
  

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ 

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών 

 

 

 

Κατασκευή Actuated Tangibles και Αλληλεπίδραση με Επιφάνειες 

Αφής 

 

 

Διπλωματική Εργασία 

 

 

Χαρίσης Παπαχαρίσης 

 

 

Επιτηρητές:   

Ignacio Aedo, Καθηγητής, Universidad Carlos III de Madrid (UC3M) 

Στέφανος Κόλλιας, Καθηγητής, Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) 

Andrea Bellucci, Ερευνητής, Universidad Carlos III de Madrid (UC3M) 

Κώστας Καρπούζης, Ερευνητής, Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) 

 

 

 

Αθήνα, Δεκέμβριος 2014 

  



  

  



  

 

NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

Faculty of Electrical and Computer Engineering 

Department of Information Technology and Computer Science  

 

 

 

Construction of Actuated Tangibles and Interaction with Interactive 

Tabletops 

 

 

Thesis Dissertation 

 

 

Charisis Papacharisis 

 

 

Supervisors:   

Ignacio Aedo, Full Professor, Universidad Carlos III de Madrid (UC3M) 

Stefanos Kollias, Full Professor, National Technical University of Athens (NTUA) 

Andrea Bellucci, Researcher, Universidad Carlos III de Madrid (UC3M) 

Kostas Karpouzis, Researcher, National Technical University of Athens (NTUA) 

 

 

 

Athens, December 2014 

 



  

 

  



  

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ 
Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών 

 

Κατασκευή Actuated Tangibles και Αλληλεπίδραση με Επιφάνειες 

Αφής 

 

 

Διπλωματική Εργασία 

 

Χαρίσης Παπαχαρίσης 

 

 

Επιτηρητές:   

Ignacio Aedo, Καθηγητής, Universidad Carlos III de Madrid (UC3M) 

Στέφανος Κόλλιας, Καθηγητής, Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) 

Andrea Bellucci, Ερευνητής, Universidad Carlos III de Madrid (UC3M) 

Κώστας Καρπούζης, Ερευνητής, Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) 

 

 

 

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την............................ 

 

 

....................                ....................               .................... 

 

 

 

Αθήνα, Δεκέμβριος 2014 



  

 

 

..................... 

 

Χαρίσης Παπαχαρίσης 

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Η/Υ Ε.Μ.Π. 
 

 

 

 

 

 

 

 

 

Copyright ©  Χαρίσης Παπαχαρίσης 

Με επιφύλαξη παντός δικαιώματος. All rights reserved. 

 

 

 

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή 

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για 

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να 

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν 

τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. 

 

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον 

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού 

Μετσόβιου Πολυτεχνείου. 

 

 

It is prohibited to copy, save and/or distribute this work or parts of it, for commercial purposes. It 

is permitted to reproduce, save and/or distribute for non-commercial purposes, educational or 

research ones, provided that the source will be mentioned and this message will be maintained. 

Questions regarding the use of the dissertation for commercial purposes must be addressed to the 

author. 

 

The statements and conclusions included in this document express the author’s perspective and 

they do not represent the official viewpoints of the National Technical University of Athens. 
 

 

 

 



  

Ευχαριστίες 

 

 

Η εργασία εκπόνηθηκε σε συνεργασία του τομέα Τεχνολογίας Πληροφορικής και Υπολογιστών, 

της σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ του Εθνικού Μετσόβιου 

Πολυτεχνείου, και του DEI lab του τμήματος Πληροφορικής (Computer Science department) 

του Πανεπιστημίου Carlos III της Μαδρίτης (Universidad Carlos III de Madrid), στα πλαίσια του 

προγράμματος ανταλλαγής Erasmus στο οποίο συμμετείχα κατά το ακαδημαϊκό έτος 2013-2014.  

 

Θα ήθελα λοιπόν να ευχαριστήσω τον υπεύθυνο καθηγητή του εν λόγω εργαστηρίου Ignacio 

Aedo, για την ανάθεση διπλωματικής στη συγκεκριμένη έδρα. 

Ιδιαίτερες ευχαριστίες για τον επιβλέποντα για τη συγκεκριμένη διπλωματική Andrea Bellucci, 

για την πολύτιμη καθοδήγηση και ενθάρρυνση σε όλη τη διάρκειά εκπόνησης της εργασίας, 

όπως και μετά την περάτωσή της. 

Επιπλέον, ευχαριστώ θερμά τους επιτηρητές μου στο Εθνικό Μετσόβιο Πολυτεχνείο, κκ. 

Στέφανο Κόλλια και Κώστα Καρπούζη, που μου έδωσαν την ευκαιρία να πραγματοποιήσω την 

διπλωματική μου μέσω του εν λόγω προγράμματος, όπως και για την συνολική υποστήριξή 

τους.  

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου για την συμπαράστασή τους καθ’όλη τη 

διάρκεια των σπουδών μου. 
 

 

 

 

Acknowledgements 

 

 
This work was fulfilled in cooperation between the Information Technology and Computer 

Science department, of the Electrical and Computer Engineering faculty, of the National 

Technical University of Athens and the DEI lab of the Computer Science department of the 

Universidad Carlos III de Madrid, as part of the exchange program Erasmus in which I 

participated during the academic year 2013-2014.  

 

I would like to thank therefore, the professor in charge of the DEI lab, Ignacio Aedo, for 

assigning to me a thesis in this laboratory. 

Special thanks go to the supervisor of this thesis, Andrea Bellucci, for the precious guidance and 

motivation throughout the whole project, as well as after its completion. 

In addition, I would like to thank my supervisors in the National Technical University of Athens, 

Stefanos Kollias and Kostas Karpouzis, for offering me the opportunity to carry out my thesis 

through this program, and for their support in general. 

Finally, I would like to thank my family for their encouragement throughout my studies. 
 

 

 



  

  



  

Abstract  

 

 

Αν και η ιδέα της αλληλεπίδρασης με απευθείας φυσική επαφή γίνεται όλο και πιο κοινή χάρη 

στην ύπαρξη ολοένα και περισσότερων touch devices, η χρήση διαδραστικών tangibles πάνω σε 

επιφάνειες και οι κοινωνικές τους προεκτάσεις, αποτελεί κάτι σχετικά νέο. 

 

Αντικείμενο της εν λόγω διπλωματικής εργασίας είναι να ερευνήσει την λειτουργία των actuated 

tangibles και του συνδέσμου που προσφέρουν μεταξύ του «ψηφιακού» και του «φυσικού» 

κόσμου, καθώς και την χρηστικότητα που εισάγουν. Χάρη στην διαισθητικότητα που 

χαρακτηρίζει την λειτουργία της αφής, ο χρήστης εξοικειώνεται πολύ γρήγορα με την χρήση 

τόσο της επιφάνειας όσο και του actuated tangible.  Ως εκ τούτου, γίνεται αντιληπτή η ιδιαίτερη 

σημασία της λειτουργικότητας τους όπως επίσης και οι πολλές δυνατότητες που αυτή 

προσφέρει. 

 

Η διπλωματική εργασία επικεντρώνεται στην ανάπτυξη ενός actuated tangible όπως επίσης και 

στην αλληλεπίδραση του με οθόνες αφής, για παράδειγμα: ένα tablet. Εκτός αυτού, ο στόχος μας 

είναι να ερευνήσουμε τις αξιοσημείωτες προοπτικές που εισάγουν τα actuated tangibles σε 

διάφορους τομείς, δίνοντας έμφαση στον σχεδιασμό και οργάνωση σε καταστάσες εκτάκτου 

ανάγκης (emergency cases). 
 

  



  

Abstract 

 

 
Although the concept of interaction through direct physical contact is becoming more 

commonplace with the growing availability of many touch devices, the use of interactive 

tangibles on digital tabletops and their social aspects is relatively new. 

 

The goal of this thesis is to examine the function of the actuated tangibles and the interlink they 

offer between the ‘digital’ and ‘physical’ world, as well as the usability they introduce. Thanks 

to the intuitiveness that characterizes the sense of touch, the user is getting very quickly familiar 

with the usage not only of the touch screen, but of the actuated tangible as well. For this reason, 

the importance of their functionality is easily noticeable, as well as the numerous prospects that it 

offers. 

 

The dissertation focuses on the development of an actuated tangible as well as its interaction 

with touch screens, for example: a tablet. In addition, our goal is to explore the remarkable 

potential that the use of actuated tangibles introduces in various sectors, emphasizing in the field 

of emergency planification. 

 
 

Key words: actuated tangibles, interaction, tangible user interfaces, interactive tabletops, TUI, 

Arduino, TUIC, emergency response, planification 

 
  



  

 



12 
 

  

Table of Contents 
Chapter One: Introduction..................................................................................................................... 14 

1.1 Motivation ................................................................................................................................... 14 

1.2 Structure...................................................................................................................................... 15 

Chapter Two: History of Actuated Tangibles and Related Work ............................................................. 16 

2.1 History of Actuated Tangibles ...................................................................................................... 16 

2.2 Related Work and other Examples ............................................................................................... 21 

Chapter Three: Uses of TUIs and Emergency Planification...................................................................... 25 

3.1 Uses of TUIs ................................................................................................................................. 25 

3.2 Emergency Response Planning ..................................................................................................... 27 

Chapter Four:  Project Description ......................................................................................................... 31 

4.1 Electronic Part ............................................................................................................................. 31 

4.2 Programming Part ........................................................................................................................ 40 

4.3 The Project .................................................................................................................................. 43 

Chapter 5: Limitations, Strengths and Future Work ............................................................................... 46 

5.1 Limitations ................................................................................................................................... 46 

5.2 Strengths ..................................................................................................................................... 47 

5.3 Future Work ................................................................................................................................ 48 

Chapter 6: Conclusion............................................................................................................................ 51 

Chapter 7: References ........................................................................................................................... 53 

Chapter 8: Appendix .............................................................................................................................. 56 

 

 
  



13 
 

  

  



14 
 

  

 

Chapter One: Introduction 

 

 

 

1.1 Motivation  
 

 

During the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface 

type that interlinks the digital and physical worlds. Drawing upon users’ knowledge and skills of 

interaction with the ‘real’ world, TUIs demonstrate a potential to enhance the way in which we 

interact with digital information. 

Various technological approaches in the area of the next generation’s user interfaces (UIs) have 

been influencing each other, resulting in mixed approaches that combine different ideas or 

interaction mechanisms. 

 

Tangible user interfaces (TUIs) combine the dynamic qualities -typical of digital information 

representations- with physical affordances. TUIs, in combination with multi-touch tables, 

provide passive haptic feedback for hand gestures. This allows people to interact with the input 

devices in the same way they interact with everyday objects, applying real world skills without 

the need of training or instructions. The benefits of these user interfaces include the simultaneous 

reduction of cognitive load placed on users (while they interact with an application) and 

simplification of the interaction itself.  

 

Specifically, actuated TUIs allow data to be connected to, and represented by, physical objects 

(e.g. dynamic data can be linked to dynamics of the objects). They also facilitate more engaging, 

playful interaction and afford the use of movement as an expressive output modality. 

 

Until recently, the coupling between ‘tangible’ and ‘digital’ has usually been in one direction; we 

could change digital information through physical handles, but the digital world had no effect on 

tangible interface elements. The use of physical motion, however, strongly relates to tangible UI 

philosophy. The exploration of self-actuation seems to be a natural direction for tangible user 

interfaces research to take. Indeed, one of the most attractive properties of the digital world is 

malleability: digital objects are easy to create, modify, replicate, and distribute. Physical objects 

on the other hand are rigid and static, which limits their utility in tangible UIs. If we could 

dynamically change physical properties of tangible UI elements: their shape, texture, position, 

speed of motion, and so on, the design vocabulary of tangible user interfaces would expand 

tremendously.  

 

 

Therefore, we decided to construct an actuated tangible (a small vehicle) and study its movement 

onto a touch screen. By that means, we intended to experience the level of interaction that its 

self-actuation introduces, and reflect on its potential future use, primarily in the sector of 

emergency/disaster response. 



15 
 

  

Our project could be briefly described like this: With a software application created, the user is 

able to define any straight route on the screen, setting the initial and final points. Afterwards, 

placing the vehicle on the initial point, the car starts moving towards the final one, where it stops 

automatically, thanks to the continuous position-feedback that receives from the tablet we used. 

The user is then able to define a new route. 

 

 

 

1.2 Structure 
 

 

The project consists of three stages that are going to be analyzed more extensively later: 1) the 

design of the electrical circuit and the total construction of the vehicle, 2) the implementation of 

the tablet app for the path creation, 3) the wireless communication between the tablet and the car 

for the provision of the feedback required. 

 

 

Provided that, the thesis follows the following structure: 

 

In the first chapter, we have made the introduction and we have presented our implementation in 

general terms. 

In the second chapter, we make some references on the history of Tangible User Interfaces and 

the related existing work. 

In the third chapter, we examine the different uses of TUIs as well as the sectors where they can 

contribute positively. Here we make a further examination of the field of emergency planning, 

which is the sector that interests us the most for future applications. 

In the fourth chapter, we describe the different stages that our project went through (as 

mentioned above) and the procedure that was followed, in greater detail.  

In the fifth chapter, we describe the limitations, strengths and future work possibilities that 

characterize our implementation.  

Finally, in the conclusion, we extract our outcomes and present our ideas and expectations 

regarding future development of the work presented. 
 

