
Hybrid Query Answering Over OWL Ontologies
Giorgos Stoilos and Giorgos Stamou1

Abstract. Query answering over OWL 2 DL ontologies is an im-
portant reasoning task for many modern applications. Unfortunately,
due to its high computational complexity, OWL 2 DL systems are
still not able to cope with datasets containing billions of data. Conse-
quently, application developers often employ provably scalable sys-
tems which only support a fragment of OWL 2 DL and which are,
hence, most likely incomplete for the given input. However, this no-
tion of completeness is too coarse since it implies that there exists
some query and some dataset for which these systems would miss
answers. Nevertheless, there might still be a large number of user
queries for which they can compute all the right answers even over
OWL 2 DL ontologies. In the current paper, we investigate whether,
given a query Q with only distinguished variables over an OWL 2 DL
ontology T and a system ans, it is possible to identify in an efficient
way if ans is complete for Q, T and every dataset. We give sufficient
conditions for (in)completeness and present a hybrid query answer-
ing algorithm which uses ans when it is complete, otherwise it falls
back to a fully-fledged OWL 2 DL reasoner. However, even in the
latter case, our algorithm still exploits ans as much as possible in or-
der to reduce the search space of the OWL 2 DL reasoner. Finally,
we have implemented our approach using a concrete system ans and
OWL 2 DL reasoner obtaining encouraging results.

1 INTRODUCTION
Query answering over ontological knowledge expressed in the OWL
2 DL language has attracted the interest of many researchers as well
as application developers the last decade [6, 9]. In such a setting,
given an ontology T (also called TBox) expressed in OWL and a set
of (possibly distributed) data sources, answers to user queries reflect
both the data in the sources as well as the knowledge in T . Unfor-
tunately, query answer over OWL 2 DL ontologies is of very high
computational complexity [12, 5] and even after modern optimisa-
tions and intense implementation efforts [7] OWL 2 DL systems are
still not able to cope with datasets containing billions of data.

The need for efficient query answering has motivated the devel-
opment of several fragments of OWL 2 DL [8], like OWL 2 EL,
OWL 2 QL, and OWL 2 RL for which query answering can be im-
plemented (at-most) in polynomial time with respect to the size of
the data. Consequently, for many of these languages there already ex-
ist highly scalable systems which have been applied successfully to
industrial-strength applications, like OWLim [6], Oracle’s RDF Se-
mantic Graph [15], and others. The attractive properties of these sys-
tems have led application developers to use them even in cases where
the input ontology is expressed in the far more expressive OWL 2 DL
language. Clearly, in such cases these systems would most likely be
incomplete—that is, for some user query and dataset they will fail

1 National Technical University of Athens, emails:gstoil@image.ntua.gr,
gstam@cs.ntua.gr

to compute all the certain answers. However, incomplete query an-
swering may not be acceptable in several critical applications like
healthcare or defense. As a result, techniques that attempt to deliver
complete query answering even when using scalable systems that are
not complete for OWL 2 DL have been proposed [13, 16].

Stoilos et al. [13] show how, given an OWL 2 RL system ans and
a TBox T , to compute a set of ontology axioms R (called repair)
which is such that ans that is generally incomplete for T becomes
complete for all ground queries and datasets when used with T ∪R.
Zhou et al. [16] present a technique which uses ans to compute upper
and lower bounds of the answers to a user query. If the two bounds
coincide then the correct answers have been found while if they don’t
then an OWL 2 DL reasoner is used to check all intermediate possible
answers. Unfortunately, both techniques are mainly applicable when
the input ontology is expressed in the Horn fragment of OWL 2 DL
(e.g., repairs might not exist for arbitrary OWL 2 DL ontologies).

Although systems complete for, e.g., OWL 2 RL, are generally
incomplete for an OWL 2 DL ontology they might still be able to
compute the correct answers to many user queries. In the current
paper, we investigate whether given a (ground) query Q over an
OWL 2 DL TBox T and a system ans complete for some fragment
L of OWL 2 DL it is possible to identify in an efficient way if ans
is complete for Q, T . We introduce the notion of a query base (U)
which consists of a set of atomic queries built from the symbols in T
for which ans is known to be complete and we show how U can be
used to conclude that ans is complete. Although our condition is only
sufficient for deriving completeness there are, unfortunately, theoret-
ical limitations for providing also a necessary condition. Neverthe-
less, to alleviate this issue we have designed a sufficient condition
which can be used to check if ans is incomplete for a given query.
With these two conditions combined we expect that we will be able
to correctly identify (in)completeness of ans in most practical cases.

Subsequently, we show how U can be computed in practice using
existing tools and then develop a (hybrid) query answering algorithm
which uses the previous techniques to decide whether to evaluate an
input query using a scalable system ans or a fully-fledged OWL 2
DL system. In the latter case, our algorithm can still exploit ans to a
large extent in order to prune the search space of the OWL 2 DL sys-
tem considerably. Finally, we have conducted an experimental eval-
uation which showed that for two well-known ontology benchmarks
we were able to efficiently compute query bases, correctly identify
the (in)completeness of an OWL 2 RL system for the vast majority
of test queries and, moreover, that our hybrid query answering algo-
rithm greatly outperformed a state-of-the-art OWL 2 DL system.

