
Automated CAPTCHA Solving:
An Empirical Comparison of Selected Techniques

M. Korakakis, E. Magkos and Ph. Mylonas
Ionian University, Department of Informatics

Plateia Tsirigoti 7, Corfu Greece
{p12kora, emagos, fmylonas}@ionio.gr

Abstract—CAPTCHAs exploit the gap in the ability between a
human and a machine to understand the semantics of specific
multimedia content, with vast applications in computer security.
In this paper we compare two techniques in automated
CAPTCHA solving for text-based CAPTCHA schemes, i.e.,
classification based on the Vector Space Model (VSM) versus a
popular Optical Character Recognition (OCR) engine. For each
technique, we build a CAPTCHA solver and give it specific sets
of text-based challenges to break. From our results we draw
conclusions whether it is efficient to create a CAPTCHA solver
by applying parts of the VSM theory and implementing a Vector
Space Image Recognizer (VSIR).

 Keywords—CAPTCHA; Image recognition; Semantic context
extraction; VSM; OCR

I. INTRODUCTION
A Completely Automated Public Turing Test to Tell

Computers and Humans Apart (CAPTCHA) is a program that
can generate visual or audio content challenges that a human is
able to pass most of the times, while a computer program is
not, with non-negligible probability [1, 2]. This semantic gap
[3], in recognizing multimedia content, between a human and a
program has shown to have many applications in computer and
network security: Mainly, to ensure integrity in online polls,
prevent/deter worms, spam, dictionary attacks, search engine
bots, denial of service (DoS) attacks, etc. [4].

Among the various types of CAPTCHA architectures [5,
6], text-based schemes are the most widely used and highly
acceptable CAPTCHA form. Such schemes use a visual image
containing alphabets and numbers in a text string that the user
must identify and type in a text box provided near the
CAPTCHA image. Typically, the challenge-image is of low
quality with different forms of noise and strong degradation
applied to it.

Since the creation of CAPTCHA there has been a
continuous arms race between CAPTCHA designers and
CAPTCHA solvers, paving the way for research into new
improved and safer designs imperative. Essentially all
commercial text-based CAPTCHAs have been defeated, using
object-recognition techniques, with high percentages of
accuracy, e.g., [7, 8, 9, 10].

Semantics-driven indexing and retrieval of multimedia
content is an integral part of the automated CAPTCHA solving

process. It generally involves the use of a semantic cue as a
basis for the creation of a training set, the classification of the
input and the acquisition of the desired information [11, 12]. In
our case the use of semantic-indexing is attained by having a
Vector Space Image Recognizer (VSIR) associate the input
with possible related content in its corpus, construct an output
and then provide a correlation between the input and the
expected outcome using a number representation, e.g., 0 may
denote no correlation, whereas 1 may denote that we have an
output, which reflects correctly the human choice.

Our Contribution. In this paper, we argue whether it is
efficient to create an image recognizer based on the Vector
Space Model (VSM) that is able to solve specific text-based
CAPTCHA challenges. This was determined by having a VSIR
compete against an already well-established technique in
automated CAPTCHA solving, namely an Optical Character
Recognition (OCR) engine. In contrast with the current state-
of-the-art strategies in CAPTCHA solving our VSM-based
approach takes advantage of the structured information that an
image presents at its core. Consequently the VSIR achieves to
extract the semantic context and to solve the text-based
CAPTCHA challenge with success. This fundamental flaw,
which the VSM uses as a basis for its functionality and can be
identified in every OCR-based CAPTCHA scheme, stresses the
importance of our research towards gaining a more complete
understanding of the security vulnerabilities presented in
current CAPTCHAs.

The remaining text of this paper is organized as follows:
Section 2 presents a brief review of existing strategies and
techniques in CAPTCHA solving. Section 3 provides a
technical assessment of the engines that were used and
illustrates the steps that were followed to compare the two
suggested techniques. In Section 4 we summarize the results
and lessons that were obtained from the analysis, declare
certain necessary assumptions that were made during the
development and the comparison phases, and suggest
improvements and possible alterations that can be applied to
the VSIR. Section 5 concludes the paper.