 



16 
 

  

Chapter Two: History of Actuated Tangibles and Related Work 

 

 

 

2.1 History of Actuated Tangibles 

 

 

 

Actuation 

 

To begin with, there is a crucial question to ask: What is actuation? 

Actuation means: ‘to put in action, to move’. Therefore, we define actuated interfaces as 

interfaces in which physical components move in a way that can be detected by the user.  

 

There are many types of actuation, for example:  

 Change in spatial position of objects or their parts, e.g. their position, orientation;  

 Change in speed of motion of objects or their parts, e.g. speed of rotation, speed of linear 

motion, direction of motion;  

 Change in surface texture of objects or their parts, e.g. visible or perceived by touch;  

 Change in force applied to the user, e.g. change in force amplitude, direction, or torque.  

 

In order to take advantage of the benefits of a tabletop TUI not only for input but also for output, 

the interface has to be bidirectional. Some form of actuation mechanism is required, so that not 

only the user but also the computer can actively move the tangibles. 

 

In 2003, Koleva [33] conducted an analysis of the types of coupling between the physical and 

digital and compared this with systems available at the time, revealing an asymmetry. Whereas 

many systems used physical objects to control digital objects, only few examples of ‘tangibles 

that push back’ were found. Most systems supported only one-way communication, either being 

an ambient display or a data manipulation tool. Although actuation had been a part of the vision 

of TUIs from the very start, given the technical difficulties, it is only lately emerging as a strong 

trend.  

 

Gibson in 1960s underlined that giving the users freedom to actively and repeatedly move their 

hands and fingers while exploring the shape of objects increases the amount of information 

received through haptic sense. Note that such free exploratory movements are difficult to create 

with indirect haptic devices (like haptic stylus) since they usually allow for only one point of 

contact.  

 

From another perspective, Ishii underlined the importance of tailored design of a tangible for a 

specific function to benefit from natural affordances, at the same time preserving a balance to a 

more general approach for the reason of reusability. There are several examples in related work 

how the functionality of a tangible can be customized. 
 



17 
 

  

Different Approaches 

 

Throughout the years, different technologies have been influencing each other, resulting in 

totally new approaches that combine different views or interaction mechanisms. For instance, we 

can mention Tangible Augmented Reality Interfaces and Tangible Tabletops: 

 

Tangible Augmented Reality (Tangible AR) Interfaces combine tangible input with an 

augmented reality display or output. The virtual objects are ‘attached’ to physical objects that the 

user manipulates. A 3D-visualization of the virtual object is overlaid onto the physical 

manipulative which is tagged with a visual marker (detectable with computer vision). The digital 

imagery becomes visible through a display, often in the form of see-through glasses, a magic 

lens, or an augmented mirror. Such a display typically shows a video image where the digital 

imagery is inserted at the same location and 3D orientation as the visual marker. 

 

 

Tangible Tabletop Interaction combines interaction techniques and technologies of interactive 

multi-touch surfaces and TUIs. Many tangible interfaces use a tabletop surface as base for 

interaction, embedding the tracking mechanism in the surface. With the advancement in 

interactive and multi-touch surfaces the terminology has become more specific, tabletop 

interaction referring predominantly to finger-touch or pen-based interaction. But simultaneously, 

studies within the research area of interactive surfaces increasingly investigate mixed 

technologies, typically utilizing a few dedicated tangible input devices and artifacts on a multi-

touch table. 

 

Hornecker and Buur [34] suggest the term tangible interaction to describe a field of approaches 

related to, but broader than TUIs. They argue that, many systems developed within arts and 

design aimed at creating rich physical interactions, share characteristics with TUIs. 
 

 

 

Implementation Technologies 

 

The breadth of technologies, devices, and techniques used for prototyping and implementing 

TUIs can be bewildering. Thus, we use a number of organizing properties to discuss and 

compare common TUI implementation technologies. Following, we describe three 

implementation technologies that are often used in the development of TUIs: RFID, computer 

vision, and microcontrollers. 

 

 

RFID 

Radio-Frequency Identification (RFID) is a wireless radio-based technology that enables to sense 

the presence and identity of a tagged object when it is within the range of a tag reader (an 

antenna). There are generally two types of RFID tags: active RFID tags, which contain a battery 

and thus can transmit a signal autonomously; and passive RFID tags, which have no battery and 

require an external source to initiate signal transmission. In general, RFID tags contain a 



18 
 

  

transponder comprising of an integrated circuit for storing and processing information, and an 

antenna for receiving and transmitting a signal. 

Most RFID-based TUIs employ passive inexpensive RFID tags and hence consist of two parts: a 

tag reader that is affixed to a computational device and a set of tagged objects. The 

communication between a tag and a reader only occurs when both are proximate. The actual 

distance varies based on the size of the antenna and that of the RFID tag, as well as the strength 

of its field. 

 

Due to the cost of larger antennas, RFID is usually constrained to short distance detection, with 

objects required to be placed directly on -or swiped past- the reader. Some tag readers are 

capable of detecting multiple tags simultaneously, or writing small amounts of data to individual 

tags. Other tag readers are read-only or only capable of detecting a single tag at a time. When a 

tag is detected, the tag reader passes an ASCII ID string to the computer. The TUI application 

can then interpret the ID input string, determine its context, and provide feedback. Multiple TUIs 

are implemented using RFID technology. 
 

 

Computer Vision 

In the context of TUIs, computer 

vision is often used for spatial, 

interactive surface applications 

because it is capable of sensing 

the position of multiple objects 

on a 2D surface in real time 

while providing additional 

information such as orientation, 

color, size, shape, etc. Computer 

vision systems can be 

characterized as being either of 

the artificial intelligence variety 

(where sophisticated algorithms 

are used for automatically 

interpreting a picture) or of the tag variety (where the system tracks specifically define fiducial 

markers that are attached to physical objects).  

 

Tag-based systems tend to be more robust, more accurate, and computationally cheaper than 

systems of the artificial intelligence variety. Thus, tag-based computer vision is often used in the 

development of TUIs. Examples include Urp [21], a tangible user interface for urban planning; 

the reacTable [22], a tangible electro-acoustic musical instrument, and Tern, a tangible 

programming language for children. 

 

Performance and reliability of vision-based systems is susceptible to variations in lighting and 

motion blur. Using color to identify objects can be relatively robust, but limits object recognition 

to a small number of high contrast colors. A way to improve the robustness and speed of 

detection is to paint tokens so they reflect infrared light and to employ a camera filter. This will 

Figure 2.1  Photo of the reacTable TUI 



19 
 

  

result in the camera only detecting the painted objects, but reduces the systems’ ability to 

distinguish different objects.  

 
 

Microcontrollers, Sensors, and Actuators 

Microcontrollers act as a gateway between the physical world and the digital world. They are 

small and inexpensive computers that can be embedded in a physical object or in the physical 

environment. Microcontrollers receive information from the physical world through sensors, and 

affect the physical world through actuators. 

There is a wide variety of sensors and actuators available to be used in embedded systems. 

Sensor technology can capture a wide range of physical properties including light intensity, 

reflection, noise level, motion, acceleration, location, proximity, position, touch, altitude, 

direction, temperature, gas concentration, and radiation. 

 

Actuators affect the digital world by producing light, sound, motion, or haptic feedback. 

Microcontrollers may also be connected to RFID readers. Frequently used actuators include 

LEDs, speakers, motors, and electromagnets. 

Many TUI systems are built using embedded microcontrollers. Examples include Posey [35], a 

poseable hub and strut construction toy; System and Flow Blocks, an educational TUI for 

simulating system dynamics; or Senspectra [23], a physical modeling toolkit for sensing and 

visualization of structural strain. 

 

While some of the microcontrollers used for developing TUIs require low-level programming 

skills, several easy-to-use prototyping platforms are currently available for educational purposes 

as well as for TUI developers from non-technical backgrounds. 

 

Arduino [14] is an open source physical computing platform based on a simple I/O board and a 

development environment. Arduino can be used to develop stand-alone interactive devices or can 

be connected to software running on a computer. The Arduino development environment is a 

cross-platform Java application that provides a code editor and compiler and is capable of 

transferring firmware serially to the board. It is also well connected with Processing [15], a 

development environment aimed at the electronic arts and visual design communities. The 

Arduino programming language is related to Wiring, a C-like language. 

 
 

 
 

Tool Support for Tangible Interaction 
 

Several toolkits and software libraries have emerged to support the implementation of functional 

TUI prototypes. 

 

Phidgets [24] provides a set of “plug and play” USB-attached devices (e.g., I/O boards, sensors, 

and actuators) that are analogous to widgets in graphical user interfaces. For example, Phidets 

allows any analog sensor to be plugged into its board, as long as it modulates a 5-V signal. 

Similarly, any on/off switch and other digital I/O devices can be plugged to the board and 

controlled by a binary value. Phidgets are aimed to support software developers in the 



20 
 

  

implementation of mechatronic TUI prototypes composed of wired sensors and actuators. Such 

TUIs are capable of both physical input and physical output. The main advantage of Phidgets is 

that they are centrally controlled through a conventional computer rather than through a standard 

microprocessor. Thus, the integration of digital capabilities such as networking, multimedia, and 

device interoperation becomes easier. 

 

iStuff [25] uses Java to control a set of light-weight wireless physical devices. iStuff is aimed at 

enabling interaction designers to rapidly prototype applications for an environment called the 

iRoom. Through an intermediary software called the Patch Panel, interaction designers can 

define high-level events and dynamically map them to input and output events. 

 

We have already discussed Arduino in the previous section on implementation technologies. It is 

a toolkit consisting of the Arduino board and programming environment. Different from 

Phidgets and iStuff, which entail specifically built sensors and actuators that are easily plugged 

together and are centrally controlled through a conventional computer, Arduino interfaces with 

standard electronics parts. Arduino thus does not ‘black-box’ the electronics, but requires 

physical wiring, circuit building, and soldering. 

 

The major advantage of the tools discussed above is that they lower the threshold for 

implementing fully functional TUI prototypes by hiding and handling low-level details and 

events. Hence, they significantly reduce the duration of each design/implementation/test cycle. 

 
 

 

Two-handed Interaction 
 

Regarding new design processes and forms of interaction, it is worth mentioning few words 

about the two-handed interaction:  

While early HCI studies on two-handed interaction viewed two handed input as a technique for 

performing two subtasks in parallel, later studies showed that two-handed interaction provides 

additional benefits in the context of spatial manipulations and 3D input. 

 

Hinckley found that for 3D input, two-handed interaction can provide additional benefits: 

(a) users can effortlessly move their hands relative to one another or relative to a real object, but 

moving a single hand relative to an abstract 3D space requires a conscious effort; 

 

(b) while one-handed 3D input can be fatiguing, two-handed interaction provides additional 

support. When hands can rest against one another or against a real object, fatigue can be greatly 

reduced;  

 

(c) using two hands, a user can express complex spatial relations as a single cognitive chunk. 

This not only makes the interaction parallel, but also results in an interface which more directly 

matches the user’s task. 

 

Hinckley [36] noted:  ‘In related experimental work, we have demonstrated that using two hands 

can provide more than just a time saving over one-handed manipulation. Two hands together 

provide the user with information which one hand alone cannot. Using two hands can impact 



21 
 

  

performance at the cognitive level by changing how users think about a task: using both hands 

helps users to reason about their tasks.’ 
 

 
 

2.2 Related Work and other Examples 
 

 

Regarding the related existing work, Brave demonstrated the first distributed actuated tabletop 

TUI with the PSyBench (1998) [20]. Using two synchronized motorized chessboards, his system 

could position one object at a time with an electromagnet but could not control the rotation. 

 

With his Actuated Workbench(2002) [8], Pangaro introduced the concept of actuated tangibles 

used for two-way communication with a computer system. They built an array of electromagnets 

under the surface of a table to position small pucks fitted with permanent magnets and an LED 

for optical tracking. However, TUIs with an actuation mechanism built into the table involve 

high technological effort and are not very flexible in the size of the interaction volume or the 

mobility of the setup. 

 

Early examples of actuated TUIs include the peek-a-boo surrogates which are rotated by a servo 

motor, and the Navigational Blocks which are equipped with orientation sensors and 

electromagnets, and programmed to attract or repel each other to give actuated feedback on 

whether a particular configuration yields any output for a database search. The Actuated 

Workbench used magnetic force to move objects on a table. A later incarnation of the same idea 

is Pico, a TUI that can sense and move small objects on top of a surface. This type of system is 

described by Poupyrev as self-rearranging displays that consist of multiple parts that rearrange 

themselves in space, in contrast to Shape displays that directly create 3D physical shape.  

 

Actuated tangibles with autonomous behavior can also be interpreted as robots. Jacobsson 

presented the see-Puck [27] and the GlowBots [28], a collection of LED displays on 

autonomously moving robotic platforms that communicate with each other, resulting in a 

continuously changing LED pattern on the surface and reacting to people picking up and 

relocating them. Robotic tangibles might extend to an architectural scale: Biloria presented a 

series of experiments developing real-time interactive spatial prototypes, using pneumatics for 

actuation e.g., shape-shifting furniture and room units.  