Compared to previous works on deciding completeness of incom-
plete systems [2], our main focus here is on efficiency and real-time
query answering. Moreover, query bases is a novel notion and, inter-
estingly, they are always guaranteed to exist. Hence, the techniques
are readily applicable to arbitrary ontologies. Finally, our approach

is highly modular allowing any combination of system supporting a
profile of OWL 2 DL with a fully-fledged reasoner and is not strongly
tighted to OWL 2 RL ones.

2 PRELIMINARIES
We use standard notions from first-order logic, like variable, predi-
cate, atom, constant, (Horn) clause, function symbols, satisfiability,
and entailment (|=). We use ~t to denote a tuple of constants or vari-
ables of the form (t1, . . . , tn) where n is called the arity of ~t. More-
over, for ~a = (a1, . . . , an) and ~c we write ~c ⊆ ~a if for j1, .., jm a
sequence of positive integers such that n ≥ max{j1, . . . , jm} and
ji < ji+1 we have ~c = (aj1 , .., ajm). Finally, for a set of atoms
B = {B1, . . . , Bm}, we denote with

∧
B the formula B1∧. . .∧Bm.

Description Logic-based ontologies We assume basic familiarity
with the DL syntax, semantics and standard reasoning problems, as
well as their connection with OWL 2 DL [1]. In the rest of the paper
with L we denote an arbitrary DL that is a fragment of the DL un-
derpinning OWL 2 DL. Next, we recapitulate the DL ELU⊥ which
is used in the examples and is a fragment of OWL 2 DL.

Let C, R, and I be countable, pairwise disjoint sets of atomic
concepts, atomic roles, and individuals. The set of ELU⊥-concepts
is defined inductively as follows, where A ∈ C, R ∈ R, and C(i)

are ELU⊥-concepts: C := > | ⊥ | A | C1 uC2 | ∃R.C | C1 tC2.
An ELU⊥-TBox T is a finite set of ELU⊥-axioms C1 v C2, with
Ci ELU⊥-concepts. An ABox A is a finite set of assertions of the
form A(a) or R(a, b), for A ∈ C, R ∈ R, and a, b ∈ I. An ELU⊥-
ontology is a set O = T ∪ A. For S a concept or TBox, we use
Sig(S) to denote all atomic concepts and roles that appear in S.

We also refer to Horn DLs, that is, fragments LH of OWL 2 DL
where every LH-TBox is logically equivalent to a set of Horn clauses
(possibly with equality) of the form B1 ∧ . . . ∧ Bn → H , where
H is either a function-free atom or the symbol ⊥, B1, . . . , Bn, are
function-free atoms and all free variables are assumed to be uni-
versally quantified. Horn DLs form the logical underpinning of the
tractable profiles OWL 2 QL, OWL 2 EL, and OWL 2 RL. For ex-
ample, the OWL 2 EL axiom A v ∃R.> can be transformed into
A(x) → R(x, f(x)).

Queries A conjunctive query (CQ) is a formula of the form
∃~y.φ(~x, ~y), where φ is a conjunction of function-free atoms contain-
ing only variables from ~x or ~y, and ~x are free variables called answer
variables. We use Q(~x) to denote all the answer variables of Q and
bd(Q) to denote the set of it atoms. Queries without existentially
quantified variables form the basis of the W3C standard SPARQL2

and in the following we will only consider such queries which we
will call SPARQL queries. A tuple of constants ~a is a certain answer
of a (SPARQL) query Q over T ∪ A if T ∪ A |= φ(~a). We denote
with cert(Q, T ∪ A) all the certain answers of Q over T ∪ A.

Abstract query answering systems In the following, we recall the
notions of a query answering system [13].

Definition 1 A (query answering) system ans is a procedure that
takes as input an OWL 2 DL-TBox T , an ABox A, and a CQ Q and
returns a set of tuples ans(Q, T ∪ A) that have the same arity as the
answer variables in Q. ans is called (Q, T)-complete if for every
A consistent with T we have cert(Q, T ∪ A) ⊆ ans(Q, T ∪ A);
otherwise, it is called (Q, T)-incomplete. For L a fragment of OWL
2 DL and T an OWL 2 DL-TBox, TL denotes all L-axioms of T .

2 http://www.w3.org/TR/rdf-sparql-query/

Then, ans is called complete for L if for each CQ Q and ABox A
we have ans(Q, T ∪ A) = cert(Q, TL ∪ A). In this case we refer
to TL as the TBox that characterises ans over T .

Most query answering systems known to us can be captured by the
above notion. For example, systems such as OWLim and Oracle’s
Semantic Graph are query answering systems complete for the OWL
2 RL fragment of OWL 2 DL.

3 CHECKING COMPLETENESS OF SYSTEMS
In the current section, we investigate whether it is possible to identify
in an efficient way if a system complete for a DL L is complete for a
given (SPARQL) query over an OWL 2 DL TBox.

