness)
is ensured only under restrictions on the form of allowed TBoxes [4].

Consequently, direct tableaux-based algorithms for fuzzy DLs under the standard fuzzy
operators are still relevant both from practical as well as from a theoretical point of view.
Such logics provide a direct, effective, and flexible way of representing and handling degrees
of truth while the reasoning procedures can be directly optimised [44]. Although tableaux
algorithms for quite expressive fuzzy DLs have been presented there is still no reasoning al-
gorithm for fKD-SHOIN and fKD-SROIQ. In the current paper we attempt to fill this gap
by studying and presenting a tableaux reasoning algorithm for these logics. First, we studied
reasoning over nominals (O). We provided the proper extensions of the {o}- and NN-rules
[30] and proposed a new rule, namely {o}2. To the best of our knowledge a correct algorithm
for handling nominals in fuzzy DLs has not been presented before. This algorithm can sup-
port reasoning over fuzzy ontologies expressed under the fuzzy OWL language fKD-OWL
[49]. Subsequently, we extended the algorithm of fKD-SHOIQ in order to provide reason-
ing support for fuzzy nominals. Fuzzy nominals have been proposed in [5] as a fuzzification
of the nominal constructor, however, no direct tableaux algorithm was provided.

Finally, we extended the fKD-SHOIQ algorithm even further in order to support rea-
soning in the fuzzy DL fKD-SROIQ. To achieve this firstly, we show how complex role
inclusion axioms can be handled in such DLs using automata [32] and additional TBox ax-
ioms [18]. More precisely, on the one hand, we prove an extension of a central proposition
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in [32] which dictates that the automata constructed using the same techniques as in [32]
provide a correct characterisation of the semantics of cRIAs also in fKD-SROIQ. On the
other hand, we present a full translation of cRIAs into TBox axioms following the ideas
in [18] for grammar logics, and we prove that this yields an equisatisfiable fKD-SHOIQ+

knowledge, i.e., an fKD-SROIQ KB with an empty role hierarchy. Hence, then we only
give a tableaux algorithm for fKD-SHOIQ+ which extends the one for fKD-SHOIQ to
handle the universal role and the additional role properties of fKD-SROIQ.

As far as future directions are concerned we believe that the most important issue re-
lated to reasoning with fuzzy DLs is to implement and optimise such algorithms as well as
evaluate them over well-known real-world ontologies.

A Omitted Proofs

Lemma 1 An fKD-SHOIQ knowledge base Σ is satisfiable iff there exists a fuzzy tableau T for Σ .

Proof The proof is similar to the one for fKD-SHIN [50], with the addition of nominals, qualified number
restrictions and GCIs. Thus, in the following we only illustrate the different cases.

For the ‘if’ direction, let T = (S,L,E ,V) be a fuzzy tableau for Σ ; then, we can construct a model
I = (∆ , ·I) of Σ in a similar way as in [50] by setting ∆I = S, aI = V(a), for each a ∈ IΣ , >I(s) =L(s,>)
and ⊥I(s) = L(s,⊥) for all s ∈ S, while for concepts and roles we have the following:

BI(s) = L(s,B), for all s ∈ S and B ∈ C∪{{o} | o ∈ IΣ}

RI(s, t) =

 R+
E (s, t) if Trans(R)

max
P v* R,P 6=R

(E(R,〈s, t〉),PI(s, t)) otherwise

where RE (s, t) = E(R,〈s, t〉), for all 〈s, t〉 ∈ S×S, and R+
E represents its sup-min transitive closure of RE [33].

As with fKD-SHIN [50], Properties 1 and 2 ensure the correct interpretations of the top and bottom
concepts, Properties 9 and 10 the correct interpretation of inverse roles and role hierarchies, respectively,
Property 16 (due to the results in [48,35]) that I is a model of the TBox, while Properties 17 and 18 that I is a
model of A. Additionally to fKD-SHIN [50], Property 14 ensures that nominals are interpreted as singleton
sets, Property 15 that the membership degree of elements in nominals is in accordance to their semantics,
and Property 19 that nominals corresponding to ABox individuals are also interpreted correctly. Then, by
induction on the structure of concepts we can show that for all s ∈ S, L(s,C) ≥ n implies CI(s) ≥ n—
similarly for L(s,C) > n. We only show the case of nominals and qualified cardinality restrictions, which
have not been presented before [50]:

– If L(s,{o})≥ n, then by Property 15 and construction of I, {o}I(s) = L(s,{o})≥ 1.
– If L(s,≥ pR.C)≥ n then by Property 11 and definition of RT , there are p elements ti, s.t. E(R,〈s, ti〉)≥ n,

and L(ti,C), 1 ≤ i ≤ p. By construction, RI(s, ti)≥ n and by induction hypothesis CI(ti)≥ n, thus

n ≤ sup
ti∈∆I

{. . . ,
p

min
i=1

{min(RI(s, ti),C(ti))}, . . .}= (≥ pR.C)I(s).