II. RELATED WORK
Solving the text-based challenge by devising an OCR-
strategy. A popular strategy in the research literature is the one
followed by [19, 20, 21, 14, 18], where authors attempt to
solve specific text-based challenges by introducing a

2014 9th International Workshop on Semantic and Social Media Adaptation and Personalization

978-1-4799-6814-5/14 $31.00 © 2014 IEEE

DOI 10.1109/SMAP.2014.29

44

2014 9th International Workshop on Semantic and Social Media Adaptation and Personalization

978-1-4799-6814-5/14 $31.00 © 2014 IEEE

DOI 10.1109/SMAP.2014.29

44

combination of techniques for the transformation of the image,
character extraction and recognition for each deployed
CAPTCHA scheme. Besides the noise removal and
segmentation techniques, which are depended on the text-based
challenge, the main difference between the aforementioned
strategies is the classification method being used. In [19, 20,
21], authors create a custom recognizer with the use of Support
Vector Machine (SVM). In [14, 18] an already existing OCR
engine is being used instead. Among those two, the first
category provides better success rates, mainly because of the
depth of specialization that a SVM can offer in the
classification part for a specific CAPTCHA, against a generic
OCR engine that is able to recognize a larger number of text-
based CAPTCHAs but with less accuracy. For example in [20]
the SVM was able to recognize characters with greater than
96% accuracy. Furthermore, in [14, 18] the authors
acknowledge that the accuracy of generic OCR engines can
reach high success rates only with additional training.

Taking advantage of critical design flaws. On the other hand,
authors in [22, 23, 8] carry out a systematic study of popular
text-based CAPTCHAs. By exploiting critical design errors in
each CAPTCHA scheme, they create simple but novel attacks
that have a high success rate. Based on their observations,
authors emphasize a series of recommendations against
creating flawed CAPTCHA designs. Characteristically, in [8]
Yan and Ahmad managed to achieve a higher than 90%
success against a scheme that was designed to be
segmentation-resistant without the use of OCR techniques, by
performing a simple yet efficient, in terms of computational
power and success rate, attack, and declaring that this could
lead to a complete crack with a greater than 60% rate.

III. TECHNIQUES COMPARISON

A. Building Blocks
The main tools that were used in this research were the

Tesseract engine [13] and our own VSIR implementation,
along with a provision of a corpus that contained samples of all
possible characters that the decoded CAPTCHA used.
Tesseract is an open-source Google-owned OCR engine that
was developed at HP between 1984 and 1994. It is widely
considered as one of the most accurate open-source OCR
engines available [14, 13]. A VSIR is essentially an application
of the VSM, where the stored entities are compared with each
other or with incoming search requests. This is achieved by
modelling the various information retrieval objects as elements
of a vector space and by employing matrix analysis techniques
to find the relations and key features in the entities [15].

B. Technical Assessment
Tesseract, through the use of multiple algorithms is able to

detect proportional and non-proportional words, chop joined
characters and associate broken characters without any external
guidance. In addition, it uses two character classifiers, a static
and a dynamic, which increases the accuracy when
distinguishing upper and lower letters. One major disadvantage
is that it cannot be trained against a custom dataset that
contains CAPTCHA images that differ, which renders this
particular OCR engine inefficient against CAPTCHAs that use
multiple fonts [13].

A distinctive attribute that the VSIR possess is that it
cannot become over-trained. This of course can work as a
double-edged sword because increasing the corpus size can
augment the accuracy but can also take a heavy toll on the
classification performance, thus requiring a significant amount
of processor time [24]. The VSIR cannot adapt to changes in
real time. Each time a different CAPTCHA image is being
added as a new element in the vector space, all existing images
must be re-indexed and additional training for the new
CAPTCHA is required [25]. Unlike neural networks, the VSIR
needs a standard way to deal with a problem and it cannot
come up with a new solution on its own.