Example 2 Consider the TBox T = {∃S.C v B,A v D}
and consider also a system ans characterised by the TBox TL =
{A v D}, i.e., ans cannot handle axioms of the form ∃S.C v B.3

Clearly, for Q1 = S(x, y) and Q2 = D(x) ans is (Q1, T)-
and (Q2, T)-complete, while it can also be verified that for Q =
S(x, y) ∧ D(x) it is (Q, T)-complete since for every ABox A we
have cert(Q, TL ∪ A) = cert(Q, T ∪ A).

As it can be seen, (Q, T)-completeness of ans is rather expected
since Q is formed by atoms S(x, y) and D(x) which precisely cor-
respond to queries Q1 and Q2, and that we have already established
that ans is (Q1, T)- and (Q2, T)-complete. ♦

The above example suggests that given a set of atomic queries over
which ans is known to be complete, then we can deduce the com-
pleteness of ans w.r.t. an arbitrary SPARQL query Q by checking if
for each of its atoms there is a “matching” query in the set. We call
such set of queries a query base.

Definition 3 Let T be an OWL 2 DL-TBox and let ans be a system.
A query base (QB) of ans for T is a finite set of constant-free atomic
queries U built from the symbols in Sig(T) such that if Q ∈ U , then
ans is (Q, T)-complete.

Without loss of generality and to simplify the presentation we often
say “an atom α of a query appears in U” meaning that “there is a
query Q1 ∈ U and an isomorphism σ from the terms of Q1 to those
of α such that Q1σ = α”.

Towards identifying a condition for deducing completeness of a
system ans for a query Q given its QB, the following example shows
that even if there exists an atom in Q that is not in the given QB, we
might still be able to correctly recognise that ans is (Q, T)-complete.

Example 4 Let the following TBox T and query Q:

T = {∃R.C v A,B v A} Q = A(x) ∧B(x)

and consider again the system ans from Example 2.
First, note that ans is (Q, T)-complete: for any ABox A such

that for some individual a we have T ∪ A |= Q(a), A must con-
tain the assertion B(a); but then, ans is characterised by TL =
{B v A}, hence also TL ∪ A |= A(a). Consequently, for any A we
have ans(Q, T ∪ A) = cert(Q, T ∪ A).

Second, assume that a QB of ans for T is given that contains only
the query Q1 = B(x). Even though Q contains an atom A(x) that
does not appear in U it is still possible to identify that ans is (Q, T)-
complete as follows: first, we can note that for the other atom of the
query (i.e., B(x)) we have TL |= B(x) → A(x) and, second, that
B(x) is in U . ♦
3 In Semantic Web terms ans is complete for RDFS.

The previous example suggests that, it is sufficient that some of the
atoms of Q are only “covered” by the presence of other atoms which
appear in the given QB. Even more, it is interesting to note that ans
might even be incomplete for the atomic queries that correspond to
the atoms that need to be covered. In the previous example, although
for Q2 = A(x) ans is (Q2, T)-incomplete and A(x) appears in
Q, ans is, however, (Q, T)-complete. The notion of covering is for-
malised next.

Definition 5 Let ans be a system complete for a DL L, let Q be a
CQ, let U be a QB of ans for an OWL 2 DL-TBox T , and let TL be
the TBox that characterises ans over T . Let also B be all atoms in
Q which appear in U . We say that an atom α in Q is covered by U if
either α appears in U or TL |=

∧
B → α.4

Using the notion of covering we can show the following result.

Theorem 6 Let T be an OWL 2 DL-TBox, let ans be a system com-
plete for a DL L, let U be a QB of ans for T , and let Q be a SPARQL
query. If each atom α in Q is covered by U , then ans is (Q, T)-
complete.

Proof. Let Q be a SPARQL CQ with ~x its answer variables, let A be
an arbitrary ABox such that for some tuple of individuals ~a we have
T ∪ A |= Q(~a) and assume that each atom of Q is covered by U .
Since Q is SPARQL, we have that T ∪ A |= αi(~ai) for each atom
αi(~xi) in Q, where ~xi are variables from ~x. Let also TL be the TBox
that characterises ans over T .

Now, consider an arbitrary atom αk(~xk) in Q such that T ∪A |=
αk(~ak). If αk(~xk) appears in U then we clearly have TL ∪ A |=
αk(~ak). The interesting case is if for the set B defined as in Defini-
tion 5 we have TL |=

∧
B → αk(~xk). Since B are atoms of Q we

must have T ∪A |= B(~c) where ~c ⊆ ~a. Moreover, again by assump-
tion, we have that each βi ∈ B appears in U ; hence we must also have
TL ∪ A |=

∧
B(~c). Thus, it also follows that TL ∪ A |= αk(~ak).

Consequently, since αk(~xk) was arbitrarily chosen we must have
TL∪A |= αi(~ai) for each αi(~ai) ∈ Q(~a) and hence also TL∪A |=
Q(~a). Moreover, also ~a and A were arbitrary, hence for each A we
must have cert(Q, T ∪ A) ⊆ ans(Q, T ∪ A).