As an example of shape-shifting displays, Poupyrev presented Lumen [30], a low resolution 13 

Χ 13 pixel bit-map display where each pixel can individually move up and down. This enables a 

moving physical shape or texture augmenting a 2D visual display as well as tangible 3D controls 

that can literally be pressed down. Sprout I/O [29] combines textiles and shape-memory alloys to 

create a kinetic display from soft textile that can sense touch. 

The Linguabytes project provides a nice example of using actuation in a subtle way, almost 

unnoticeably easing a task. This learning system helps multi-handicapped toddlers with motor 

impairment. It directs their hand when they place a physical piece on a platform (if the RFID tag 

is detected, electromagnets pull the piece into place) and has a slider that automatically limits 

range depending on its position.  

 



22 
 

  

Other TUIs employ actuation as vibrotactile feedback on information being detected and sucked 

into a handheld device. Actuation, being the technical basis for product movement, is 

investigated also in product design, where movement (or ‘behavioral expression’) provides a 

means to increase product expressiveness. Movement can make abstract shapes come seemingly 

alive, as human perception has an intrinsic tendency for animism. 

For example, the Mac laptop’s softly and rhythmically blinking LED gives the impression of 

breathing. Products can also move physically, movement constituting a fourth dimension of 

design. Product movement can even express emotions through variation in speed, acceleration, 

type and volume of path, rhythm, and randomness. 

 

 

Another approach when it comes to actuated tangibles, is the ‘Shape display’ [7]. 

Shape displays attempt to create 3D physical shapes directly and some of the shape displays 

share following common properties:  

  They display relief-like 

shapes by physically displacing a 

surface of the device. This is  

done either by changing the  

properties of the materials, e.g. 

Protrude, Flow or Snoil, or by 

using mechanically actuation, 

such as in case of Aegis Surface, 

FEELEX and etc. 

 

 They combine dynamic 

shapes with images, e.g. Aegis 

Surface, Lumen or Feelex. 

Combining shape with image is 

important. For example, if our goal is to display a 3D shape, it is natural to assume that the 

shape’s surface would have color and patterns, as in the case of real objects.  

That would require image producing capabilities. Based on these observations, the shape 

displays can be generalized as an extension of traditional bitmapped displays where each pixel 

has an additional attribute: height. 

The actual mechanism of displacement, the shape and the arrangement of the pixels depends on 

implementation. We call this design approach an ‘RGBH graphics’, where RGB is a color 

components and H is a height of a pixel.  

 

 

Regarding more recent work, Touchbugs [2] are active tangibles that are able to move across 

surfaces by employing vibrating motors and can communicate with camera-based multi-touch 

surfaces using infrared LEDs. Touchbugs’ embedded inertial sensors and computational 

capabilities open a new interaction space by providing autonomous capabilities for tangibles that 

allow goal directed behavior. 

Figure 2.2  Demonstration of the ‘Shape display’ function 



23 
 

  

They are small tangibles that 

use directed bristles and 

vibration motors for 

actuation (giving them the 

ability to move 

independently). Their 

infrared LEDs allow multiple 

Touchbugs to be spatially 

tracked (position and 

orientation) on optical multi-

touch tables and to 

communicate information 

about their internal state to 

the table. Embedded inertial 

sensors, which capture 

displacement and orientation, provide rich opportunities for interaction design including direct 

physical manipulation, as well as symbolic and metaphorical gestures. This novel combination of 

sensing and actuation capabilities goes beyond simple changes of (virtual) states (e.g. by the use 

of buttons) offering significantly more potential of expressive interaction. 

 

 

Apart from the above, a novel class of actuated tabletop tangibles is called magnetic widgets, or 

Madgets [6]. Besides moving Madgets across the table, the user can take advantage of new 

actuation dimensions, such as height, force feedback, and power transfer. Furthermore, Madgets 

are low-cost, easy to prototype, and do not require any built-in electronics or power source for 

actuation or tracking.  

Madgets introduce the following very useful characteristics: 

 

 Force feedback. Beside the inherent haptic feedback of tangible controls, actuation can 

provide active force feedback as an additional output channel.  

 Resistance. By default, moveable parts such as the turning arm of a knob can be rotated 

freely. Actuation, however, allows us to change the resistance or the perceived friction of 

an object by adapting the PWM signal. By attracting a slider knob we can make it harder 

to move. 

 Vibration feedback. The tangential actuation can be used to let Madgets vibrate. This can 

act as an audiohaptic signal that a 

Madget needs attention, e.g., when 

a critical value is reached or when 

a remote user has changed a value. 

Vibration patterns could also be 

used to create more complex 

feedback. 

 Inductive energy transfer. 

Induction is a well understood 

charging technique for devices 

ranging from electric tooth brushes 

Figure 2.3  Touchbugs 

Figure 2.4  Madgets in action 



24 
 

  

to mobile phones. This basic principle can be applied to transfer power from the table to Madgets 

in order to support electronics without the need for batteries or cables. 

 

 

Another actuated tangible is called ACTO [9], and it is principally characterized by the concept 

of reusability and rapid prototyping. 

 

Its development follows a modular design strategy for actuated tangible user interface objects 

(ACTOs). Because of the high grade of modularity, typically integral parts like the actuation 

mechanism or physical configuration can be individually customized and interchanged, allowing 

reusability for different scenarios and setups. The ACTOs can be equipped with different I/O 

devices, ranging from simple buttons to complex sensors. The system is also very mobile and 

can be set up quickly anywhere. The concept targets in minimizing the time spent on the 

redesign of the system for different experiments. 

 

 

 

  



25 
 

  

Chapter Three: Uses of TUIs and Emergency Planification 

 

 

 
Here we firstly present the big variety of applications where the actuated tangibles can benefit 

the users, and afterwards we take a closer look in the domain of emergency response. 

 

 

 

3.1 Uses of TUIs 
 

 

 

TUIs for Learning 

 

A large number of TUIs can be classified as computer-supported learning tools or environments. 

There are several underlying reasons for this. First, learning researchers and toy designers have 

always followed the strategy of augmenting toys to increase their functionality and 

attractiveness. Second, physical learning environments engage all senses and thereby support the 

overall development of the child. 

 

A range of projects often combine augmented reality techniques with tangible interface notions. 

Africano present ‘Ely the Explorer’ [37], an interactive play system that supports collaborative 

learning about geography and culture while practicing basic literacy skills. The system mixes 

touch-screen technology, use of physical knobs to interact with screen content, tangible toys, and 

RFID-tagged cards. Related to literacy education is WebKit, a system supporting the teaching of 

rhetorical skills to school children. A more recent development is TUI’s supporting learning for 

children with special needs. Digital construction kits such as Topobo [38] and Lego 

MindstormsTM are increasingly used within educational robotics specifically for special needs 

education.  
 

 

 

Problem Solving and Planning  

 

Generally speaking, tangible representation is most compelling in spatial or geometric 

application domains such as urban planning and architecture where the physical arrangement and 

manipulation of objects has a direct mapping to the represented problem. It has been found that 

using a TUI can support designers’ spatial cognition, reduce cognitive load, and enable more 

creative immersion in the problem. However, several studies have also demonstrated the benefits 

of tangible interaction with abstract information tasks. 

 

Urp is a TUI for urban planning that allows users to collaboratively manipulate a series of 

physical building models and tools upon a surface, in order to perform an analysis of shadows, 

proximities, reflections, wind, and visual space. While users place and manipulate building 



26 
 

  

models upon the surface, the interface overlays digital information onto the surface, activating 

and updating multiple simulations. 

Physical Intervention in Computational Optimization (Pico) is a TUI based on a tabletop surface 

that can track and move small objects on top of it. The position of these physical objects 

represents and controls application variables. The Pico interface has been used to control an 

application for optimizing the configuration of cellular telephone network radio towers. While 

the computer autonomously attempts to optimize the network, moving the objects on the table, 

the user can constrain their motion with his or her hands, or using other kinds of physical objects 

(e.g., rubber bands). 

 

 

 

Information Visualization 

 

By offering rich multimodal representation and allowing two-handed input, tangible user 

interfaces hold a potential for enhancing the interaction with visualizations. Several systems 

illustrate the use of tangible interaction techniques for exploring and manipulating information 

visualizations. 

GeoTUI [32] is a TUI for geophysicists that provides physical props for the definition of cutting 

planes on a geographical map that is projected upon a surface. The system enables geophysicists 

to select a cutting plane by manipulating a ruler prop or selection handles upon the projected 

map.  

 

 

 

Tangible Programming 

 

The concept of tangible programming, the use of tangible interaction techniques for constructing 

computer programs, has been around for almost three decades since Radia Perlman’s Slot 

Machine interface [26] was developed to allow young children to create physical Logo programs.  

 

Several TUIs allow children to teach an electronic toy to move by repeating a set of guiding 

motions or gestures. Examples include Topobo, Curlybot, and StoryKits [31]. This approach for 

programming is often referred to as programming by demonstration or, as suggested by Laurel, 

programming by rehearsal. Many tangible programming systems use physical constraints to form 

a physical syntax that adheres to the syntax of a programming language. For example, Tern 

consists of a collection of blocks shaped like jigsaw puzzle pieces, where each piece represents 

either a command (e.g. repeat) or a variable (e.g. 3). 

 

 

 

Entertainment, Play, and Education 

 

Many museum interactives that combine hands-on interaction with digital displays can be 

interpreted as TUIs. For example, at the Waltz dice game, in the Vienna ‘Haus der Music’ 

(Museum of Sound), visitors roll with two dice to select melodic lines for violin and recorder, 



27 
 

  

from which a short waltz is automatically generated. An exhibition about DNA at the Glasgow 

Science Museum includes several exhibits that allow visitors to tangibly manipulate DNA 

strands to understand how different selections effect genes. 

 

Leitner presents a truly mixed reality gaming table that combines real and virtual game pieces. 

Real objects are tracked by a depth camera and can become obstacles or a ramp in a virtual car 

race, or real and virtual dominos are connected to tumble into each other. 
 

 

 

Music and Performance 
 

Music applications are one of the oldest and most popular areas for TUIs, becoming ubiquitous 

around the millennium. Music TUIs are either designed for the novice where they provide an 

intuitive and easily accessible toy, or aim at the professional that appreciates physical 

expressiveness, legibility, and visibility when performing electronic music in front of an 

audience.  

The Audiopad system [39] allows users to manipulate and mix sound samples by placing 

tangible tokens onto an augmented surface. New samples can be dragged onto the surface from a 

menu on the rim. 
 
 

 
Biomedical Purposes 
   

Science demands high levels of accuracy, which limits the types of tools available to researchers.  

In the study of any protein, there are two major questions: what does it do and how does it do 

that? Until now, tools like protein viewers and articulated models are mostly static, and as such, 

provide limited scope. The next step in this area is an advanced augmented reality environment 

that incorporates haptic information in the tangible model.  

Actuated tangible interfaces can improve protein study by providing physical handles to 

manipulate and understand the complex 3d shapes and movements that determine protein 

function, as Brown and Raffle demonstrated [40]. 

 

 

3.2 Emergency Response Planning 
 
 

Emergency response planning is a major sector that has attracted the attention of plenty of 

researchers nowadays. 

Emergency response planning is a process that involves many different stakeholders who may 

communicate concurrently with several channels and exchange different information artifacts. 

The planning typically occurs in an emergency operations centre (EOC) and involves personnel 

both in the room and also in the field. The EOC provides an interesting context for examining the 

use of tablets, tabletops and actuated tangibles, and their role in facilitating information and 

communication exchange in an emergency response planning scenario. 

 



28 
 

  

Large scale emergencies and disasters highlight the vulnerability of modern society to collapses 

of infrastructure that is crucial to daily life (e.g. roads, phone service, and electricity). A 

significant challenge with emergencies also arises from the different types that can occur, from 

unplanned events like natural disasters, train derailments, and chemical spills, to planned large-

scale events like the Olympics and the World Cup. 

 

Emergency response has always been both a challenging case and an experimental base for the 

emerging technology. In the early 20th century, strategy and emergency response took place 

around draft tables.  Experts worked around these draft tables with strategic information artifacts; 

their goal was to maintain control in dynamic and critical situations. Later on, computer-

supported collaborative work focused on enabling information representation with distributed 

displays. 

Today, we are looking for even more efficient methods, in order to maximize our performance 

and one very efficient style of interaction is combining tangible user interfaces (TUIs) with 

tabletops. This is beneficial because such situations require intuitive and direct manipulation of 

sophisticated information layers. 

 

Emergency response planning is comprised of many important tasks, from detecting and 

monitoring the emergency to the deployment of resources and communication management. 

Emergency response planning is also inherently a peripheral process; critical information about 

an emergency can arrive from numerous sources (e.g. first responders, reporters, or online 

sources) and information processing and analysis are typically done in parallel with the primary 

emergency response-planning activity, frequently with interruptions. In any case, accurate and 

timely information is as crucial as is rapid and coherent coordination among the responding 

organizations. 

 

Key Emergency Response Management (ERM) functions are navigating through the map (e.g. 

specific zoom in a certain region while the rest of the map remains unchanged), filtering data, 

selecting information recipients, searching datasets, drawing time-dependent freeform areas, and 

assigning tasks (e.g. to fire-fighters, medical personnel, etc). Under time pressure the mouse and 

keyboard could be insufficient; therefore, intuitive graspable solutions, such as tangible user 

interfaces (TUIs), are undoubtedly better suited for ERM.  