– If L(s,≤ pR.C)≥ n, then by Property 12 ]RT (s,>,1−n,C)≤ p, i.e. there are at most p elements ti such
that, E(R,〈s, ti〉) > 1−n, and L(ti,C) > 1−n 1 ≤ i ≤ p. Nevertheless, we need to show that this is the
case also in I, i.e. that for the set RI(s,>,1− n,C) = {x ∈ ∆I | RI(s,x) > 1− n and CI(x) > 1− n}
it holds ]RI(s,>,1− n,C) ≤ p. Assume otherwise, i.e. that there is tp+1 different from all other ti and
such that RI(s, tp+1) > 1− n and CI(tp+1) > 1− n. By construction, and since R must be a simple
role, then RI(s, tp+1) = E(R,〈s, tp+1〉) > 1− n. Consequently, in order to have ]RT (s,>,1− n,C) ≤ p
it must be the case that L(tp+1,C)≤ 1−n. But then by Property 13, L(tp+1,¬C)≥ n must hold and by
induction hypothesis (¬C)I(tp+1)≥ n, i.e. CI(tp+1)≤ 1−n, which contradicts the original assumption
that CI(tp+1)> 1−n.

For the converse, let I = (∆I , ·I) be a (witnessed) model for Σ ; then, a fuzzy tableau T = (S,L,E ,V)
for Σ can be defined by setting S = ∆I , E(R,〈s, t〉) = RI(s, t), L(s,C) =CI(s) and V(a) = aI . It is easy to
show that all properties in Definition 2 are satisfied as a direct consequence of the semantics of fKD-SHOIQ-
concepts and since I is a witnessed model of Σ . ut
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Lemma 2 Let Σ be an fKD-SHOIQ knowledge base. Then,

1. Termination: when started for Σ the tableaux algorithm terminates.

2. Correctness: Σ has a fuzzy tableau if and only if the tableaux algorithm for fKD-SHOIQ can be applied
to Σ such that it yields a complete and clash-free completion-graph.

Proof The termination of the algorithm (claim 1) is a consequence of the same properties that ensure termi-
nation in the case of the crisp SHOIQ language [30]. In brief we have the following observations:

– All rules apart from the shrinking rules7 strictly extend the completion-graph by adding new nodes and
edges or extending their labels while neither remove nodes, edges or pairs from them.

– New nodes are added only by the generating rules8 and each of these rule is applied at most once for
a given concept in the label of a given node x. Even if a shrinking rule is applied, and merges an R-
neighbour y of x into another node z, then L(y) is added into L(z), z ‘inherits’ all the inequalities from
y, and either z is an R-neighbour of x (if x is a nominal node or y a successor of x) or x is removed from
the graph by an application of Prune(x) (if x is a blockable node and x is a successor of y).

– Since nodes are labelled with nonempty subsets of cl(Σ) and edges with subsets of RΣ , obviously there
is a finite number of possible labellings for a pair of nodes and an edge, while also the membership
degrees that appear in nodes is also finite as in the case of fKD-SI. More precisely, for a pair of nodes
and an edge there are at most 28mlk possible labellings, where k = |RΣ |, m = |cl(Σ)| and l = |NA|. Since
a path on which nodes are blocked cannot become longer, paths are of length at most 28mlk .