Ideally, U should contain all atomic queries from Sig(T) for
which ans is complete. Unfortunately, as the following example
shows, even in this case covering as defined previously provides a
sufficient but not necessary condition for (Q, T)-completeness.

Example 7 Consider the following TBox T :

B1 v ∃S.> ∃S.> v A1 B1 uA v A1

and consider also an OWL 2 RL system ans. Then, over T , ans is
characterised by TL = {∃S.> v A1, B1 u A v A1}. Clearly,
for the atomic query Q1 = A1(x), ans is (Q1, T)-incomplete as
witnessed by the ABox A1 = {B1(a)}. Hence, Q1 cannot be in any
QB U of ans for T . More precisely, U can consist at most of the
queries Q2 = S(x, y),Q3 = A(x), and Q4 = B1(x).

Consider now the query Q = A1(x) ∧ A(x). As can be seen,
the atom A1(x) of Q is not covered by U : first, A1(x) cannot be in
U and, second, for the only other atom of Q (i.e., A(x)) we have
TL 6|= A(x) → A1(x).

However, it can be seen that ans is (Q, T)-complete. First, we ob-
serve that any ABox A that provides an answer to Q, i.e., T ∪ A |=
4 The reader is referred to [13] for details about how the entailment relation
TL |=

∧
B → α can be checked in practice by treating ans as a black box.

Q(a), must contain an assertion of the form A(a). Moreover, A
must be such that T ∪ A |= A1(a). Due to the latter, A must con-
tain one of the assertions A1(a), or S(a, b), or B1(a). In all cases
we can also see that TL ∪ A |= A(a) ∧ A1(a). Especially for
A = {A(a), B1(a)}, i.e., the ABox that contains the witness for
the incompleteness of ans for Q1, T , we have TL ∪ A |= A1(a)
since B1 uA v A1 ∈ TL. ♦

Intuitively, the issue highlighted in the previous example is that
although the ABox A1 = {B1(a)} witnesses the incompleteness of
ans w.r.t. Q1, when A1 is taken together with additional assertions
that provide an answer to the second atom of the query (i.e., A(x))
it ceases from being a witness of incompleteness. This suggests that
to obtain a sufficient and necessary condition we additionally need to
pre-compute all atomic queries Q = α for which ans is incomplete,
as well as, all witnesses AQ of this incompleteness. Then, at run-
time, if atom α appears in some user query we need to check if for
every witness AQ we have TL ∪AQ |= (

∧
B → α)π, where B is as

in Definition 5 and π is a mapping related to the construction of AQ.
In Example 7, for the witness AQ = {B1(a)} we have TL ∪AQ |=
(A(x) → A1(x)){x 7→ a}. Unfortunately we know from theory that
this set of witnesses can be infinite [2, 3] (see also Example 10 next)
and moreover, even if it is finite, checking a condition like the one
above at run-time will not be very practical as it requires performing
a (possibly) very large number of entailment tests.

To alleviate the above issue, in the next section, we design a condi-
tion that can be easily checked in practice and which implies incom-
pleteness of ans. Since real-world ontologies are expected to rarely
contain combinations of axioms like the ones depicted in Example 7,
in practical scenarios this condition combined with the techniques
presented in this section are expected to leave only very few unknown
cases.

4 CHECKING INCOMPLETENESS
In the current section, we provide a condition which is necessary in
order to have TL ∪ A |=

∧
B → α for every A. This implies that,

if the condition does not hold, then we can deduce that the system
under consideration is incomplete.

Our syntactic condition is based on the notion of reachability be-
tween the symbols of a TBox T , which is a well-known notion that
has been used extensively in the past in other contexts [14, 11].

Definition 8 Let T be an OWL 2 DL-TBox and S ⊆ Sig(T) a sig-
nature. The set of S-reachable names in T is defined inductively as
follows: (i) x is S-reachable in T , for every x ∈ S; and (ii) for all in-
clusion axioms CL v CR , if for some x ∈ Sig(CL) x is S-reachable
in T , then y is S-reachable in T for every y ∈ Sig(CR).

Reachability provides a necessary condition for entailment. For
example, if T |= A v B then B must be {A}-reachable in T .
Hence, non-reachability will guarantee that TL ∪ A 6|=

∧
B → α.

Finally, the following property (]) on CQs Q = α1(~x1) ∧ . . . ∧
αn(~xn) is additionally required to prove our next result: for every
A and 1 ≤ i ≤ n with T ∪ A |= αi(~a), the following ontology
is consistent T ∪ A ∪ {αj(~xj)ι | αj ∈ bd(Q), αj 6= αi, ι injec-
tive mapping from each variable of Q different than ~xi to a fresh
individual}.

Theorem 9 Let LH be a Horn DL, let ans be a system that is com-
plete for LH, let Q be a CQ satisfying (]), let T be an OWL 2 DL-
TBox, let U be a QB of ans for T , and let B be all the atoms in Q

which appear in U . Finally, let α be an atom of Q that is not cov-
ered by U . If α is not Sig(B)-reachable in TLH , then ans is (Q, T)-
incomplete.