 

Besides digital pen and touch gestures, physical tokens can be used in disaster planning systems 

on tabletops. They act as input as well as output, improving the experience of the users. They can 

change simulation parameters according to their physical position above the tabletop, and 

provide feedback through their change of position/state/reaction. The manipulation of physical 

tokens to interact with emergency systems has reduced the learning curve of these systems. 

 

For example, CoTracker [1] is a tangible tabletop system, currently developed, with high 

potential for ERM teamwork. On an interactive map expert team members can discuss an 

operational picture using TUIs like bricks, frames (and pens, as well). 

 

Research has been done on how to access and distribute key information in an ERM situation. 

Rauschert [42] examined how speech and gesture recognition can be coupled with a knowledge-

based dialogue management system for storing and retrieving geospatial data. They showed how 



29 
 

  

a multimodal, multiuser Geographical Information System (GIS) interface benefits collaborative 

work on large displays. Wigdor pointed out the importance of hosting experts in a shared 

horizontal workspace and allowing them to work on their particular subtasks without interfering 

with each other. Another possibility is the CERMIT system [41], where light-emitting tangible 

devices and mobile phones were used to interact with the tabletop environment. 

 

While we usually assign generic functions to devices-physical tools (like rulers, dials, and pens) 

and use them in many different cases, we seldom create specialized case-specific devices such as 

a frame for multilayered data access or a palette for sketching. Ullmer and Ishii proposed that 

specialized TUIs could offer richer interaction capabilities but at the cost of reduced flexibility. 

The degree of cognitive support offered by a TUI has been shown to be a function of the TUIs 

degree of specialization.  

While malleable solutions have a lower degree of specialization, tools like frame, palette, ruler, 

and caliper are more specialized. The inherently complex structure of an ERM case requires 

rather specialized TUIs. This is why CoTracker employs tailor-made tangibles. 

 

Another interesting new prototype is 

the prototype is the ePlan Multi-Surface 

[10], a multi-surface environment for 

emergency response planning exercises 

that was designed with domain experts 

from C4i Consultants Inc. 

 

 

There are several crucial questions 

about the approach that should be 

followed to achieve better functionality: 

Is it better to have multiple tangible 

devices, each with a limited number of 

dedicated functions (that is: more 

space-multiplexing), or a limited 

number of devices where users of one 

device can choose among several 

functions (that is: more time-multiplexing)? Should user interface designers employ generic or 

specialized tangible devices? What is a good balance between generic and specialized tangible 

devices? 

 

In general, it is understood that collaborative use of large interactive surfaces benefits the ERM 

domain. There are several possible approaches: use of multi-touch surfaces, employment of 

tangible objects like graspable devices, mechanic tools, clay-like materials, or combinations of 

these approaches. 

 

 

Speaking about ERM, we should mention as well, the exceptional work of James Patten. Both 

his ‘Sensetable’ and ‘Thumbles’ projects, although not exclusively directed to ERM use, can 

contribute significantly towards that orientation. 

Figure 3.1  ePlan multi-surface 



30 
 

  

 

 Sensetable [16] is a system 

which tracks the positions of 

intelligent objects on a tabletop 

surface, and projects information onto 

the objects themselves. Sensetable has 

been applied to situations like business 

supply chain management, urban 

planning, interactive visual art, and the 

performance and composition of 

electronic music. 

 

 Thumbles [17] are small robots 

that drive around on a tabletop surface under computer control to create a new type of interface. 

Users interact by grasping and moving the Thumbles around, and the computer can respond by 

moving them as well. Thumbles combine the versatility of a graphical user interface with the 

tactile advantages of interacting with physical objects. The robots rearrange themselves on the 

table based on what the user wants to do. For example, the Thumbles can represent characters in 

a video game, or molecules in a chemistry simulation. Thumbles are particularly well suited for 

these problems, particularly when teams of people must work together to develop a solution. 

 

  

Figure 3.2  The Thumbles combine the advantages of a GUI 

with the intuitiveness that a physical object implies 



31 
 

  

Chapter Four:  Project Description 

 

 
Here we firstly make a presentation of the electronic part of the project and the process it went 

through. Then, we describe the programming aspect of our work and in the last sub-chapter we 

refer at the function of the total application. 

 

 

 

4.1 Electronic Part 

 

 

Regarding the electronic stage of the 

project, the aim was to create a 

relatively small and light physical 

object (car) suitable for examining its 

movement on the tablet that was 

provided by the laboratory.  

 For the completion of this stage, we 

made use of the following elements: 

 

-An Arduino Pro Mini 

microprocessor, particularly the 

version that operates at 5V. This board 

was ideal in order to accomplish small 

dimensions and a low cost 

implementation.  

-An FTDI USB cable, for the 

uploading of Arduino sketches. 

-The car chassis, that was created with 3D printing. 

-Two motors with regulators, operating at 6V, mounted 

at the two back wheels (dimensions 24 x 10 x 12 mm). 

Thanks to the regulators, the appropriate power could be 

achieved. 

-Two back rubber wheels.  
-The TB6612FNG Motor Controller, responsible for the 

control and regulation of the motion of the back wheels. 

-A metallic ‘free’ wheel (diameter: 9.5mm), mounted at 

the center of the front part of the chassis (replacing the 

two front wheels) 

-The nRF24L01 RF Antenna (2.4GHz) [19], operating 

at 3.3V, for the transmission of messages between the 

car and the Arduino Uno, that was playing the role of 

Figure 4.1  View of our actuated tangible from above 

 

Figure 4.2  Front view of the vehicle 



32 
 

  

our server. 

-Two small 12V batteries: One for the power supply of the motors and the other for the supply of 

the rest of the circuit. 

-One 3.3V voltage regulator (LD1117V33), necessary for the powering of the RF antenna. 

-One 5V voltage regulator (L805CV), necessary for the powering of the Arduino Pro Mini. 

-A two-way switch, connected in series with the battery of the circuit, in order to switch on and 

off the power. 

-Male and female pins and cables for the connections required. 

 

 

Few words about our main components: 

 

 The Arduino Pro Mini is a microcontroller board based on the ATmega168. It has 14 

digital input/output pins (of which 6 can be used as PWM outputs), 8 analog inputs, an on-board 

resonator, a reset button, and holes for mounting pin headers. A six pin header can be connected 

to an FTDI cable or Sparkfun breakout board to provide USB power and communication to the 

board. There are two version of the Pro Mini. One runs at 3.3V and 8 MHz, the other at 5V and 

16 MHz.(we used the second one). 

 

 The RF antenna is a 2.4 GHz Radio module that is based on the Nordic Semiconductor 

nRF24L01+ chip. The Nordic nRF24L01+ integrates a complete 2.4GHz RF transceiver, RF 

synthesizer, and baseband logic including the Enhanced ShockBurst™ hardware protocol 

accelerator supporting a high-speed SPI interface for the application controller. It operates at 

3.3V and the usual (limit) distance of its function -quoted by different suppliers- is 100 meters. 

 
 The TB6612FNG motor driver can control up to two DC motors at a constant current of 

1.2A (3.2A peak). Two input signals (IN1 and IN2) can be used to control the motor in one of 

four function modes - CW, CCW, short-brake, and stop. The two motor outputs (A and B) can be 

separately controlled, the speed of each motor is controlled via a PWM input signal with a 

frequency up to 100kHz. Logic supply voltage (VCC) can be in the range of 2.7-5.5VDC, while 

the motor supply (VM) is limited to a maximum voltage of 15VDC. 

 
With regards to the creation of the chassis, 

we used the Makerbot Replicator2X 3D 

printer. The design of the chassis was made 

with the Google SketchUp 2014 and the 

printing by using the MakerWare software.  

 

Specifically, we printed two 3D parts for the 

car:  

 

Firstly, the main body: Mainly a rectangular 

platform of dimensions 6x6mm (so that the 

soldered circuit would fit on it) and a slot 

spacious enough to facilitate the cable 

connections between the motor controller 
Figure 4.3  The Makerbot Replicator2X 3D printer we 

used to print our components 



33 
 

  

pins and the motors. The edges of the platform are extended towards down at a length of 1.5mm 

with the appropriate openings for the wheel motors. These features are visible in the figure 4.4. 

In addition, at the back part of the body we included a thin extension for the mounting of the 

extra metallic wheel, using two screws, as shown in the pictures presented later. 

Secondly, we printed a bumper to accommodate the smooth contact of the car with the surface 

through capacitive material (specifically: anti-static conductive foam) glued at the bottom part of 

the bumper. The capacitive material was essential for the constant detection of the car’s position, 

thanks to the capacitive sensing technology of the tablet (explained later in detail). 

Generally, we intended to maintain the design as simple as possible focusing on its functionality 

without adding extra parts that could potentially incommode the future debugging (for example, 

a car hood). 
 

 

Regarding the designing process of the electrical layout, we had to deal with few trial-and-error 

scenarios.   

In particular, in the beginning we used nano-motors (of dimensions 6x15mm) trying to minimize 

the total size of the vehicle as much as possible. After implementing this choice, we noticed that 

the car, although quite light, did not move easily. The reason was that this type of motors is 

operating at 12000 rpm, resulting at many revolutions per minute but, at the same time, at less 

torque. Therefore, we decided to opt for motors with reducers, in order to achieve better torque, 

which proved to be more efficient. The final motors are operating at 3000rpm offering a 

reduction rate 10:1. 

  

In addition, since the idea was to keep 

the size limited, we intended to use 

lithium coin cells (Cr 2032) for the 

powering of the circuit. Finally, the 

change of our motors resulted 

inevitably at higher power 

requirements. As a consequence, we 

chose two 12V cylindrical batteries (of 

33mAh capacity), of fairly small size. 

One of them was responsible for the 

powering of the two motors and the 

other one for the supply of the rest of 

our circuit. 

 

In the beginning, we tried to create the 

two back wheels using 3D printing, but we faced some practical problems. In concrete, the 

rolling surface of the wheels was not equally smooth and the hole required for the mounting of 

the motors either was not printed exactly in the middle, or was bigger than expected. It turned 

out that the 3D printing process was not able to support such detailed manufacturing, when it 

was coming to such small dimensions. 

 

Here you can see the 3D Sketchup designs for the platform and the bumper, as well as their 

preview in the Makerware environment, just before printing: 

Figure 4.4 Our car parts (platform and bumper) after 

printing 



34 
 

  

 

Figure 4.5  3D sketch of the platform 

 

Figure 4.6  3D sketch of the bumper 

 

 

Figure 4.7  Makeware preview of the bumper 



35 
 

  

 

 

Figure 4.8  Makeware preview of the platform 

 

 

 

 

Here you can see the pin layout of the motor controller (viewed from below) that briefly explains 

the function of each one of the pins. 

 

 

 

Figure 4.9  Pin layout of the motor controller TB6612FNG 

 

 

 

 

 

The circuit we designed and followed during the soldering process is the following one: Here 

you can see the PCB layout of the electrical circuit, viewed from above. 



36 
 

  

 

 
Figure 4.10  PCB of the electrical circuit (designed with the Fritzing program) 

 

Some comments on the previous layout: 

 

The supply consists of two 12V batteries. The first battery leads to a toggle switch offering the 

ability to power off and on the circuit, as required. Then we have placed a 5V regulator to 

produce the necessary 5V potential, crucial for the operation of the Arduino Pro Mini.  

The exit of that regulator is supplied to the Input pin of a second regulator that regulates its 

Output at 3.3V. Subsequently, we produce the supply needed for the RF antenna (and the motor 

controller), since this component operates at 3.3V. 



37 
 

  

The other 12V battery is connected 

directly to the appropriate pin (VM) 

of the TB6612FNG motor controller 

that corresponds to the powering of 

the two motors. These motors are 

attached to the A01, A02 and B01, 

B02 pins of the controller, 

respectively. 

 

With regards to the Arduino Pro 

Mini, we soldered its pins (2-8) with 

the appropriate controller pins (AIN1, 

PWMA, AIN2, PWMB, STBY, 

BIN1, BIN2 respectively) to achieve 

the connections required, as indicated 

in this scheme: 

 

 

 

 

Last but not least, the pins ‘2’ (3.3V) and ‘3’ (GND) of the above Fritzing layout, as well as the 

pins 9-13 of the Arduino are attached to the RF module enabling the transfer of data to and from 

the server. Below you can see the correspondence between the RF and the Arduino pins. 

 

 

Figure 4.12  Pin allocation of the RF antenna 

 

Signal RF Module Arduino pin for RF24 Library 

GND 1 GND  

VCC 2 3.3V  

CE 3 9 

CSN 4 10 

SCK 5 13 

MOSI 6 11 

MISO 7 12 

Figure 4.11  Indicated connections between Arduino and motor 

controller 



38 
 

  

Capacitive Sensing Technology  
 

 

It is worth focusing a little on how the capacitive sensing technology functions, since we take 

advantage of its qualities throughout the execution of our project. 

 

Firstly, the capacitive sensing technology is based on the capacitive coupling, that is the transfer 

of energy within an electrical network by means of the capacitance between circuit nodes. Many 

types of sensors use capacitive sensing, including sensors to detect and measure proximity, 

position or displacement, humidity, fluid level, and acceleration. Human interface devices based 

on capacitive sensing, such as trackpads, can 

replace the computer mouse. In general, it is 

acclaimed that capacitive touch screens are 

more responsive than resistive touch screens, 

but less accurate. There are two major types of 

capacitive touch technology: surface capacitive 

and projected capacitive.  