C. Basis for Comparison
The images used for the comparison were created by the

ASP.NET Security Image Generator, a CAPTCHA-generating
library freely available on the Web1. The important
characteristics to note concerning all the images that had been
generated are the following: a) The individual characters are
placed in equally-sized subdivisions of the image; b) The
characters have a standard font; c) Background noise has been
generated by placing random drawn lines across the image
(Fig. 1). The first collection of CAPTCHA images contained
only numbers, the second only upper-case letters and finally
the last one had both upper-case letters and numbers. This was
done in order to examine the efficiency of both the VSIR and
Tesseract through different quantities of possible characters
that they had to recognize. The first and third collections of
CAPTCHAs were 6 characters long while the second, which
contained only letters, did not have a specific character length
due to the fact that the generator gave the option to produce
only random words and not letters.

D. Noise Removal
Noise removal was crucial in order for both solvers to be

able to conduct segmentation and character classification. Also
it is important to note that during testing it was observed that
any significant presence of noise in the picture dropped the
accuracy to low levels especially for the OCR engine. The
removal of the noise along with the segmentation technique,
were mainly based on the steps presented in [16, 9]. The
implemented algorithm initially converted the image to black
and white pixels. Then it checked for multiple non-white pixels
in a row and changed those pixels if their sum was less than or
equal to a chopping factor that was predetermined through
testing for optimal performance (Fig. 2).

Fig. 1. Image of text-based CAPTCHA produced by the ASP.NET Generator

E. Segmentation
Segmentation of characters was an important procedure for

the creation of an effective training set for the VSIR. This
technique was not applied in Tesseract, because it uses a
dictionary to identify whole set of words, as opposed to
individual characters. For that matter, feeding Tesseract with
individual characters would negatively impact its accuracy

1 http://aspsig.sourceforge.net/

4545

[13]. The CAPTCHAs that were used did not have merged
characters, so none of them were joined with each other before
noise was added. This enabled the process of taking horizontal
slices of the image so as to test where each character started
and finished, leading to the extraction of the characters into
separate images (Fig. 3). Analytical accuracy rates are depicted
in Table I.

Fig. 2. Successful noise removal (before and after)

TABLE I. SEGMENTATION PERFOMANCE

Number of images
(per CAPTCHA variation)

Percentage of failed
segmentations

 420 (numbers only) 7.85%

 574 (letters only) 4.87%

 418 (numbers and letters) 5.74%

F. Corpus Construction
A training set is an essential part of the VSIR that has a

crucial influence on its efficiency. The VSIR was trained by
breaking 70 different images that were created for each
CAPTCHA collection into separate characters. After that,
many variations of each character were organized into a corpus
in order for the VSIR to be able to efficiently recognize the
possible outcome of characters that the CAPTCHA contains.
The first training set had an average of 64.4 character
variations. The second set had 18.1 variations per character and
finally the last one had 16.3 variations for each character.

IV. RESULTS AND LESSONS LEARNED

A. Success Rates
The results of the first CAPTCHA set that contained only

numbers were in favour of the VSIR. Out of 50 images the
VSIR was able to break correctly 31. On the other hand
Tesseract was able to guess correctly 28. Again, in the second
wave of testing, the VSIR achieved better results with 24
correct guesses versus 8 correct for Tesseract. Only in the final
CAPTCHA set, Tesseract managed to achieve better results
with 12 correct against 9 for the VSIR. Information
considering the performance can be seen in Table II.

B. Attack Speed
Both solvers were implemented in Python and tested on a

desktop computer with 2.26 GHz Intel Core 2 Duo and 4 GB
RAM. The figures in Table III show that even though Tesseract
was faster than the VSIR both times can be considered
efficient. It is also important to note, that the VSIR performed
significantly better when it had a smaller data set.