Proof. Consider the query Qα = α(~x). By assumption Qα is not
in U hence ans is (Qα, T)-incomplete. This implies that there ex-
ists some ABox Aα and tuple of individuals ~a from Aα such that
~a ∈ cert(Qα, T ∪ Aα) but ~a 6∈ ans(Qα, T ∪ Aα). Since ans is
complete for LH then its behaviour is characterised by TLH ; hence,
TLH ∪ A |= Qα(~a) iff ~a ∈ ans(Qα, T ∪ A) and, in the following,
we can use TLH and |= instead of ans. Next, we will extend Aα to A
such that for ~a ⊆ ~c, we have T ∪ A |= Q(~c) but TLH ∪ A 6|= Q(~c)
which will imply that ~c 6∈ ans(Q, T ∪ A).

Assume that σ = {~x 7→ ~a} and let ι be an injective mapping from
all variables of Q that do not appear in ~x to fresh individuals. Then,
for π = σ ∪ ι, let A := Aα ∪ {αi(~xi)π | αi in Q different than α}.
Clearly, A ⊇ Aα and by property (]), T ∪A is consistent. Moreover,
for some tuple of individuals ~c from the range of π we have T ∪A |=
Q(~c). Moreover, for each atom αi different than α we clearly have
TLH ∪ A |= αi(~xi)π.

Assume in contrast that TLH ∪ A |= Q(~c). Since TLH ∪ Aα 6|=
α(~a) and A ⊇ Aα, then TLH ∪ A |= Q(~c) can only be the case
if TLH ∪ A |= α(~a). By definition, LH is logically equivalent to a
set of Horn clauses (possibly with equality) H. For this set we have
H ∪ A |= α(~a) and we can use SLD-resolution with backwards
chaining starting with the goal α(~a) in order to derive the empty
clause (equality can be axiomatised and treated as a regular predi-
cate and, moreover, since T ∪ A is consistent the ⊥ predicate is not
involved). The derivation will use as side premises Horn clauses from
H of the form B1∧ . . .∧Bn → H , where some goal will unify with
the atom H and it will create a new goal that contains all atoms Bi.
Finally, to derive the empty clause the atoms that are introduced (the
Bi’s) should be eliminated by using as side premises facts from A
which, by construction, contains assertions for all atoms in Sig(B).
It follows that these atoms are introduced as goals due to some rule
in which they appear in the body. Hence, TLH must also contain ax-
ioms CL v CR where atoms from B appear in CL which implies
that all atoms in B reach α in TLH .

5 COMPUTING QUERY BASES IN PRACTICE

Since a TBox T has a finite signature and for every atomic query
Q a system ans is either complete or not, it follows trivially that the
query base always exists. In general, one could construct it by first
extracting a (hopefully) small subset of T that is relevant to answer Q
over any ABox (e.g., a module [11]) and then contrast its constructors
with the language that ans supports. However, this process can be
very labour intensive, hence, in the following we will show how we
can reuse existing technology to assist and speed up this process.

Clearly, the main problem is to use (semi-)automatic methods
to check (in)completeness of a system w.r.t. every (atomic) query
Q built from the signature of a TBox. Checking (in)completeness
of a system w.r.t. an arbitrary query has been studied before in
the literature [2]. For a given query Q and TBox T it has been
shown how to devise a set of tests (called test suite) of the form
= = {〈A1,Y1〉, . . . , 〈An,Yn〉}, where each Ai is a small ABox
and each Yi is a query (possibly different from Q). In addition, the
test suite should satisfy the following desirable property:

(�): if for each 〈Ai,Yi〉 ∈ = we have cert(Yi, T ∪ Ai) ⊆
ans(Yi, T ∪ Ai), then ans is (Q, T)-complete.

The problem has been studied for various classes of query answer-
ing systems, including systems complete for Horn DLs, providing
sufficient conditions for the existence of = and practical algorithms
for computing it. Unfortunately, there exist TBoxes where the test
suite can satisfy property (�) only if it is infinite. However, as the
following example shows, we might still be able to compute a QB.

Example 10 Consider the following TBox T :

> v G tB ∃E.G v B ∃E.B v G

and let ans be an OWL 2 RL system. Then, the set TL that charac-
terises ans over T consists of the last two axioms of T .

Assume next that we want to determine using the techniques
in [2] whether ans is (Q1, T)-complete for Q1 = G(x). It is
not hard to see that, for any odd integer i ≥ 2, the ABox
Ai = {E(a1, a2), . . . , E(ai−1, ai), E(a1, ai)} provides an answer
to Q1—that is, cert(Q1, T ∪ Ai) = {a1}. Hence, according to [2]
a test suite = satisfying property (�) must contain an infinite umber
of tests of the form 〈Ai,Q1〉.

However, for i = 3 it can be verified that cert(Q, TL ∪ A3) = ∅
since to compute the answer a1 a system needs to be able to reason
over the disjunctive axiom of T . Hence, we can conclude that ans is
(Q1, T)-incomplete, without needing to consider additional tests.