– As it is shown in [30] for SHOIQ, the number of nominal nodes is bounded. This is a consequence
of the following facts. The NN can only be applied after a nominal has been added to the label of a
blockable node x in a branch of one of the blockable trees rooted in a root node. Otherwise it is not
possible that a blockable node has a nominal node as a successor which is required by the first condition
of the rule. Now since x contains one of the initial nominals that exist in T or A, and the {o}1-rule
is applied with highest priority, x is merged with an existing nominal node which contains some of the
initials nominals. As a consequence of this merging, it is possible that the predecessor of x is merged into
a nominal node n1 (created by an application of the NN to x) by the shrinking rules (due to the pruning,
this cannot happen to a successor of x). The merge of the predecessor of x occurs because the NN-rule
adds ≤ mR to x together with m already conjugated successors. Hence, x has m+1 successors (m created
from the rule and one predecessor) and the ≤-rule will be executed. Now n1 either contains one nominal
from the initial ones or only nominals created by the NN. Repeating this argument, it is possible that
all ancestors of x are merged into nominal nodes. But, since the length of a path of blockable nodes is
bounded this repeated merging is bounded. Finally, when the NN has been applied to a concept (≤ pR),
it can never be applied to (≤ pR) again.

The proof of the second claim extends the proof of fKD-SHIN [50], by using the techniques of
SHOIQ [30].

For the ‘if’ direction we construct a fuzzy tableau T = (S,L,E ,V) from a complete and clash free
completion-graph G by unravelling blockable ‘tree’ parts of the graph due to the lack the finite model prop-
erty. Formally, the construction is the following.

An individual in S corresponds to a path in G. Moving down to blocked nodes and up to blocking ones
we can define infinite such paths. More precisely, a path is a sequence of pairs of nodes of G of the form
p = [

xa0
x′a0

, . . . ,
xan
x′an

]. For such a path we define Tail(p) := xan and Tail′(p) := x′an . With [p | xan+1
x′an+1

], we denote

the path [
xa0
x′a0

, . . . ,
xan
x′an

,
xan+1
x′an+1

]. The set Paths(G) is defined inductively as follows:

– For each blockable node x of G that is a successor of a nominal node or a root node, [ x
x ] ∈ Paths(G),

and

– For a path p ∈ Paths(G) and a node z in G:
– if z is a successor of Tail(p) and z is not blocked, then [p | z

z ] ∈ Paths(G), or

– if y is a successor of Tail(p) and z blocks y, then [p | z
y ] ∈ Paths(G)

By construction, it follows that all nodes occurring in a path are blockable nodes. Moreover, if p ∈
Paths(G), then Tail(p) is not blocked; Tail(p) =Tail′(p) iff Tail′(p) is not blocked and at last L(Tail(p)) =
L(Tail′(p)).

7 these are the rules ≤, {o}1 and ≤{o}.
8 these are the rules ∃, ≥ and NN.
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Table 8: Fuzzy tableaux construction from complete and clash-free completion-graph
S = Nom(G)∪Paths(G),

L(p,C) =

{
glb{n | 〈C,n〉 ∈ L(Tail(p))}, if p ∈ Paths(G)

glb{n | 〈C,n〉 ∈ L(p)}, if p ∈Nom(G)

L(p,¬A) = 1−L(p,A), 〈¬A,n〉 ∈ L(Tail(p)),

L(p,⊥) = 0, for all p ∈ S,

L(p,>) = 1, for all p ∈ S,

E(R,〈p, [p | x
x′ ]〉) = glb{n | 〈R,n〉 ∈ L(〈Tail(p),x′〉)}

E(R,〈[q | x
x′ ],q〉) = glb{n | 〈Inv(R),n〉 ∈ L(〈Tail(q),x′〉)}

E(R,〈p,x〉) = glb{n | x ∈Nom(G) is an Rn-neighbour of Tail(p)}
E(R,〈x, p〉) = glb{n | Tail(p) is an Rn-neighbour of x ∈Nom(G)}

E(R,〈[ x
x ], [

y
y ]〉) = glb{n | x,y are root or nominal nodes and y an Rn-neighbour of x},

E(¬R,〈p,q〉) = 1−E(R,〈p,q〉) for all 〈p,q〉 ∈ S×S,

V(ai) =

 [
xai
xai

] if xai is a root node in G with L(xai ) 6= /0

[
xa j
xa j

] if L(xai ) = /0,xa j a root node, with L(xa j ) 6= /0 and xai
.
= xa j

Secondly, we make use of the technique introduced in [51] in order to compute the degree that (pairs
of) elements of the fuzzy tableau will belong to a concept (role). The function that calculates this degree
is called glb. Roughly speaking for a specific path p this function is defined as the maximum of the set
{n | 〈A,n〉 ∈L(x)}∪{0}. Due to normalization there may exist values of the form n+ε . It is important to note
that an adequately small and carefully selected value ε must be chosen. For example, if 〈¬A,0.19+ε〉 ∈L(x)
and 〈A,0.8+ ε〉 ∈ L(x), then it should hold that ε ≤ 1− (0.8+ 0.19) = 0.01. A similarly important case is
if 〈∀R.C,0.8〉 ∈ L(x) and 〈R,0.19+ ε〉 ∈ L(〈x,y〉). The existence of such a value is ensured by the clash-
freeness of G.