 

The surface capacitive touch panel is coated 

with conductive layer on one side of the 

insulator, and small voltage is applied to the 

layer. Once a conductor, such as human finger, 

touches the other side of insulator, a capacitor is 

formed. 

 By means of measuring the change of 

capacitance from the four corners of the panel, the panel’s controller can determine the location 

of the touch. Currently, multi-touch devices are generally made by projected capacitive 

technology (PCT).  

 

Single conductive layers of X-Y grid or two separate, orthogonal conductive layers are etched on 

projected capacitive touch panels.  The multi-touch controller of PCT sense changes at each 

point along the grid. In other words, 

every point on the grid generates its 

own signal and relays multi-touch 

points to the system. For instance, 

SmartSkin  used capacitive sensing and 

a mesh-shaped antenna to detect 

multiple hand positions and object’s 

shapes.  

Moreover, Diamondtouch  developed at 

Mitsubishi Electric Research 

Laboratories, is another interactive table 

system based on capacitive sensing and 

supports the ability to distinguish 

among multiple users.  

 

In our case, we take advantage of the 

Figure 4.13 Projected capacitive touch screen 

Figure 4.14 Surface capacitive touch screen 

http://en.wikipedia.org/wiki/Electrical_network
http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Capacitive_displacement_sensor
http://en.wikipedia.org/wiki/Hygrometer
http://en.wikipedia.org/wiki/Level_sensor
http://en.wikipedia.org/wiki/Accelerometer
http://en.wikipedia.org/wiki/Human_interface_device
http://en.wikipedia.org/wiki/Trackpad
http://en.wikipedia.org/wiki/Mouse_%28computing%29
http://en.wikipedia.org/wiki/Resistive_touchscreen


39 
 

  

surface capacitance of the capacitive tablet screen. In this basic technology, only one side of the 

insulator is coated with conductive material. A small voltage is applied to this layer, resulting in 

a uniform electrostatic field.   

When a conductor, such as a human finger, touches the uncoated surface, a capacitor is 

dynamically formed. Because of the sheet resistance of the surface, each corner is measured to 

have a different effective capacitance. The sensor's controller can determine the location of the 

touch indirectly from the change in the capacitance as measured from the four corners of the 

panel: the larger the change in capacitance, the closer the touch is to that corner.  

 

So, our conductive foam is pinned to one analog Arduino pin and when it touches the surface, a 

capacitor is formed, respectively. Therefore, as the car moves across the screen, the exact 

location of the vehicle is easily tracked. In the same time, the distance between its current 

location and the final point is dynamically recalculated.  

What happens is that the car sends continuously a message to the Arduino Uno regarding the 

pixels remaining as it approaches the final target. Finally, when the distance remaining is less 

than a prearranged limit (in our case, we opted for 100 pixels) the car (or more specifically the 

Pro Mini attached in the car construction) receives the order from our server to stop the 

movement and pauses the motors’ motion. The exact way of communication between the tablet 

and the car is explained later. 

 

 
Apart from the above, since we are presenting the electronic aspect of the project, we are entitled 

to mention some information regarding the TUIC technology, since we will comment on that in 

the ‘future work’ section. 

 

TUIC Technology 

 

We have to mention that TUIC [4] is based in the capacitive sensing, which is used in our case. 

TUIC is a technology that enables tangible interaction on capacitive multi-touch devices, such as 

iPads, iPhones, and 3M’s multi-touch displays, without requiring any hardware modifications. 

TUIC simulates finger touches on capacitive displays using passive materials and active 

modulation circuits embedded inside tangible objects, and can be used with multi-touch gestures 

simultaneously.  

TUIC consists of three approaches to sense and track objects: spatial, frequency, and hybrid 

(spatial plus frequency), which enables tangible interaction on unmodified capacitive multi-touch 

panels. TUIC uses passive materials and active modulation circuits to simulate multi-touch 

gestures. These multi-point patterns and gestures are designed to be easily distinguishable from 

human gestures, and to encode object IDs. TUIC tags can be embedded inside tangible objects to 

sense the objects’ identification, movement, and rotation.  

 

The frequency approach, called TUIC-f, utilizes the fast response time supported by capacitive 

touch sensing. It encodes data in the time domain by simulating finger touches at the same 

location at various frequencies. There are two advantages of an active frequency tag: 

 

 Firstly, only a single touch point is required to encode data, enabling more tags to be used 

simultaneously. Also, it is possible to build a tag with a smaller footprint. Secondly, a tag can 

http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Electrical_conductor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Controller_%28computing%29
http://en.wikipedia.org/wiki/Capacitance


40 
 

  

change its frequency dynamically and the corresponding object ID or state. This enables the tag 

to represent a button or a dial, supporting the types of tangible interaction in Sensetable and 

SLAP, for example.  

There are several limitations to frequency tags. The first is the delay in sensing object IDs 

because several cycles may need to be observed. Second, fast movement causes a second touch 

point to be registered at a different location, and is difficult to distinguish from a human gesture.  

 

Another very useful way to take advantage of the TUIC approach, is the creation of  

authentication keys. 

In general, users encounter two problems while keying the PINs or passwords on mobile devices 

such as iPhones or iPads. First is pressing the wrong keys on the virtual keyboards. Second, 

entering passwords in public space, like a bus or elevator, potentially exposes the passwords to 

bystanders. We could use TUIC tags as authentication keys to replace PINs and passwords. 

In this scenario, users can carry these tags, say fastened to a key-ring, and simply place the  

tags on a device’s display for authentication. In addition, the key assures contact-based, secure 

authentication that prevents remote attacks.  

 

 

 

4.2 Programming Part 

 

 
About the server part we had to use: 

 An Arduino Uno, operating at 5V, connected serially (with USB cable) with our PC. 

 Another nRF24L01 RF Antenna (2.4GHz), operating at 3.3V, for the transmission of 

messages between the car and the Arduino Uno. 

 A computer, serially connected to the Uno, 

necessary to run the appropriate server sketches. 
 

The Arduino Uno is a microcontroller board based 

on the ATmega328. It has 14 digital input/output 

pins (of which 6 can be used as PWM outputs), 6 

analog inputs, a 16 MHz ceramic resonator, a 

USB connection, a power jack, an ICSP header, 

and a reset button. It contains everything needed 

to support the microcontroller; simply connects to 

a computer with a USB cable. Each of the 14 

digital pins on the Uno can be used as an input or 

output, using pinMode(), digitalWrite(), and 

digitalRead() functions. It operates at 5 volts.  

 

Now, regarding the programming languages used: 

The programs of the vehicle (Pro Mini) and the 

server (specifically, the Uno part) are written in 

Arduino- Code, which is basically a C/C++  

variant. The open-source Arduino environment is 

Figure 4.15  The (server) Arduino Uno, 

connected with the RF antenna 

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead


41 
 

  

very user-friendly and facilitates the writing of programs and quick uploading to the i/o board. 

The environment is written in Java and based on Processing, avr-gcc, and other open source 

software. A developer can specify the pins used for the components and their nature (input or 

output, analog, digital or PWM). Apparently, we had to import the necessary libraries for the use 

of the RF antenna (<nRF24L01.h>, <RF24.h>) and the serial communication of the Arduinos 

with peripheral devices (<SPI.h>). 

 

For the server part and the tablet interface, we used the Processing IDE. Processing is an open 

source programming language and integrated development environment (IDE) built for the 

electronic arts, new media art, and visual design communities. The language builds on the Java 

language, using a simplified syntax and graphics programming model.  

In addition, Processing communicates very well with the Arduino IDE, which made it a very 

useful choice for our project.  
 

 
Figure 4.16  View of the Arduino IDE 

 

 

 
Figure 4.17  View of the Processing IDE 



42 
 

  

For the wireless communication between the two Processing scripts (that is, the tablet part and 

the server part) we used a server-client socket connection.   

In few words, normally a server runs on a specific computer and has a socket that is bound to a 

specific port number. The server just waits, listening to the socket for a client to make a 

connection request. 

 

 

The client knows the 

hostname of the 

machine on which the 

server is running and 

the port number on 

which the server is 

listening. To make a 

connection request, the 

client tries to rendezvous with the server on the server's machine and port. The client also needs 

to identify itself to the server so it binds to a local port number that it will use during this 

connection. This is usually assigned by the system.  

 

 

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a 

new socket bound to the same local port and also has its remote endpoint set to the address and 

port of the client. It needs a new socket so that it can continue to listen to the original socket for 

connection requests while tending to the needs of the connected client. 

 

If anything goes 

wrong with the 

connection, for 

example the host 

is not there or is 

listening on a 

different port, an 

exception is 

thrown. 

 

In terms of libraries, we made use of the oscP5, a library written by Andreas Schlegel [18] for 

the programming environment Processing. OSC is the acronym for Open Sound Control, a 

network protocol developed at CNMAT (Center for New Music and Audio Technology), UC 

Berkeley. 

 

 

The following schematic represents the wireless communication accomplished between the 

actuated tangible and the tablet, through the server. 
 

Figure 4.18  The server listens for clients’ requests 

Figure 4.19  Server accepting the client’s request and establishing a connection 

http://www.sojamo.de/
http://www.processing.org/


43 
 

  

 

 
Figure 4.20  A schematic of the Wi-Fi communication between the actuated tangible and the tablet (made 

with Microsoft Visio) 

 

In the Appendix you can check the code of the four sketches we used (Arduino-car part, 

Arduino-server part, Processing-server part, Processing-tablet part). 

 

 

Lastly, a note regarding the control of the motors by the controller: Each motor has three control 

pins: two for direction, and one for speed.  

When one direction pin is HIGH and the other is LOW, the motor will spin towards one 

direction. If we ‘flip’ the HIGH-LOW values of the two pins controlling direction, the motor will 

start moving to the opposite direction. On the other hand, if we set the direction pins both HIGH 

or both LOW, the motor stops.  

The PWM pin allows you to ‘analogWrite’ to this pin to control the speed of that one motor. 

Using ‘analogWrite(0)’ the motor stops. On the contrary, using analogWrite (255) it will go full 

speed. Setting any analog value between 0 and 255 can control respectively the speed of the 

motor. The above points can be easily seen in the ‘Car part Arduino’ sketch in the Appendix. 

 

 

 

4.3 The Project 

 

 
To start with, our system consists of: 

-the tangible object (the small car we designed and constructed) 

-the tablet  

-the server, namely a computer with an Arduino Uno serially connected to it, by a USB cable. 

 

 



44 
 

  

In the beginning, the user is prompted by a text message on the screen of the tablet to define the 

path after a few seconds. Then, he can select any two points of the surface as the initial and final 

ones.  

That way, a straight route is immediately created, as indicated at the same time on the screen 

with the visible creation of a path.  

 

Afterwards, the user 

places the vehicle on the 

initial point -or within a 

small distance from it, 

predefined by a specific 

radius of tolerance. The 

car should face the final 

point.  

After its placement on 

the monitor, the car starts 

moving towards the final 

point, where it finally 

stops automatically.  

After this trial, the user 

can press the “Reset” 

touch button that appears 

at the lower right corner 

of the screen, redefining 

once again another path 

of different length.  

And so on.  

 

 

Our application works like this: 

 

The tablet constantly calculates the distance 

between the car and the final point, in terms of 

pixels. Of course, the initial value of this 

(decreasing) distance is the distance between the 

initial and final point of the path -defined by the 

user. 

That distance is transmitted wirelessly to the 

computer, through OSC messages.  

 

Then, the computer sends that info to the serially 

connected Arduino Uno, which functions as the 

interface of the server with the vehicle. The Uno 

transmits the distance left to the Pro Mini, 

thanks to the RF module.  

Figure 4.21  Our system consists of the tangible, the tablet and the server 

Figure 4.22  For the communication between the Pro 

Mini and the Uno, each of them uses an RF module 



45 
 

  

When it comes to the car, the Pro Mini controls the motor controller and subsequently, the 

movement (or not) of the vehicle. Apparently, as the car keeps moving, the distance to the target 

is being reduced continuously and this info is still being transferred to the Pro Mini, owing to the 

server. When that value gets lower than a predefined threshold (in our case, 100 pixels) that 

implies that the car has practically reached the target. Therefore, the microprocessor (Pro Mini) 

stops the motion of the motors. 

 

Afterwards, when the user sets another path, the new “total distance” surpasses again the 

threshold and the car starts moving, until it reaches finally the new target. 

 

 

 

Figure 4.23 Our actuated tangible in the middle of its itinerary (from the initial-green point to the final-red 

one). 

  



46 
 

  

Chapter 5: Limitations, Strengths and Future Work 

 

 

 

5.1 Limitations 
 

 

There are specific limitations that characterize our system: 

 

 Until now, our implementation examines the simple case of a straight line path, where the 

car is facing towards the target. Provided that, it is understood that if the vehicle is facing 

towards an irrelevant direction, it firstly has to turn towards the final point. 

 

 The tangible cannot rotate around its center, or move backwards and therefore can get 

stuck at the corners of a table. 

 

 On the long run, we would be interested to develop an emergency response application 

using more than one objects simultaneously. But the problem appearing here is that, the 

number of tangibles that can be used at the same time is constrained by the number of 

touch points and the size of the screen. 