In a similar way, for Q2 = B(x) we can identify that ans is
(Q2, T)-incomplete, while finally, that for Q3 = E(x, y) it is
(Q3, T)-complete. Consequently, U can only contain Q3. ♦

In the previous example, the situation would have been different if
ans was complete for the test 〈A3,Q1〉. Then, we would need to
try (possibly) all tests for every odd i ≥ 2 and hence we would
have never been able to say with certainty whether ans is (Q1, T)-
complete. However, since in Horn TBoxes the test suite always exists
(by the results in [4] and [2] it follows that it is always finite), then
the source of infiniteness in the non-Horn case is related to the in-
teraction of the disjunctive axiom with other axioms of the TBox.
Since systems complete for one of the tractable profiles of OWL 2
DL are inherently incomplete for inferences involving such construc-
tors, then in most practical cases they are expected to fail already for
the smallest possible test.

6 HYBRID QUERY ANSWERING
The straightforward approach to exploit our proposed techniques is
to use them at running time to decide if a given query Q can be
evaluated using some very scalable system ans or we need to resort
to an OWL 2 DL reasoner. In the current section, we take this step
further and we show that even in the latter case ans can still be used
to (possibly) speed up query evaluation significantly.

Our idea is based on the fact that to compute the answers of a
SPARQL query Q one can compute the answers of each atomic query
Qα = α with α ∈ bd(Q) and then construct the answer by joining
all the results. This implies that the evaluation of Q can be split into
the part for which the system ans is known to be complete and the
one that is not. Then, the OWL 2 DL reasoner is only applied on
the second part, which is perhaps easier to evaluate than the whole
query. Moreover, ans can be used to restrict the search space of the
OWL 2 DL reasoner.

Our hybrid query answering algorithm is presented in Algo-
rithm 1. Internally it is using a system ans complete for some frag-
ment L of OWL 2 DL and (possibly) an OWL 2 DL reasoner (func-
tion getInstances). It accepts as input a SPARQL CQ Q, a TBox T ,

Algorithm 1 HYBRIDQA(Q, T ,A,U)
Input: A SPARQL CQ Q with ~x its answer variables, an OWL
2 DL-TBox T , an ABox A, and a QB U of the system ans used
internally below for T .

1: B := atoms of Q that appear in U
2: C := {α ∈ Q | α neither cov. by U nor Sig(B)-reach. in TL}
3: if C = ∅ then
4: return ans(Q, T ∪ A)
5: else
6: UpBnd := {a | a appears in A}n where n is the arity of ~x
7: Q′ := new CQ that contains all α ∈ bd(Q) s.t. α 6∈ C
8: if Q′ 6= ∅ then UpBnd := ans(Q′, T ∪ A)
9: for all α ∈ C do

10: PAns := ans(α, T ∪ A)
11: Ansα := getInstances(α, T ∪ A,UpBnd,PAns)
12: UpBnd := {~a ∈ UpBnd | ∃~c ∈ Ansα ∪ PAns,~c ⊆ ~a}
13: end for
14: return UpBnd
15: end if

an ABox A, and a QB U for the system ans that has been computed
previously. It then proceeds as follows. First, it collects all atoms of
Q that are neither covered by U according to Definition 5 nor reach-
able according to Theorem 9 (set C). If C is empty, then ans can be
used to evaluate Q over T ∪ A; otherwise the algorithm enters the
else-block where it also uses an OWL 2 DL reasoner. More precisely,
it extracts from Q the part for which ans is complete and evaluates it
over T ∪ A. This provides an upper bound of the answer (UpBnd)
since the conjuncts in C have not been considered. Then, for each
atom α ∈ C it uses the OWL 2 DL reasoner to retrieve its instances.
To further speed up this procedure, two additional parameters are
passed to the function getInstances. The first one is the upper bound
and the second one are (some) known instances of α computed again
using ans (PAns). Then, the search of the OWL 2 DL reasoner is re-
stricted to only those individuals that are in UpBnd and not in PAns.
Finally, tuples in UpBnd for which α does not hold are pruned.

Correctness of HYBRIDQA follows by our previous results as well
as the use of an OWL 2 DL reasoner for the rest of the atoms of Q.

Proposition 11 HYBRIDQA(Q, T ,A,U) returns the certain an-
swers of a SPARQL CQ Q over T ∪ A.

7 EVALUATION

We have implemented a prototype tool, called Hydrowl,5 which can
be used to extract query bases for incomplete systems and check their
(in)completeness over a given query using the notions of covering
and reachability. If none of the techniques apply then the tool replies
“unknown”. Our current implementation supports the well-known in-
complete system OWLim and it is internally using the system SyGE-
NiA6 to check completeness w.r.t. atomic queries and construct the
QB. However, note that other systems can be easily supported.

We used Hydrowl to compute a query base of OWLim for the
two well-known ontology benchmarks LUBM7 and UOBM.8 For
LUBM the tool required 14.5 seconds and returned a QB containing
40 atomic queries (LUBM has 43 concept names). We have verified

5 http://www.image.ece.ntua.gr/ gstoil/hydrowl/
6 http://code.google.com/p/sygenia/
7 http://swat.cse.lehigh.edu/projects/lubm/
8 http://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/

that the computed QB contains all atomic queries for which OWLim
is complete. For UOBM an initial QB was computed in 48.7 seconds
but due to expressivity restrictions of SyGENiA two atomic queries
had to be added manually. In total the computed QB contained 59
atomic queries (UOBM has 69 concept names). Subsequently, we
used our implementation to check completeness of OWLim for all
the test queries of LUBM and UOBM.