Next we use Nom(G) for the set of nominal and root nodes in G, and define a tableau T as in Table 8.
It can be shown that T is a fuzzy tableau for Σ :

– Properties 1–3 of Definition 2 are satisfied because G is clash-free and due to the construction of T . Let
L(p,¬A) = n1 ≥ n and L(p,A) = n2. The definition of T and since we only consider non-zero assertions
this implies that {〈¬A,n1〉,〈A,n2〉} ⊆ L(Tail(p)). Since G is clash-free n1 + n2 ≤ 1 ⇒ n2 ≤ 1− n1.
Consequently, L(p,A)≤ 1−n1 ≤ 1−n

– Properties 4 and 5 of Definition 2 are satisfied because none of the t, u rules apply to any node in
G, and Tail(p) is not blocked. For example, let L(p,C u D) = n1 ≥ n. The definition of T implies
that, either 〈C uD,n1〉 ∈ L(Tail(p)) or 〈C uD,n′ + ε〉 ∈ L(Tail(p)), with n1 = n′ + ε . Completeness
of G implies that either 〈C,n1〉 ∈ L(Tail(p)) and 〈D,n1〉 ∈ L(Tail(p)) or 〈C,n′+ ε〉 ∈ L(Tail(p)) and
〈D,n′+ε〉 ∈L(Tail(p)). Hence, L(s,C)≥L(s,CuD)≥ n, L(s,D)≥L(s,CuD)≥ n Property 5 follows
for similar reasons.

– For Property 6, let p,q ∈ S with L(p,∀R.C) = n1 ≥ n and E(¬R,〈p,q〉) � n. The definition of T im-
plies that either 〈∀R.C,n1〉 ∈ L(zp) or 〈∀R.C,n′ + ε〉 ∈ L(zp) with n1 = n′ + ε and zp = Tail(p) if
p ∈ Paths(G), or zp = z if z ∈Nom(G). Now we have the following cases,

– If p ∈ Paths(G), then zp = Tail(p) and
• If q = [p | x

x′ ], then x′ is an Rr-successor of Tail(p) and, since glb does not create unnecessary
conjugations we have that 〈R,r〉 ∈ L(〈Tail(p),x′〉) is such that it conjugates with 〈¬R,n〉.
Hence, due to completeness of G we have either 〈C,n1〉 ∈ L(x′) or 〈C,n′ + ε〉 ∈ L(x′), and
either x′ = x or the blocking condition implies L(x′) = L(x) = L(q).

• If p= [q | x
x′ ], then x′ is an Inv(R)r-successor of Tail(q) and again, the definition of glb implies

that 〈Inv(R),r〉 ∈L(〈Tail(q),x′〉) conjugates with 〈¬ Inv(R),n〉. Thus, due to completeness of
G, either 〈C,n1〉 ∈ L(Tail(q)) = L(q) or 〈C,n′+ ε〉 ∈ L(Tail(q)) = L(q).

• If p = [ x
x ] and p = [ y

y ] for two root nodes x,y then y is an Rr-neighbour of x, and since the
∀-rule does not apply we have that either 〈C,n1〉 ∈L(y) =L(q) or 〈C,n′+ε〉 ∈L(y) =L(q).
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• If q = x ∈Nom(G), then x is an Rn-neighbour of Tail(p) and completeness implies that either
〈C,n〉 ∈ L(x) or 〈C,n′+ ε〉 ∈ L(x).

– If zp = z ∈Nom(G), then either
• q ∈ Paths(G), then Tail(q) is an Rr-neighbour of z and completeness implies that either

〈C,n〉 ∈ L(q), or 〈C,n′+ ε〉 ∈ L(x) or

• q = x ∈Nom(G), then x is an Rr-neighbour of z and completeness implies that either 〈C,n〉 ∈
L(q) or 〈C,n′+ ε〉 ∈ L(x).