Fig. 3. Successful segmentation after noise removal

C. Assumptions
The algorithm that was constructed for this paper removes

the noise and segments the characters for a specific variation of
text-based CAPTCHA. However because both the VSIR and
the Tesseract take as input images that do not have any
background noise we can assert that as long as there is a
common technique that removes correctly the noise and
segments the characters with success and the VSIR has a
proper training set, the results will always give VSIR the lead
for any given text-based CAPTCHA. It is also important to
note that even though the segmentation technique managed in
average to segment the characters with 89.39% accuracy, the
images that were included in the test sample were checked to
ensure that they had been successfully segmented in order to
prevent interference with the final results.

TABLE II. SUCCESS RATES

Size of possible
CAPTCHA characters OCR accuracy VSIR accuracy

 10 (only numbers) 56.0% 62.0%

 26 (only letters) 16.0% 48.0%

36 (both numbers and letters) 24.0% 18.0 %

D. Lessons Learned and Possible Improvements
Both solvers achieved to break the CAPTCHAs

successfully, considering that the reCAPTCHA developers ask
that computers can solve at most 5% of the generated puzzles,
or else the CAPTCHA system should be considered broken
[17]. Furthermore, even with low success rates the attack can
still be considered effective in the case that the attacker
augments his computational power, e.g., with the use of botnets
[18]. Also it is important to stress that even though the VSIR
had a relatively small sample as a training set, it had overall
better results against an experienced OCR engine such as
Tesseract.

Important optimizations for consideration are firstly the
automation of the process of creating a training corpus for the
VSIR and secondly the creation of a more independent
environment for the VSIR in terms of the type of image that it
can take as input, through the creation of a more efficient and
universal noise removal and segmentation technique. In future
work, we intend to research on finding possible correlations
concerning the VSIR recognition rate and time performance
when the corpus has different size values and contains different
samples, as well as on examining possible applications of the
VSM in other CAPTCHA variations such as the image-based
scheme.

TABLE III. TIME PERFORMANCE (SECONDS PER CAPTCHA SET)

CAPTCHA variation Tesseract VSIR

 Numbers 13.62 34.35

 Letters 13.50 30.80

 Numbers and Letters 13.15 18.59

4646

V. CONCLUSIONS
In this position paper, we attempted to conduct a first brief

investigation of current state-of-the-art techniques regarding
automated CAPTCHA solving, focusing on the application of
the VSM theory towards the implementation of an efficient
Vector Space Image Recognizer (VSIR). In this manner, it was
demonstrated herein that the VSIR can be considered as an
effective way to break CAPTCHAs. Our intention was to
assess the proposed techniques in a way that sheds some light
on the work in the field. As a result, this research aimed mainly
in the improvement of text-based CAPTCHAs through the
examination of solving techniques that can be implemented
with the intention of defeating them. Among our future work is
the extension of this applied technique to other CAPTCHA
application domains.

REFERENCES
[1] L. von Ahn, M. Blum and J. Langford. “Telling Humans and Computer

Apart Automatically”, CACM, vol. 47, 2004.
[2] M. Naor, “Verification of a human in the loop or Identification via the

Turing Test,” On the web http://www. wisdom. weizmann. ac. il/~
naor/PAPERS/human abs. html, unpublished draft, 1996.

[3] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta and R. Jain,
“Content-based image retrieval at the end of the early years,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(12), 1349-
1380, 2000.

[4] L. von Ahn, M. Blum, N. J. Hopper and J. Langford, “CAPTCHA:
Using hard AI problems for security,” In: Proceedings of the 22nd
international conference on Theory and applications of cryptographic
techniques, EUROCRYPT 2003, pp. 294-311.

[5] M. T. Banday and N.A. Shah, “Image flip CAPTCHA,” ISC
International Journal of Information Security (ISeCure), pp. 105-123,
July 2009.

[6] B. Jeng, C. C. Tseng, D. F. Tseng and J. C. Wang, “A study of
CAPTCHA and its application to user authentication,” Computational
Collective Intelligence. Technologies and Applications Lecture Notes in
Computer Science, vol. 6422, pp 433-440, 2010.