Regarding LUBM, all atoms of the queries 1–5 and 11–14 appear
in the computed QB and hence according to Theorem 6 OWLim is
complete for them (indeed this was also veryfied using SyGENiA).
Moreover, for these queries our tool replied “complete” almost in-
stantaneously (less than 5ms), hence we do not report the times
in detail. All other queries contain the atom Student(x) and it is
well-known that OWLim is (generally) not complete for this atomic
query over LUBM since it contains the axioms GraduateStudent v
∃takesCourse.Course and ∃takesCourse.Course v Student. Con-
sequently, in these queries the algorithm proceeds in checking if this
atom can be covered or is not reachable. The results are depicted in
Table 1, where we give the time (in milliseconds) required by our
tool (row t), whether the atom is reachable (row), whether it is
covered, and finally whether OWLim is actually complete or not for
the query (checked again using SyGENiA).

Table 1. Results for the LUBM TBox.

6 7 8 9 10

t 0 47 1 47 43
 × X × X X

Covered - × - X ×
Complete no no no yes no

First, we can see that in all cases Hydrowl required less than 50ms
to reply. Second, for queries 6 and 8 the atom Student(x) is not
reachable by other atoms and hence we can immediately conclude
its incompleteness without checking covering. Since this can be done
very efficiently the tool again replied almost instantaneously. Third,
in query 9 the atom is covered due to the following implication, for
TL the set that characterises OWLim over LUBM:

TL |= advisor(x, y)∧takesCourse(x, z)∧Course(z) → Student(x)

Hence, by Theorem 6 OWLim is complete for query 9. However,
in queries 7 and 10 (highlighted by gray in the table) the atom
Student(x) is reachable but not covered; hence, our tool replied “un-
known”. Interestingly, we can see that for these queries OWLim is
incomplete, hence using in addition a complete reasoner in query an-
swering would not introduce an unnecessary overhead.

Regarding UOBM, again for the queries where all atoms have an
exact match in the computed QB the tool replied “complete” almost
instantaneously. For the rest, the results are depicted in Table 2. Like
in LUBM we can see that in all cases the tool replied very quickly. In
particular, for the queries were there are atoms than are not reachable,
i.e., queries 2, 3, 11, 13, 14, and 15, the tool replied “incomplete” al-
most instantaneously. Next, queries 6, 7, and 12, contain atoms that
are reachable and also covered, hence the tool correctly replied “com-
plete”. The relevant entailments for these queries are the following:

query 6 TL |= hasAlumnus(y, x) → Person(x)

query 7 TL |= hasSameHomeTownWith(x, y) → Person(x)

query 12 TL |= takesCourse(x, y) → Student(x)

The only query that our tool replied “unknown” was query 8, where
again OWLim is incomplete.

Table 2. Results for the UOBM TBox

2 3 6 7 8 11 12 13 14 15

t 0 0 36 37 44 0 39 1 0 0
 × × X X X × X × × ×

Cov - - X X × - X - - -
Com no no yes yes no no yes no no no

Finally, we have also implemented Algorithm 1 in Hydrowl (us-
ing OWLim and the standard HermiT reasoner [10]) and we have
used it to answer all test queries of LUBM and UOBM. We have
created datasets for 5 and 10 universities for LUBM and for 1 de-
partment and 1 university for UOBM, and we have compared against
the HermiT-SPARQL system (H-QL) [7], an implementation of the
SPARQL OWL-DL entailment regime in HermiT.

Table 3 presents the results for some interesting queries. The be-
haviour of H-QL can be highly non-deterministic, hence we have
taken an average over several runs. With grey color we have marked
the queries where Algorithm 1 enters the else-block and hence uses
both OWLim and HermiT. As can be seen, in all queries H-QL re-
quires several seconds (even up to minutes) to compute the answers.
In contrast Hydrowl computed the correct answers within millisec-
onds in all but query 14. Moreover, H-QL could also not manage to
load any of the large datasets (10 universities for LUBM and 1 uni-
versity for UOBM) after 1 hour. This is mostly because H-QL uses
HermiT at pre-processing to materialise many entailments. In con-
trast, loading in Hydrowl always took less than 5 minutes and query
answering was again quite efficient (apart from query 14 where we
aborted after 15 minutes).

Finally, note that for the queries we have not reported times H-QL
and Hydrowl have similar response times. In some of them, how-
ever, Hydrowl was a few milliseconds slower than H-QL (less than
100ms) due to the additional overhead introduced by checking cov-
ering, splitting the query, and joining the results. However, as shown
in the table the benefits when it comes to the hard queries are much
more significant compared to this minor overhead.