The same proof applies for Property 6 with L(p,∀R.C)> n and for Property 8.

– For Property 7 consider some p ∈ S with L(p,∃R.C)≥ n.
– If p ∈ Paths(G), then either 〈∀R.C,n1〉 ∈ L(p) or 〈∀R.C,n′ + ε〉 ∈ L(p) with n1 = n′ + ε . Since

Tail(p) is not blocked, completeness of G implies the existence of an R-neighbour y of Tail(p) with
either 〈C,n1〉 ∈ L(y) or 〈C,n′+ ε〉 ∈ L(y).

• If y is a nominal node, then y ∈ S, L(y,C)≥ n and E(R,〈p,y〉)≥ n.

• If y is a blockable node and a successor of Tail(p), then 〈p, [p | y′
y ]〉 ∈ S, and either y′ = y, or

y′ blocks y. In both cases either 〈C,n1〉 or 〈C,n′+ ε〉 are in L(y′).

• If y is a blockable node and a predecessor of Tail(p), then either p = [r | y
y | Tail(p)

Tail′(p) ], or

p = [r | z
y | Tail(p)

Tail′(p) ] and Tail(p) blocks Tail′(p), hence Tail′(p) is an R-successor of z. In the

first case either 〈C,n1〉 ∈L(y) or 〈C,n′+ε〉 ∈L(y), while in the second case due to pair-wise
blocking L(y) = L(z).

– If p ∈ Nom(G), then completeness implies the existence of some R-successor x of p with either
〈C,n1〉 ∈ L(x) or 〈C,n′+ ε〉 ∈ L(x)

• If x is a nominal node, then E(R,〈p,x〉)≥ n and L(x,C)≥ n.

• If x is a blockable node, then x is a safe R-neighbour of p and thus not blocked. Hence, there
is a path q ∈ Paths(G) with Tail(q) = x, E(R,〈p,q〉)≥ n and L(q,C)≥ n.

In any of these cases, E(R,〈p,q〉)≥ n1 ≥ n, L(q,C)≥ n1 ≥ n. Similarly for L(p,∃R.C)> n.

– Property 9 in Definition 2 is satisfied due to the symmetric definition of E .

– Property 10 in Definition 2 is satisfied due to the definition of the R-successor that takes into account the
role hierarchy v* .

– Properties 11–13 in Definition 2 are satisfied due to the construction of T as in the classical case [30].

– Properties 14 and 15 are due to completeness of G, the fact that nominal nodes are not ‘unravelled’,
while Property 19 due to initialisation of G.

– Property 16 is due to completeness of G.

– Properties 17–18 are satisfied cause of the initialisation of the completion-graph and the fact that the algo-
rithm never blocks root nodes. Furthermore, for each root node xai whose label and edges are removed by
the Merge method, there is another root node x j

0 with xai = xa j and {〈C,n〉 | (ai : C)≥ n ∈A} ⊆L(xa j ).

For the ‘only-if’ direction, if T = (S,L,E ,V) is a fuzzy tableau for Σ we can use T , to guide the application
of the expansion rules such that they yield a completion-graph G that is both complete and clash-free. More
precisely, we can define a mapping π from nodes in the completion-graph to individuals in S of the tableau
and use this π to modify the non-deterministic rules in such a way that we always choose the ‘correct’ fuzzy
pair to be added in the label of some node [50]. This, together with the termination property ensure that at
some point blocking will occur and the resulting completion-graph would also be clash-free. ut

Proposition 2 Let Rh be a regular role hierarchy, let BS be the automaton constructed for a role S w.r.t.
Rh according to the method in [32], and let L(BS) denote the language accepted by BS. Then, I is a model
of Rh if and only if for each role S occuring in Rh, each word w ∈ L(BS) and each wI(a,b) ≥ n we have
SI(a,b)≥ n.

Proof The ‘if’ direction is similar to the one in [32] (i.e., by showing the contrapositive). More precisely,
assume that I is not a model of Rh. Then, there exists a cRIA w v S ∈Rh not satisfied by I. Hence, there
are 〈x,y〉 and n ∈ (0,1] such that wI(x,y) = n and SI(x,y) < n. But, since BS is constructed by the method
in [32] then it satisfies Lemma 12.1 in [32], i.e., w ∈ L(BS).