 

 Due to factors such as irregular surfaces and slight differences in the friction all over the 

tabletop, the car is unlikely to move by default in a straight line. Consequently, a 

feedback control loop is required to stabilize the motion for these situations.  

 

 Inevitably, we face a power supply constrain. Since our intention was to reduce the 

dimensions of the project as much as possible, we had to reach a compromise when it 

comes to the size (and battery life) of the batteries used. It is noticed that our 12V 

batteries do not last very long. The solution we can apply here is to use rechargeable 

ones. 

 

 One of the biggest challenges for TUIs is scalability. Successful applications for small 

problems or data sets often do not scale up to complex problems involving many 

parameters and large data sets. Although our project is adequate for this fairly small 

representation, we could face difficulties in larger representations. 

 

 

 Poupyrev pointed out that while digital objects are malleable, easy to create, modify, 

replicate, and distribute, physical objects are rigid and static. As physical objects are not 

mutable, the system cannot transform these into different objects or alter their physical 

properties (e.g. change their color). Specificness of objects, while promoting learnability, 

conflicts with abstraction and versatility. That is the case in our situation, as well, where 

the car has a totally defined shape and context, lacking abstraction. 

 

 



47 
 

  

5.2 Strengths   
 

 

 The tangible object is small and light, avoiding impediment or fatigue of the user. In 

addition, it works wirelessly, being charged autonomously (thanks to its batteries). That 

means that it does not require cable connection to keep operating. 

 

 The project can be executed/demonstrated in practically any flat surface (with the 

precondition that the surface is capacitive). 

 

 Active tangibles (in our case, the car) can provide a great extent of flexibility. For 

example, the included inexpensive microprocessor (Pro Mini) could allow the integration 

of a wide range of components (like extra sensors/ accelerometers) in the future, if we 

choose to modify the project.  

 

Furthermore, we should mention some additional strengths/advantages that apply generally when 

it comes to actuated tangibles -consequently, in our very project, as well: 

 

 For a flexible TUI, scalability and actuation are important factors. An actuation 

mechanism that is integrated into the table would mean that, in case of extension of the 

working volume (or even: in case of the change of the display technology) we would face 

an immense effort. In our situation, including the actuation mechanism into the tangible 

allows costs to scale with the number of tangibles and stay almost unrelated to the size of 

the table. In fact it would be preferable, if the actuation mechanism would be 

interchangeable as well and no special surface would be required. 

 

 Tangible artifacts can act as resources for 

action in several ways. They allow a very 

wide range of actions and can be 

manipulated independently of the system 

(‘offline’, or for other purposes). This 

makes them resources for physical 

manipulation, for example in making use 

of epistemic action.  

Tangibles support referential, social, and 

contextually oriented action, making it 

easy to make references by pointing, 

touching, or performing publicly visible 

actions. They can be a shareable resource. 

Tangibles can also be resources for 

perception and sensory experience, 

allowing for bodily engagement. 

 

 Space-Multiplexing and Directness of 

Interaction: In tangible interfaces that 

employ multiple interaction objects, input 

Figure 5.1  View of our car from below. We can 

observe the presence of the two batteries and 

the ‘free wheel’ that replaces two conventional 

front ones. 

 



48 
 

  

is space-multiplexed. Different physical objects represent different functions or different 

data entities. This enables the system designer to take advantage of shape, size, and 

position of the physical controller to increase functionality and decrease complexity of 

interaction. Consequently, in our case we can introduce new objects with different 

characteristics that would be associated with different acts.  
 

 Tangible interfaces can be interpreted as a specific implementation of the original notion 

of Ubiquitous Computing. In the sense that, Ubiquitous Computing is aimed at allowing 

users to remain situated in the real world, and at retaining the primacy of the physical 

world. Yet, while embedded in context, the design goal for tangible interfaces is not the 

invisibility of the interface, but rather the physicality of the interface. 

 

 Our physical body and the physical objects with which we interact play a central role in  

shaping our understanding of the world. Children learn abstract concepts through bodily 

engagement with tangible manipulatives. Professionals such as designers, architects, and 

engineers often use physical artifacts to reason about complex problems. One of the 

strengths of TUIs compared to traditional user interfaces is that they enhance this 

connection of body and cognition by facilitating tangible thinking- thinking through 

bodily actions, physical manipulation, and tangible representations. 

 
 

 

 

5.3 Future Work 

 

 
 Our solution takes into account the case of the straight line. Given that, it is understood 

that a solution should be implemented for more complex paths and random trajectories. 

For this, we could use a gyroscope (or an accelerometer) to sense its deviation from the 

initial orientation. The gyroscope measures the angular velocity of the device around 

three perpendicular axes.  

 

 Our current tangible is not well suited for tilted surfaces. Therefore, we also want to 

integrate a more sophisticated tracking solution. Including the use of accelerometer and a 

gyroscope to sensor the orientation would result to a large data set transmitted, a wide 

range of additional features in fact available. In addition, these sensors allow the 

recognition of simple motions (like tapping on the device) or gestures such as shaking, 

which could be used as a direct input or captured for later analysis. 

 

 The device could also have the ability to detect if it is laid on its back or if a user is 

holding it (using motion classification). In this case, the vibrating motors can be used as 

an output to provide variable haptic feedback or to attract the attention of the user. 

 

 Since the surface used is capacitive, we should take advantage of the TUIC approach (as 

mentioned in the 5.1 section). Specifically speaking, the idea is to send a tone from the 

car (essentially, the Pro Mini) to the screen at a specific frequency. To achieve this we 



49 
 

  

could use a Tone library of the Arduino IDE, or send PWM from a pin. As a result, the 

car would be recognized by this ‘unique’ kind of identity –its frequency- enabling 

consequently the use of different objects on the same screen.  

Each one of them would be individually recognized by our system. Consequently, we 

could potentially modify the app so that the screen provides additional info to the user 

regarding each object when it is placed (like its name, purpose, etc) offering a much more 

vivid experience for him.  

 

 In the paper ‘Introducing Robots to Interactive Tabletops’ [5] it is mentioned that when 

placing actuated TUIs or robots on an interactive tabletop, we expect them to be able to 

engage and attract attention beyond what is possible by visual aspects of the tabletop. 

However, robots can be viewed as unique entities, affording social attributes that are not 

demonstrated by actuated TUIs. Robots beyond their physicality and form can provide a 

sense of agency, a sense of being, and requiring enhanced awareness from their user, in 

ways that are not that remote from being aware of another human user.  
 

These characteristics allow the robots to take on different social roles, i.e. story teller, a 

companion, assistant, tool or 

just an attractive and 

engaging toy. These abilities 

of the robot to become a 

social partner in an interaction 

scenario can dramatically 

enhance the interaction 

experience on digital 

tabletops. An example of this, 

is a recently proposed work 

from researchers in the 

Department of Computer 

Science, University of 

Calgary: the ‘Spidey’. 

In our case, we could expand 

the application constructing 

and putting to use more 

anthropomorphic actuated 

tangibles, or introducing 

robot-like devices as well. 

The concept would be to create this feeling of familiarity for the user and enhance his 

experience. 

 

 

 As we have mentioned, we would like to concentrate more in potential use of our 

application in ERM-focused applications. To start with, an emergency response plan 

clearly varies depending on the situation. In particular, there are different parameters we 

should take in notice, concerning the environment (natural, social, etc) and the 

infrastructure related to each case. Anyway, we are accepting the hypothesis that in the 

Figure 5.2  Side view of our car from below. Here it is connected with the  

FTDI cable that enables the loading of sketches from the computer. 

 



50 
 

  

majority of the cases, the Response Management functions remain quite similar (e.g. as 

mentioned before: navigating through the map, filtering data, selecting information 

recipients, drawing time-dependent freeform areas, assigning tasks).  

Ideally, in order to create an adequate Emergency Response application, we might have 

to model the majority of the factors that intervene (like citizens, buildings, vehicles, 

medical/fire services, etc) making the planning more ‘tangible’ and intuitive.  

Under this scope, the idea presented previously, regarding the introduction of ‘robots’ to 

interactive tabletops [5], seems very appealing. 

In our project, we made a step towards the modeling of the ‘vehicles’, but we still need to 

surpass our limitations to improve its functionality. 

Hopefully, in the future we could incorporate our approach into a broader project that 

would take into account more complex conditions. Meaning an ERM application that will 

include the models of different entities as well (that is, the other stakeholders of the 

emergency scenario, as stated before). 

  

In general, the philosophy behind the design of such an application needs to answer to the 

controversial debate: Should user interfaces utilize generic or specialized tangible 

devices? What is the advisable equilibrium between generic and specialized ones? 

We propose that, when it comes to future research in the ERM field, we should focus on 

developing a system with few generic devices but with a high degree of specialization. In 

that way, we will limit the number of devices to avoid complicating the system. 

Subsequently, although the system will require some cognitive effort from the users in 

the beginning, it will make (on the long run) our application less time-consuming and 

more efficient under the stressful conditions of an emergency case, thanks to this 

specialization. 

 

 

 

  



51 
 

  

Chapter 6: Conclusion 

 

 

 
In the last decade TUI research has become an established research area in HCI, as attested by 

the growing body of work and the number of venues dedicated for TUI research. Seeking to 

provide seamless interfaces between people, digital information, and the physical environments, 

TUI research shows a potential to enhance the way in which people interact with and leverage 

digital information.  

However, TUI research is still in its infancy. Extensive research is required to better understand 

the implications of interlinking the physical and digital worlds, to design tangible interaction 

techniques for complex real-world application domains, and to develop technologies that bridge 

the digital and physical worlds. 

 

Actuation seems to be the next frontier in tangible user interfaces. There is a lot of space for 

further development. New emerging technologies, will potentially allow creating efficient and 

inexpensive actuated tangible interfaces in the future that can be used in communication, 

information, presentation, emergency planning and other applications. Developing such 

applications would perhaps require stepping outside of the boundaries of the classic tangible UI 

domain and combining expertise from robotics, haptic interfaces, design and architecture. 

 
In this paper, we intended to explore the usability of the actuated tangibles and the level of 

interaction that they introduce. To acquire a first-hand experience, we decided to design and 

construct an actuated tangible object ourselves. Consequently, blending the fields of electronics 

and computers we developed our physical object (vehicle) and an appropriate tablet application 

testing its functionality.  

 

In particular, the user is asked to define a path on the tablet selecting any two points of the 

surface as the initial and final ones. That way, he is able to designate any straight-line trajectory. 

Afterwards, the user places the vehicle on the initial point and the car starts moving towards the 

final point, where it stops automatically. Then, he can press the ‘Reset’ touch button available, 

redefining once again another path of a different length.  

The application is based on the wireless communication of the tablet with the Arduino Pro Mini 

microprocessor that is responsible for the motion of the tangible.  The messages are transmitted 

through our server that consists of a computer and an Arduino Uno. 

 

Furthermore, we referred at the history of tangible interaction that led to today’s evolution and 

examined the existing implementation technologies. In addition, we presented the previous work 

in the field of Tangible User Interfaces, commenting on a variety of TUIs with completely 

different philosophy, function and target (e.g. Pangaro’s ‘Workbench’, Shape displays, 

Touchbugs, Madgets). The type of actuation can also vary significantly (e.g. vibrotactile, change 

of orientation, use of the third dimension). 

 

In addition, we emphasized on the numerous uses of TUIs (like problem solving, entertainment, 

learning) and took a closer look at the field of emergency planning and its principal functions 

and aspects. Then, we analyzed our application in greater detail and we explored the limitations 



52 
 

  

and strengths that lay among its characteristics. Finally, we commented on the future work and 

possible improvements of our implementation, and we stressed out the usefulness of tangible 

interaction in emergency case management (ERM), aiming to canalize our project towards that 

direction.  