[7] G. Moy, N. Jones, C. Harkless, and R. Potter, “Distortion estimation
techniques in solving visual CAPTCHAs,” In: Proceedings of the 2004
IEEE Computer Society Conference, vol. 2, pp. 23–28.

[8] J. Yan and A. S. El Ahmad, “A low-cost attack on a Microsoft
CAPTCHA,” In: Proceedings of 15th ACM conference on Computer
and communications security, pp. 543-554, 2008.

[9] A. A. Chandavale, A. M. Sapkal and R. M. Jalnekar, “Algorithm to
break visual CAPTCHA,” ICETET 2009 Proceedings of the 2009
Second International Conference on Emerging Trends in Engineering
and Technology, pp. 258-262.

[10] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud and V. Shet, “Multi-
digit number recognition from street view imagery using deep
convolutional neural networks,” Οn the web at
http://arxiv.org/pdf/1312.6082v4.pdf, unpublished draft, April 2014.

[11] R. Datta, J. Li and J. Z. Wang, “Exploiting the human-machine gap in
image,” Transactions on Information Forensics and Security, vol. 4, pp.
504-518, September 2009.

[12] F. Monay and D. Gatica-Perez, “Modeling semantic aspects for cross-
media image indexing,” IEEE Transactions on Pattern Analysis and
Machine Intelligence , vol. 29, pp. 1082-1817, October 2007.

[13] R. Smith, “An overview of the Tesseract OCR Engine,” In: Proceedings
of the Ninth International Conference on Document Analysis and
Recognition , vol.2, pp. 629-633, 2007.

[14] P. Baecher et al., “CAPTCHAs: The good, the bad and the ugly,” In:
Proceedings of Sicherheit 2010: Sicherheit, Schutz und Zuverlässigkeit,
Beiträge der 5. Jahrestagung des Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI), 5.-7. Oktober 2010.

[15] G. Salton, A. Wong and C.S Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, pp. 613-
620, November 1975.

[16] Priyanka, H. Kaur and D. K. Kushwaha, “Reviewing effectiveness of
CAPTCHA,” International Journal of Computer Trends and Technology
(IJCTT), 2013.

[17] L. von Ahn, B. Maurer, C. McMillan, D. Abraham and M. Blum,
“reCAPTCHA: Human-based character recognition via Web security
measures,” Science, vol. 321, pp. 1465–1468, Septempber 2008.

[18] J. Wilkins, “Strong CAPTCHA guidelines v1.2,” On the web at
http://123seminarsonly.com/Seminar-Reports/008/47584359-
captcha.pdf, unpublished draft, December 2009.

[19] P. Golle, “Machine learning attacks against the Asirra CAPTCHA,” In:
Proceedings of the 15th ACM conference on Computer and
communications security, pp. 535-542, 2008.

[20] K. Chellapila, K. Larson, P. Simard and M. Czerwinski, “Computers
beat humans at single character recognition in reading-based Human
Interaction Proofs,” In: 2nd Conference on Email and Anti-Spam
(CEAS'05), 2005.

[21] M. Wang, T. Zhang, W. Jiang and H. Song, “The recognition of
CAPTCHA,” Journal of Computer and Communications, vol.2, pp. 14-
19, January 2014.

[22] E. Bursztein, M. Martin and J. C. Mitchell, “Text-based CAPTCHA
strengths and weaknesses,” In: Proceedings of the 18th ACM
conference on Computer and communications security, 2011.

[23] J. Yan and A. S. El Ahmad, “CAPTCHA Robustness: A security
engineering perspective,” Computer, vol. 44, pp. 54-60, February 2011.

[24] H. Chuang and K. Seamons, “Document ranking and the vector space
model”, Software IEEE, vol.14, pp. 67-75, 1997.

[25] V. V. Raghavan and S. K. M. Wong, “A critical analysis of vector space
model for information retrieval”, Journal of the American Society for
Information Science, vol.37, pp. 279-287, Semptember 1986.

4747