The ‘only-if’ direction is again proved by similar techniques as in [32] but considering that the semantics
of cRIAs are given by sup-t composition. More precisely, let I be a model of Rh, let S be a role, let w∈ L(BS)
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and let wI(a,b) = n. We need to show that SI(a,b)≥ n. Since Rh is regular there exists a strict partial order
≺ such that each cRIA in Rh is ≺-regular. Hence, we can use well-founded induction over ≺.

First, note that w ∈ L(BS) induces a decomposition w = w1 . . .wk and word ŵ = S1 . . .Sk such that

– Si ≺ S or Si = S for all 1 ≤ i ≤ k
– ŵ ∈ L(ÂS),9 and
– wi ∈ L(BSi )

Moreover, wI(a,b) = n implies that there exist k xi with a = x0, b = xk, wI
i+1(xi,xi+1) = ni+1, and n =

min(n1, . . . ,nk) for 0 ≤ i< k. By induction hypothesis, SIi (xi,xi+1)≥ ni+1 and ŵI(a,b) = n. By case analysis
on the form of axioms in Rh that have S in the right-hand side it can be shown that SI(a,b) ≥ n. We show
one case, as the rest follow similarly (cf. also [32]).

If SS v S 6∈Rh and S− v S 6∈Rh, then, by construction of ÂS, ŵ is of the form

ŵ = u1 . . .umxv1 . . .v` and uiS v S ∈Rh, for each 1 ≤ i ≤ m

x v S ∈Rh or x = S

Sv j v S ∈Rh, for each 1 ≤ j ≤ `

Since I is a model of Rh it satisfies the above axioms and hence it follows that SI(a,b)≥ ŵI(a,b) = n.
ut

Lemma 5 Let Rh be a role hierarchy, let S be a role in Rh, let BS be the automaton for S w.r.t. Rh and let
w ∈ L(BS), where w = R1 . . .Rm. If I satisfies Rh, then I satisfies ∀S.C v ∀R1.(∀R2.(. . .(∀Rm.C))).

Proof Let ai ∈ ∆I for 0 ≤ i ≤ m, where a0 = a be objects in ∆I , and let (∀S.C)I(a) ≥ n. By Proposi-
tion 2 we have that SI(a0,am) ≥ min(RI

1 (a0,a1), . . .RI
m(an−1,an)), hence we also have c(SI(a0,am)) ≤

c(min(RI
1 (a0,a1), . . .RI

m(an−1,an))). Then, we have the following equivalences:

(1) inf
am∈∆I

max(c(SI(a0,am)),CI(am))≥ n ⇒monotonicity

(2) inf
am∈∆I

max(c(
m

min
i=1

RI
i (ai−1,ai)),CI(am))≥ n ⇒De Morgan

(3) inf
am∈∆I

max(
m

max
i=1

c(RI
i (ai−1,ai)),CI(am))≥ n ⇒associativity

(4) inf
am∈∆I

max(
m−1
max
i=1

c(RI
i (ai−1,ai)),max(c(RI

m(am−1,am)),CI(am)))≥ n ⇒Property (�)

(5) max(
m−1
max
i=1

c(RI
i (ai−1,ai)), inf

am∈∆I
max(c(RI

m(am−1,am)),CI(am)))≥ n ⇒

(6) max(
m−1
max
i=1

c(RI
i (ai−1,ai)),(∀Rm.C)I(am−1))≥ n

Now, note that am−1 is an arbitrary object of ∆I and that fuzzy DLs under the standard fuzzy operators satisfy

the witnessed model property; hence, from (6) we have inf
am−1

max(
m−1
max
i=1

c(RI
i (ai−1,ai)),(∀Rm.C)I(am−1)) ≥

n. Working similarly as above we can infer max(
m−2
max
i=1

c(RI
i (ai−1,ai)),(∀Rm−1(∀Rm.C))I(am−2))≥ n. Con-

sequently, after m steps we can infer ∀R1.(∀R2.(. . .(∀Rm.C)))I(a)≥ n. ut

Theorem 1 Let Σ be an fKD-SROIQ KB. Σ is satisfiable if and only if τ(Σ) is satisfiable.