 

 

 

 

 

 

 

 

 

  



53 
 

  

Chapter 7: References 

 

 
 

[1]  Kunz, A., Yantaç, A. E., Alavi, A., Woźniak, P., Landgren, J., Sárosi, Z., & Fjeld, M.,  

(2013, June), Tangible Tabletops for Emergency Response: An Exploratory Study 

 

[2]  Diana Nowacka, Karim Ladha, Nils Y. Hammerla, Daniel Jackson, Cassim Ladha, 

Enrico Rukzio, Patrick Olivier, (2013, May),  Touchbugs: Actuated Tangibles on Multi-

Touch Tables 

 

[3]  Shaer, O. & Hornecker, E., (2010), Tangible User Interfaces Past: Present, and Future 

directions  

 

[4]  Neng-Hao Yu, Li-Wei Chan, Seng-Yong Lau, Sung-Sheng Tsai, I-Chun Hsiao, Dian-Je 

Tsai, Lung-Pan Cheng, Fang-I Hsiao, Mike Y. Chen, Polly Huang, Yi-Ping Hung, 

(2011), TUIC: Enabling Tangible Interaction on Capacitive Multi-touch Display  

 

[5]  Sowmya Somanath, Mario Costa Sousa, Ehud Sharlin, (2013, February), Beyond 

Actuated Tangibles: Introducing Robots to Interactive Tabletops  

 

[6]  Malte Weiss, Florian Schwarz, Simon Jakubowski, Jan Borchers, (2010, October), 

Madgets: Actuating Widgets on Interactive Tabletops 

 

[7]  Ivan Poupyrev, Tatsushi Nashida, Makoto Okabe, (2007), Actuation and Tangible User 

Interfaces: the Vaucanson Duck, Robots, and Shape Displays 

 

[8]  Gian Antonio Pangaro, (1997), The Actuated Workbench: 2D Actuation in Tabletop 

Tangible Interfaces 

 

[9]  Emanuel Vonach, Georg Gerstweiler, Hannes Kaufmann, (2014, November), ACTO: A 

Modular Actuated Tangible User Interface Object 

 

[10] Apoorve Chokshi, Teddy Seyed, Francisco Marinho Rodrigues, Frank Maurer, (2014, 

November), ePlan Multi-Surface: A Multi-Surface Environment for Emergency 

Response Planning Exercises 

 

[11] Eckard Riedenklau, Thomas Hermann, Helge Ritter, (2014, February), An Integrated 

Multi- Modal Actuated Tangible User Interface for Distributed Collaborative Planning 

 

[12] Andreas Kunz, Asim Evren Yantaç, Ali Alavi, Paweł Woźniak, Jonas Landgren, Morten 

Fjeld, Zoltán Sárosi, (June 2013), Tangible Tabletops for Emergency Response: An 

Exploratory Study 

 

[13]  Wikipedia web page, <http://en.wikipedia.org/wiki/Main_Page> 

 



54 
 

  

      [14]  Arduino web page,  <http://www.arduino.cc/> 

 

      [15]  Processing web page,  <https://www.processing.org/> 

 

      [16]  James Patten, The Sensetable project, <http://www.jamespatten.com/sensetable.php> 

 

      [17]  James Patten, Thumbles project, <http://www.pattenstudio.com/thumbles/> 

 

      [18] Sending and Receiving OSC Data Using Processing, Codasign web page,        

<http://learning.codasign.com/index.php?title=Sending_and_Receiving_OSC_Data_Us

ing_Processing> 

 

      [19] nRF24L01 2.4GHz How-To, Arduino Info web page, <http://arduino-

info.wikispaces.com/Nrf24L01-2.4GHz-HowTo> 

 

      [20] Scott Brave, Colyn Bulthaup and Professor Hiroshi Ishii, (1998), PSyBench, Tangible 

Media Group web page, <http://tangible.media.mit.edu/project/psybench/> 

 

      [21] John Underkoffler, Hiroshi Ishii, (1999), Urp: a luminous-tangible workbench for 

urban planning and design 

 

 [22]  ReacTable web page,  < http://www.reactable.com/> 

 

 [23] Vincent LeClerc, Amanda Parkes, Hiroshi Ishii, (2007),  Senspectra: a computationally 

augmented physical modeling toolkit for sensing and visualization of structural strain 

 

 [24]  Phidgets web page < http://www.phidgets.com/>  

 

 [25] Rafael Ballagas, Meredith Ringel, Maureen Stone, Jan Borchers, (2003), iStuff: A 

physical user interface toolkit for ubiquitous computing environments 

 

       [26] Leonel Morgado, Maria Cruz, Ken Kahn, (2006), Radia Perlman: A pioneer of young       

children computer programming 

 

      [27]  Jacobsson, Bodin, Holmquist, (2008), The See-Puck: A Platform for Exploring Human-

Robots Relationships 

 

      [28] Jacobsson, Fernaeus, Holmquist, (2008), Glowbots: Designing and Implementing       

Engaging Human Robot interaction 

 

[29]  Coelho, Maes, (2008), Sprout I/O: A textually rich interface 

 

[30]  Poupyrev, Nashida, Mauyama, Rekimoto, Yamaji, (2004), Lumen: interactive visual 

and shape display for calm computing 

 



55 
 

  

[31] Andrew Sears,Julie A. Jacko, (2003) Human-Computer Interaction: Design Issues, 

Solutions, and Applications 

 

[32] Couture, Riviere, Reuter, (2008), GeoTUI: A Tangible User Interface for Geoscience 

 

[33] Boriana Koleva, Steve Benford, Kher Hui Ng, Tom Rodden, (2003), A Framework for 

Tangible User Interfaces 

 

[34] Hornecker, Buur, (2006), Getting a Grip on Tangible Interaction: A Framework on 

Physical Space and Social Interaction 

 

[35] Michael Philetus Weller, (2008), Posey: Instrumenting a poseable hub and strut 

construction toy 

 

[36]  Ken Hinckley, (2002), Input Technologies and Techniques 

 

[37] Diana Africano, (2003), Ely: the Explorer- Interactive Play system 

 

[38] Hayes Solos Raffle, Hiroshi Ishii (2004, May), Topobo: A 3-D Constructive Assembly  

       System with Kinetic Memory 

 

[39] J. Patten, B. Recht, and H. Ishii, (2002), Audiopad: A tag-based interface for musical 

performance 

 

[40] Ashlie Brown, Hayes Raffle, (2009, April), Opportunities for Actuated Tangible 

Interfaces to Improve Protein Study 

  

[41] Tommaso Piazza, Hannes Heller, Morten Fjeld, (2009), CERMIT: Co-located and 

Remote Collaborative System for Emergency Response Management 

 

[42] Rauschert, Agrawal, Sharma, Fuhrmann, Brewer, MacEachren, (2002), Designing a 

human-centered, multimodal GIS interface to support emergency management 
 

  

http://dl.acm.org/author_page.cfm?id=81100536678&CFID=460887799&CFTOKEN=55816909
http://dl.acm.org/author_page.cfm?id=81100288760&CFID=460887799&CFTOKEN=55816909
http://dl.acm.org/author_page.cfm?id=81100322617&CFID=460887799&CFTOKEN=55816909
http://dl.acm.org/author_page.cfm?id=81100136304&CFID=460887799&CFTOKEN=55816909


56 
 

  

Chapter 8: Appendix 

 

 

 
Arduino Server Part: 

 

  //CONNECTIONS for nRF24L01 Modules: 
  // 1 - GND 

  // 2 - VCC 3.3V !!! NOT 5V 

  // 3 - CE to Arduino pin 9 

  // 4 - CSN to Arduino pin 10 

  // 5 - SCK to Arduino pin 13 

  // 6 - MOSI to Arduino pin 11 

  // 7 - MISO to Arduino pin 12 

  // 8 - UNUSED 

  
 

 

/*-----( Import needed libraries )-----*/ 

#include <SPI.h> 

#include <nRF24L01.h> 

#include <RF24.h> 

 

/*-----( Declare Constants and Pin Numbers )-----*/ 

#define CE_PIN   9 

#define CSN_PIN 10 

 
// NOTE: the "LL" at the end of the constant is "LongLong" type 

const uint64_t pipe = 0xE8E8F0F0E1LL; // Define the transmit pipe 

 

/*-----( Declare objects )-----*/ 

RF24 radio(CE_PIN, CSN_PIN); // Create a Radio 

 

/*-----( Declare Variables )-----*/ 

int received; // Data received from the serial port 

int received1; 

int received2; 

int ledPin = 13; // Set the pin to digital I/O 13 

int pixel_distance; 
 

 

void setup() { 

   pinMode(ledPin, OUTPUT); // Set pin as OUTPUT 

   Serial.begin(9600); // Start serial communication at 9600 bps 

    

   radio.begin();        //start radio for the antenna communication 

   radio.openWritingPipe(pipe); 

} 
  

  
void loop() { 

       if (Serial.available() >1) {  

// If at least two bytes are available to read (that is, the distance value), 

              



57 
 

  

           received1 = Serial.read(); //read the first byte it and store it in received1 
           received2 =Serial.read();  //read the second byte it and store it in received2 

           received=received1*256+received2;  //reconstruct the number 

           digitalWrite(ledPin, HIGH);         

     //set the pin 13 as High to indicate the info received 

          

     

           Serial.print ("Uno received: ");   

     // At the receiving end, verify the received value 
           Serial.println(received );   

           

       } 

       else { 
           //Serial.println("maybe not serial available");  

     //test message if there is not serial connection 

       } 
        

       pixel_distance=received; 

       radio.write(&pixel_distance, sizeof(int));       

      //send the distance to the car, through the Antenna RF24            

} 

 

 

 

 

 

 

Arduino Car Part: 

 

 
  //CONNECTIONS for nRF24L01 Modules: 

  // 1 - GND 
  // 2 - VCC 3.3V !!! NOT 5V 

  // 3 - CE to Arduino pin 9 

  // 4 - CSN to Arduino pin 10 

  // 5 - SCK to Arduino pin 13 

  // 6 - MOSI to Arduino pin 11 

  // 7 - MISO to Arduino pin 12 

  // 8 - UNUSED 

    

  

 

/*-----( Import needed libraries )-----*/ 

#include <SPI.h> 
#include <nRF24L01.h> 

#include <RF24.h> 

 

/*-----( Declare Constants and Pin Numbers )-----*/ 

#define CE_PIN   9 

#define CSN_PIN 10 

 

// NOTE: the "LL" at the end of the constant is "LongLong" type 

const uint64_t pipe = 0xE8E8F0F0E1LL; // Define the transmit pipe 

 



58 
 

  

 
int STBY = 6; //standby 

 

//Motor A 

int PWMA = 3; //Speed control  

int AIN1 = 2; //Direction 

int AIN2 = 4; //Direction 

 

//Motor B 

int PWMB = 5; //Speed control 
int BIN1 = 7; //Direction 

int BIN2 = 8; //Direction 

 

/*-----( Declare objects )-----*/ 

RF24 radio(CE_PIN, CSN_PIN);  // Create a Radio 

 

/*-----( Declare Variables )-----*/ 

int pixel_dist=0; 

 

 

void setup() {   
  //Serial.begin(9600);     

  //Serial.println("Nrf24L01 Receiver Starting");    

  radio.begin();             //start radio for the antenna communication 

  radio.openReadingPipe(1,pipe); 

  radio.startListening(); 

} 
 

 

void loop() {  

 

  if ( radio.available()) {   // Read the data payload until we've received everything 

      bool done = false; 
      if (!done) { 

            done = radio.read(&pixel_dist, sizeof(int));    // Fetch the data payload 

            //Serial.print("Car received distance:  ");       

            //Serial.println(pixel_dist); 

      } 

   } 

   else  {     
         //Serial.println("No radio available ");    

   //test message if there is not serial connection 

   } 
   
   if (pixel_dist>100) {      

    //if the distance from the target is more than 100px, keep moving    

          move(1,20, 0);     //motor 1, speed=20, right 

          move(2,16, 1);     //motor 2, speed=16, right   

   } 

   else {     
          stop();            //otherwise, stop 

   } 
 

} 
 

 



59 
 

  

 
 

void move(int motor, int speed, int direction){ 

    //Move specific motor at speed and direction 

    //motor: 0 for B 1 for A 

    //speed: 0 is off, and 255 is full speed 

    //direction: 0 clockwise, 1 counter-clockwise 

   

    digitalWrite(STBY, HIGH); //disable standby 

   
    boolean inPin1 = LOW; 

    boolean inPin2 = HIGH; 

   

    if(direction == 1){ 

      inPin1 = HIGH; 

      inPin2 = LOW; 

    } 
   

    if(motor == 1){ 

      digitalWrite(AIN1, inPin1); 

      digitalWrite(AIN2, inPin2); 
      analogWrite(PWMA, speed); 

    } 

    else { 
      digitalWrite(BIN1, inPin1); 

      digitalWrite(BIN2, inPin2); 

      analogWrite(PWMB, speed); 

    }  

} 
 

 

void stop(){ 

    //enable standby   
    digitalWrite(STBY, LOW);  

} 

 

 

 

 

 

Processing Server Part: 

 

 
//import libraries  

import oscP5.*; 

import netP5.*; 

import processing.serial.*; 

 
//declaration of variables  

Serial myPort;  

OscP5 oscP5; 

NetAddress myRemoteLocation; 

 

int counter=0; 



60 
 

  

int sendvalue; 

String val; 

 

 

 

void setup() { 

    size(400,400); 

    String portName = Serial.list()[3];  

//change the list number to a 1 or 2 etc. to match the right port of your PC 
 

    myPort = new Serial(this, portName, 9600);   

   //serial communication with Arduino Uno, using the Port #portName. Baud rate: 9600 bps 

 

    myPort.bufferUntil('\n');  

     

    oscP5 = new OscP5(this,5001);   

   // initialize oscP5 object, telling it to listen for incoming messages at port 5001  

   //in the meantime, in the server sketch: "myRemoteLocation = new netAddress     ("163.117.137.206",5001)" 

} 
 

void draw() { 
   

} 
 

 

void serialEvent( Serial myPort) { 

    val = myPort.readStringUntil('\n');  //put the incoming data into a String -  

         //the '\n' is our end delimiter indicating the //end of a complete packet 

     

    if (val != null) {        //make sure our data isn't empty before continuing 

          val = trim(val);    //trim whitespace and formatting characters (like carriage return) 

          println(val); 

    } 

} 
 

 

 

void oscEvent(OscMessage theOscMessage)  {   

//Whenever an OSC message is received, it is passed to the oscEvent() function.   

     counter++; 

    // get the first value as an integer 

    String firstValue = theOscMessage.get(0).stringValue(); 

    
    // get the second value as a float   

    float secondValue = theOscMessage.get(1).floatValue(); 

    

   

    if (counter>=2) {                         //If we have received the distance value 

        println("OSC Message Received: ");        // print out the message 

        println("My value is: " + secondValue); 