Table 3. Query Answering Times

LUBM UOBM
3 8 9 3 4 9 11 14
5 universities 1 department

H-QL 1.4 1.4 105 204 5.8 21.6 1.7 48.7
Hydrowl .07 .24 .13 .02 .01 .01 .07 35.3

10 universities 1 university
Hydrowl .9 6.7 .4 .3 .09 .05 2.6 t/o

8 CONCLUSIONS

In this paper we have investigated whether given a (SPARQL) query
Q over an OWL 2 DL TBox T and a system ans complete for a frag-
ment L of OWL 2 DL it is possible to identify in an efficient way if
ans is complete for Q, T . We have provided with a sufficient condi-
tion for checking completeness and shown that there are theoretical
limitations for also devising a necessary condition. Nevertheless, for
the latter case we have provided a syntactic condition for checking

incompleteness of ans. Our techniques have important applications
in query answering. More precisely, we have devised an algorithm
that decides whether a user query Q can be evaluated using a highly-
scalable system ans or a fully-fledged OWL 2 DL reasoner needs to
be employed. Even if ans cannot be used in general, our algorithm
can still exploit it to a large extent in order to speed up the evaluation
of Q by the OWL 2 DL reasoner. Our experiments have provided
with very encouraging results showing that our hybrid algorithm can
answer queries that are hard for a state-of-the-art OWL 2 DL system
in a matter of milliseconds.

Regarding directions for future work we would like to clarify the
issue of the sufficient and necessary condition, apply our framework
using different combinations of systems, and lift the restriction to
SPARQL CQs. Further tests and optimisations are also envisioned.

ACKNOWLEDGEMENTS
Giorgos Stoilos was funded by a Marie Curie Career Reintegra-
tion Grant within European Union’s 7th Framework Programme
(FP7/2007-2013) under REA grant agreement 303914.

REFERENCES
[1] F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, The De-

scription Logic Handbook: Theory, implementation and applications,
Cambridge University Press, 2002.

[2] Bernardo Cuenca Grau, Boris Motik, Giorgos Stoilos, and Ian Hor-
rocks, ‘Completeness guarantees for incomplete ontology reasoners:
Theory and practice’, J. of Artif. Intell. Res., 43, 419–476, (2012).

[3] Bernardo Cuenca Grau, Boris Motik, Giorgos Stoilos, and Ian Hor-
rocks, ‘Computing datalog rewritings beyond horn ontologies’, in Proc.
of IJCAI 2013, (2013).

[4] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and
Guohui Xiao, ‘Query rewriting for Horn-SHIQ plus rules’, in AAAI,
(2012).

[5] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler, ‘Conjunc-
tive query answering for the description logic SHIQ’, J. of Artif. Intel.
Res. (JAIR), 31, 157–204, (2008).

[6] Atanas Kiryakov, Barry Bishoa, Damyan Ognyanoff, Ivan Peikov,
Zdravko Tashev, and Ruslan Velkov, ‘The Features of BigOWLIM that
Enabled the BBCs World Cup Website’, in Proc. Semantic Data Man-
agement (SemData), (2010).

[7] Ilianna Kollia and Birte Glimm, ‘Optimizing SPARQL query answering
over owl ontologies’, J. Artif. Intell. Res. (JAIR), 48, 253–303, (2013).

[8] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille
Fokoue, and Carsten Lutz (Editors), ‘OWL 2 Web Ontology Language
Profiles’, W3C Recommendation, (2009).

[9] Boris Motik, Ian Horrocks, and Su Myeon Kim, ‘Delta-Reasoner: A
Semantic Web Reasoner for an Intelligent Mobile Platform’, in Proc.
of WWW 2012, pp. 63–72, (2012).

[10] Boris Motik, Rob Shearer, and Ian Horrocks, ‘Hypertableau Reasoning
for Description Logics’, J. of Artif. Intell. Res., 36, 165–228, (2009).

[11] Riku Nortje, Katarina Britz, and Thomas Meyer, ‘Reachability modules
for the description logic SRIQ’, in Proc. of LPAR 19, (2013).

[12] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter, ‘Data complex-
ity of query answering in expressive description logics via tableaux’, J.
of Autom. Reas., 41(1), 61–98, (2008).

[13] Giorgos Stoilos, Bernardo Cuenca Grau, Boris Motik, and Ian Hor-
rocks, ‘Repairing ontologies for incomplete reasoners’, in Proc. of
ISWC-11, pp. 681–696, (2011).

[14] Boontawee Suntisrivaraporn, ‘Module extraction and incremental clas-
sification: A pragmatic approach for ontologies’, in Proc. of ESWC
2008, pp. 230–244, (2008).

[15] Zhe Wu, George Eadon, Souripriya Das, Eugene Inseok Chong,
Vladimir Kolovski, Melliyal Annamalai, and Jagannathan Srinivasan,
‘Implementing an inference engine for RDFS/OWL constructs and
user-defined rules in oracle’, in Proc. of ICDE, pp. 1239–1248, (2008).

[16] Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau, and Ian Horrocks,
‘Complete query answering over horn ontologies using a triple store.’,
in Proc. of ISWC 2013, (2013).