Proof For the ‘only-if’ direction assume that I is a model of Σ but not of τ(Σ). By construction, τ(Σ) is
almost like Σ but with some concepts of the form ∀S.C replaced with fresh concepts of the form iS and some
additional axioms of the form si v ∀Ri.si+1. All axioms of Σ that have not been modified in τ(Σ) are clearly
satisfied by I. Moreover, for those axioms of Σ where ∀S.C has been re-written using iS, since iS is a fresh
concept the model I can be trivially extended to I ′ which satisfies them. More precisely, if (∀S.C)I(a) = n,
then we can set iI

′
S (a) = n. Hence, that I does not satisfy τ(Σ) it must be due to the newly added axioms

si v ∀Ri.si+1. However, again, since each si is a fresh concept, I ′ can be further extended to satisfy these

9 Note that here we refer to notation from [32]: ÂS is the automaton constructed for S w.r.t. Rh by only
considering cRIAs that have S in the right-hand side—that is, if R1R2 v S ∈Rh and R1 also has an automaton,
then ÂS does not include the states of BR1 but only those states that are necessary to capture R1R2 v S.
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axioms. Thus, that I ′ is not a model it must be due to a set of axioms of the form iS v ∀R1.s1, . . . ,sn v
∀Rm. fS, fS vC, i.e., that also involves the axiom with C. These axioms can be unfolded into a single axiom
of the form iS v ∀R1.(∀R2.(. . .(∀Rm.C))), and finally to ∀S.C v ∀R1.(∀R2.(. . .(∀Rm.C))). By construction
of τ(Σ) it follows that R1 . . .Rm ∈ L(BS), hence, by Lemma 5 I must satisfy the axiom which leads to a
contradiction.

For the ‘if’ direction, assume that I is a model of τ(Σ). A model I ′ for Σ can be constructed as follows:

– ∆I′
= ∆I

– For each individual a, aI
′
= aI

– For each atomic concept A ∈ cl(Σ),AI′
(a) = AI(a)

– If R is minimal w.r.t. ≺, then RI′
(a,b) = RI(a,b)

– If R is not minimal w.r.t. ≺, then

RI′
(a,b) = max(RI(a,b),min(RI

1 (a,x1),RI
2 (x1,x2), . . . ,RI

m(xm−1,b)))

where Ri ≺ S and there are axioms of the form si v ∀Ri.si+1 in τ(Σ), with 1 ≤ i ≤ m.

Note that the interpretation of complex roles is inductive. However, since Rh is regular the induction on ≺ is
well-founded. By Proposition 2 and the inductive interpretation of complex roles using ≺ and BS it follows
that I ′ is a model of the role hierarchy of Σ . Moreover, by induction on the structure of concepts it also
follows that DI(a) = DI′

(a). More precisely, if D = C1 uC2 and (C1 uC2)
I(a) = n we have CI

1 (a) = n1,
CI

2 (a) = n2, with n = min(n1,n2). Then, by the induction hypothesis we have CI′
1 (a) = n1, CI′

2 (a) = n2

and hence (C1 uC2)
I′
(a) = min(n1,n2) = n. All other cases follow in a similar way. The only non-trivial

interesting case is if D = ∀S.C,(∀S.C)I(a) = n,SI
′
(a,b) = p, and S is complex. If 1− p = n (i.e., p = 1−n),

then max(1− p,CI′
(b)) = n regardless of CI′

(b) and hence (∀S.C)I
′
(a) = n. Assume that p > n. Since

(∀S.C)I(a) = n we have that iIS (a) = n. Now there are two cases:

– SI(a,b) = p. Since S is complex τ(Σ) contains iS v ∀S. fS and fS vC. Since p > n and I is a model of
τ(Σ) we must have CI(b) = n.

– SI(a,b) 6= p. Then, there exist m Ri with RI
1 (a,x1) = p1, . . .RI

m(xm,b) = pm s.t. p = min(p1, . . . .pm).
By construction of I ′ there are axioms si v ∀Ri.si+1 and sm+1 v fS, fS v C, in τ(Σ). Moreover, since
p > n, then also pi > n for each 1 ≤ i ≤ m. But then, since I is a model of τ(Σ), for all si we must have
sIi (xi) = n and hence, also CI(b) = n.

In both cases, by induction hypothesis, CI′
(a) = n, hence we finally get (∀S.C)I

′
(a) = n.

Concluding, we need to show that I ′ satisfies each axiom C v D. Since I is a model of τ(Σ) we have
CI(a)≤ DI(a). However, as shown CI′

(a) =CI(a)≤ DI(a) = DI′
(a), hence also I satisfies C v D. ut
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