         

        sendvalue= round(secondValue); 

        println("I send to Uno: " + sendvalue); 

       

        delay(25); 

        myPort.write(sendvalue/256);    



61 
 

  

        myPort.write(sendvalue%256);    
  //pass value to Arduino Uno, serially (split into two bytes) 

   }  

} 

 

//the delay() of the Processing API is normally a bad practise, because it halts the //whole program. for this reason, this is a self-made 

//function, that serves as an //alternative, mainly based on the "millis()" function                                   

void delay(int del)      

{                                  
  int time = millis(); 

  while(millis() - time <= del);  //delay of "del" milliseconds 

} 

 

 

 

 

 

Processing Tablet Part: 

 

//import libraries  
import oscP5.*; 

import netP5.*; 

 

//declaration of variables  

OscP5 oscP5; 

NetAddress myRemoteLocation; 
 

 

int [] posX=new int[2]; 

int [] posY=new int[2]; 

int counter=0; 

boolean bDisplayMessage=true; 

boolean check_flag=false; 

float radius=100.0; 

 

float init_distance; 

float distance; 
float distance_from_line; 

int x1, y1, x2, y2, x3, y3; 

int mouseCount = 0;  

boolean been_on_first=false; 

float init_time; 

float final_time; 

float total_time; 

boolean time1_got=false; 

boolean time2_got=false; 

 

 

PShape s;  
  

void setup() { 

   

  oscP5 = new OscP5(this,5002);                   

// initialize oscP5 object, telling it to listen for incoming messages at port 5002 

  myRemoteLocation = new NetAddress("163.117.137.206",5001);             



62 
 

  

// set the remote location to be the localhost on port 5001 
   

  size(displayWidth, displayHeight);  //set the size at Full Screen mode 

  textFont(createFont("Arial",30)); 

  reset();            //call the reset function (reset variables and background colour) 

 

} 
 

void draw() { 

  
 if (bDisplayMessage==true) {      //a message appears, prompting the user to define a  

     background(180, 120, 150);    //path in a few seconds 

     fill(0);  

     textAlign(CENTER, CENTER); 

     text("Please define path in",displayWidth/2, displayHeight/2); 

     text(7- millis()/1000 + " seconds", displayWidth/2,displayHeight/2+50);  

     

     

     if (millis() >7000)  

     {  
          bDisplayMessage = false;    

 // After 7 seconds, stop displaying the message, thus proceed with path definition 

          background(255);  

     }  

 }  
  

 if (counter==2) {       //if both initial and final point are set, draw path. 

    drawPoints(); 

 } 
  

 if (check_flag==true) {    //if the path has been drawn 

        if (mouseOverCircle(posX[0], posY[0], radius)) {  

              fill(0, 255, 0);  
              been_on_first=true;            //boolean variable to guarantee that the car //has passed from the initial point in the beginning 

 

              if (time1_got==false) {        //if the car passes by the initial point 

                      init_time=millis();    //save the "beginning time", for future use 

                      time1_got=true; 

              } 

        } 

        else {  
              fill(255, 0, 0);  

        } 
      
        ellipse(posX[0], posY[0], radius, radius);      

   //make a circle around the initial point 

      

       if   (mouseOverCircle(posX[1], posY[1], radius)) {       

//if the car passes by the final point 

               if  (been_on_first==true) { 

                    fill(218,112,240); 

                    textAlign(CENTER); 

                    textSize(20); 

                    text("Target reached! ",x2, y2+90);   //announce that we reached the //target 

                     

                    if (time2_got==false) {        //if the car reaches the target 



63 
 

  

                          final_time=millis();     //save the time, for future use 
                          time2_got=true; 

                    } 
                     

                    total_time= final_time- init_time;    //calculation of total time of //the itinerary 

                    fill(150,112,240); 

                    textAlign(CENTER); 

                    textSize(25); 

                    text("Initial distance: "+ init_distance+" px",displayWidth-150,displayHeight-100);  //display in px the total distance 

                     
                    fill(150,112,240); 

                    textAlign(CENTER); 

                    textSize(25); 

                    text("Total time: "+ total_time +" ms",displayWidth-150,displayHeight-60);    //display in ms the total time spent 

              } 
              

        fill(0, 255, 0);     

     } 

     else {  
         fill(255, 0, 0);  

     }         
    ellipse(posX[1], posY[1], radius, radius);     //make a circle around the final point 

      

} 
      

//Reset Button 

  if (bDisplayMessage==false) {              //if the first seven seconds have passed 

      if(hover(displayWidth-200,displayHeight-200,100,50) ) {  //if the user hovers his //finger above the "reset" box 

        rectMode(CORNER);                   //make the "reset" box green 

        fill(120, 255, 120);  

        rect(displayWidth-200,displayHeight-200,100,50); 

        fill(0); 

        textSize(26);  
        textAlign(CENTER, CENTER); 

        text("reset",displayWidth-150,displayHeight-180);   

      }       
      else {                              //if not, make the "reset" box red 

        strokeWeight(1); 

        rectMode(CORNER); 

        fill(255, 120, 120);  

        rect(displayWidth-200,displayHeight-200,100,50); 

        fill(0); 

        textSize(26);  

        textAlign(CENTER, CENTER); 
        text("reset",displayWidth-150,displayHeight-180); 

     } 

  }  
   

} 
 

 

void reset() {          //reset the variables and the background color 

  bDisplayMessage=true; 

  check_flag=false; 

  been_on_first=false; 

  mouseCount = 0;   



64 
 

  

  background(255);  
 counter=0; 

 time1_got=false; 

 time2_got=false;  

} 
 

 void mousePressed (){      

    

      OscMessage myMessage = new OscMessage("/test");  //create a new OscMessage 

      if ((bDisplayMessage == false) && (!(hover(displayWidth/2-130, displayHeight-200, 260,200)))) {  //after the first seven seconds,  
                                                                                                       //and when not hovering above the area where "distance" is displayed 

on the screen       

          if(hover(displayWidth-200,displayHeight-200,100,50) ){  //if the user presses //the reset button 

                   reset();                    //reset and start again 

           }  

           else {  
                 

          if (mouseCount== 0) {          //if the user presses the screen for the first //time, define the initial point 

                x1 = mouseX; 

                y1 = mouseY; 

                fill(0); 
                textAlign(CENTER); 

                textSize(20); 

                text("point 1 ("+x1+", "+y1+")",x1, y1+120);  //and print the related //message on the screen 

                 

              

                mouseCount++; 

        } 
        else if (mouseCount==1) {      //if the user presses the screen for the second //time, define the final point 

                x2 = mouseX; 

                y2 = mouseY; 

                mouseCount++; 

                  
                //additional information 

                fill(0); 

                textAlign(CENTER); 

                textSize(20); 

                text("point 2 ("+x2+", "+y2+")",x2, y2+120);   //and print the related //message on the screen 

                distance = calculateDist(x1, y1, x2, y2);      //calculate and store the //initial distance, for future use 

                init_distance=distance; 

                         

                 

                fill(0); 

                textAlign(CENTER); 
                textSize(25); 

                text("distance: "+distance, displayWidth/2, displayHeight-100);   

          //print the distance 

 

                myMessage.add("distance: ");         //add the string "distance: " to the //osc message 

                myMessage.add(distance);             // add a float to the osc message  

 

                oscP5.send(myMessage, myRemoteLocation);     // send the message 

                 

              } 

               else {                  

                      distance_from_line=  getDistance( posX[0], posY[0],posX[1], posY[1], mouseX, mouseY );   



65 
 

  

//calculate the position of the car with regards to the path defined 
 

                      if   (distance_from_line<100) {     

//if the car is moving inbetween an acceptable (small) distance from the line (maximum 100px) 

                          rectMode(CENTER);               

//clear the previous distance-from-target appearing on the screen  

                          noStroke(); 

                          fill(255); 

                          rect(displayWidth/2, displayHeight-100, 200,40); 

                          stroke(0); 
                          

                          x3 = mouseX; 

                          y3 = mouseY; 

                          distance = calculateDist(x3, y3, x2, y2);     

//calculate the new distance-from-target of the car 

                          fill(0); 

                          textAlign(CENTER); 

                          textSize(25); 

                          text("distance: "+distance, displayWidth/2, displayHeight-100);   //print the new distance-from-target on the screen 

                        }  

               }   
                

              myMessage.add("distance: "); //add the string "distance: " to the osc //message 

              myMessage.add(distance); // add a float to the osc message  

       

              oscP5.send(myMessage, myRemoteLocation);     // send the message 

               

                

               if (counter<2) {   //if one of the two points (initial or final) is being defined 

                      ellipseMode(CENTER);  

                      fill(100); 

                      ellipse(mouseX,mouseY, radius, radius);  //create a circle around //it with a specific radius 

                      posX[counter]=mouseX;            //and save its coordinates 
                      posY[counter]=mouseY;  

               } 
               counter++;      //increase the touch counter 

          } 

     } 

 } 
   

   

  void mouseDragged() {          

   

          if (mouseCount==2) {  //if both initial and final point have been received 
           

                OscMessage myMessage = new OscMessage("/test");  //create a new //OscMessage 

 

                distance_from_line=  getDistance( posX[0], posY[0],posX[1], posY[1], mouseX, mouseY );  //calculate the position of the 

car with regards to the path defined 

 

                if   (distance_from_line<100) {     //if the car is moving inbetween an //acceptable (small) distance from the line (maximum 

100px) 

 

                    rectMode(CENTER);               //clear the previous distance-from-//target appearing on the screen 

 

                    noStroke(); 



66 
 

  

                    fill(255); 
                    rect(displayWidth/2, displayHeight-100, 200,40); 

                    stroke(0); 

                    

                    x3 = mouseX;                   //calculate the new distance-from-//target of the car 

                    y3 = mouseY; 

                    distance = calculateDist(x3, y3, x2, y2); 

                    fill(0); 

                    textAlign(CENTER); 

                    textSize(25); 
                    text("distance: "+distance, displayWidth/2, displayHeight-100);  //print the new distance-from-target on the screen 

                  }  
                   

                  myMessage.add("distance: ");  // add the string "distance: " to the osc //message  

                  myMessage.add(distance); // add a float to the osc message  

                   

                 oscP5.send(myMessage, myRemoteLocation);  //send the message to the //laptop with WiFi 

                  

          } 
                    

} 
 

    

    

/* the "drawPoints" function draws the straight line from point (posX[0], posY[0]) to point (posX[1], posY[1]) */    

   void drawPoints() { 

       beginShape(LINES); 

       for (int i = 0; i < 2; i++) { 

           vertex(posX[i], posY[i]); 

       } 
       endShape(); 

       check_flag=true;  //this boolean variable gets true when the line is finally drawn 

   } 
    

    

    

/* the "mouseOverCircle" function returns "True" if the mouse (or equally, the finger touching the screen)  

 *is hovering above the circle that has-> Coordinates of center:(x,y), Radius: radius */ 

 

   boolean mouseOverCircle(int x, int y, float radius) { 

  return (dist(mouseX, mouseY, x, y) < radius); 

} 
 

 
 

/* the "calculateDist" function returns the distance (in pixels) between the points (x1,y1), (x2,y2) */ 

 

float calculateDist(int x1, int y1, int x2, int y2) { 

  float b = sq(x2-x1) + sq(y2-y1); 

  float a = floor(sqrt(b)); 

  return a; 

} 
 

 

 

/* the "hover" function returns "true" if the mouse (or equally, the finger touching the screen)  



67 
 

  

 *is hovering above the rectangle that has: Coordinates of the down-left corner (x,y), Width  w, Height  h */ 
 

 boolean hover(int x, int y, int w, int h) { 

      if(mouseX >= x && mouseX <= x+w && mouseY >= y && mouseY <= y+h) { 

          return true; 

      } 

      else { 
          return false; 

      } 

  } 

 

 

 

/* The "getDistance" function calculates the point A on the line (x1,y1) -> (x2,y2) that is closest to the point (x,y) 

 * Specifically, the result is a PVector- where result.x and result.y are the coordinates of that point A on the line.  

 * The result.z variable contains the Distance from (x,y) to the line, which is finally returned (in pixels) . */ 

 

float getDistance( int x1, int y1, int  x2, int  y2, int  x, int  y ) { 

    PVector result = new PVector();  

     

    float dx = x2 - x1;  
    float dy = y2 - y1;  

    float d = sqrt( dx*dx + dy*dy );  

    float ca = dx/d;     // cosine 

    float sa = dy/d;     // sine  

     

    float mX = (-x1+x)*ca + (-y1+y)*sa;  

     

    if( mX <= 0 ) { 

      result.x = x1;  

      result.y = y1;  

    } 
    else if( mX >= d ) { 
      result.x = x2;  

      result.y = y2;  

    } 

    else { 
      result.x = x1 + mX*ca;  

      result.y = y1 + mX*sa;  

    } 
     

    dx = x - result.x;  

    dy = y - result.y;  

    result.z = sqrt( dx*dx + dy*dy );  
     

    return result.z;   //the result returned is the distance from point (x,y) to the line 

} 

 

 

//the delay() of the Processing API is normally a bad practice, because it halts the       //whole program. For this reason, this is a self-

made function, that serves as an   //alternative, mainly based on the "millis()" function     

 

void delay(int del)           

{                             
  int time = millis(); 

  while(millis() - time <= del);   }  //delay of "del" milliseconds 


