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Abstract

An important approach to query answering over OWL ontologies is via rewriting the input ontology (and query) into a new set of
axioms that are expressed in logics for which scalable query answering algorithms exist. This approach has been studied for many
important fragments of OWL like SHIQ, Horn-SHIQ, OWL 2 QL, and OWL 2 EL. An important family of rewriting algorithms
is the family of resolution-based algorithms, mostly because of their ability to adapt to any ontology language (such algorithms have
been proposed for all aforementioned logics) and the long years of research in resolution theorem-proving. However, this generality
comes with performance prices and many approaches that implement algorithms that are tailor-made to a specific language are more
efficient than the (usually) general-purposed resolution-based ones.

In the current paper we revisit and refine the resolution approaches in order to design efficient rewriting algorithms for many
important fragments of OWL. First, we present an algorithm for the language DL-LiteR,u which is strongly related to OWL 2 QL.
Our calculus is optimised in such a way that it avoids performing many unnecessary inferences, one of the main problems of typical
resolution algorithms. Subsequently, we extend the algorithm to the language ELHI which is strongly related to OWL 2 EL.
This is a difficult task as ELHI is a relatively expressive language, however, we show that the calculus for DL-LiteR,u requires
small extensions. Finally, we have implemented all algorithms and have conducted an extensive experimental evaluation using
many well-known large and complex OWL ontologies. On the one hand, this is the first evaluation of rewriting algorithms of this
magnitude, while, on the other hand, our results show that our system is in many cases several orders of magnitude faster than the
existing systems even though it uses an additional backwards subsumption checking step.
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1. Introduction

Efficient management and querying of large amounts of (pos-
sibly distributed) data that are formally described using com-
plex structures like ontologies is an important problem for
many modern applications [26, 34, 12]. In such settings an-
swers to user queries reflect both the stored data as well as
the axioms that have been encoded in the ontology. How-
ever, query answering over OWL ontologies is a very challeng-
ing task mainly due to its very high computational complex-
ity [37, 17, 30]. Even after intense implementation work and the
design of modern sophisticated optimisations, direct (tableaux-
based) approaches integrated in systems such as HermiT [27],
Pellet [43], and Racer [46] are not yet able to cope with very
large datasets. Moreover, in several important profiles of OWL
2 [33], like OWL 2 QL and OWL 2 EL, different methods for
query answering have been investigated.

A prominent (indirect) approach to query answering over
OWL ontologies is via rewriting the input into axioms ex-
pressed in formalisms for which efficient data management and
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retrieval systems are already available. More precisely, the in-
put ontology O and query Q are transformed into a set of sen-
tences R, typically a datalog program (or in some cases even
a union of conjunctive queries) called rewriting, such that for
any dataset D the answers to Q w.r.t. D and O coincide with
the answers to Q w.r.t.D and R discarding O [22, 9, 39]. Since
R is a (disjunctive) datalog program query answering can be
delegated to existing scalable (deductive) database systems.

Computing rewritings has been studied for various fragments
of OWL. One of the first approaches supported the language
SHIQ [22], a large fragment of OWL, and the proposed tech-
niques led to the development of KAON2 [35], one of the first
practical systems for answering SPARQL queries over OWL
ontologies. Recently, the technique has received considerable
attention as it consitutes (perhaps) the standard approach to
query answering over ontologies expressed in the languages
DL-Lite [9, 41], ELHI [39], and Horn-SHIQ [14]. DL-
Lite and ELHI are particularly important as they are strongly
related to the OWL 2 QL and OWL 2 EL profiles of OWL
2 [33]. Besides the theoretical works many prototype systems
have been developed, prominent examples of which include
Mastro [10], Presto [41], Quest [40], Rapid [13], Nyaya [36],1

1Nyaya actually supports linear Datalog±.
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IQAROS [45], and Ontop [31] which support DL-Lite, Re-
quiem [39], which supports ELHI, and Clipper [14], which
supports Horn-SHIQ.

Some approaches for computing rewritings have exploited
the resolution-based calculi [5]. In this setting, the input is first
transformed into a set of clauses which is then saturated using
resolution to derive new clauses. The latter can either contain
function symbols or be function-free, while the output rewriting
consists of all the derived function-free clauses. Using resolu-
tion has at least two benefits. First, such calculi are worst-case
optimal and allow for a large number of existing optimisations
developed in the field of theorem-proving. Second, since there
exist many resolution-based decision procedures for expressive
fragments of first-order logic [15, 23] it is (relatively) easier to
design a resolution-based rewriting algorithm for an expressive
fragment of OWL compared to designing a custom made one.
For example, to the best of our knowledge, none of the tailor
made systems for DL-Lite can currently support more expres-
sive fragments of OWL, while a resolution-based algorithm for
all aforementioned fragments exists.

However, the efficiency of resolution-based approaches has
also been criticised [42]. Even with all the existing optimisa-
tions the saturation produces many clauses unnecessarily. More
precisely, it can produce several clauses that contain function
symbols and which are not subsequently used to derive other
function-free clauses. Since these are neither part of the output
rewriting nor do they contribute to the derivation of members
of the rewriting their generation is superfluous with respect to
query answering. Moreover, exhaustive application of the res-
olution rule is likely to create long derivations of clauses that
are eventually redundant (subsumed) and the standard optimi-
sations of resolution are not enough to provide a scalable ap-
proach. Consequently, the first generation systems (e.g., Re-
quiem) have already been surpassed [24].

Motivated by the desire to design efficient rewriting algo-
rithms that can also support expressive fragments of OWL we
present novel resolution-based rewriting algorithms. We start
from DL-Lite and we show how a rewriting can be computed
by greatly restricting the standard (binary) resolution calculus
initially used in [38]. Roughly speaking, our calculus generates
intermediate clauses that contain function symbols only when
it is known that these will contribute to the generation of other
function-free clauses. This is implemented by a new resolution
inference rule, called shrinking, which packages many infer-
ence steps into one macro-step and employs certain restrictions
over the resolvents.

Subsequently, we extend our approach to the ontology lan-
guage ELHI by investigating whether a rewriting algorithm
that is again based on the shrinking rule can be defined. This
is technically a very challenging task as the structure of ELHI
axioms implies many complex interactions between the clauses
(note that, in contrast to DL-Lite, checking concept subsump-
tion in ELHI is in ExpTime). However, we show that a rewrit-
ing can be computed by an algorithm that contains an (ar-
guably small) extension of the shrinking rule of DL-Lite, called
n-shrinking, plus a new resolution rule, called function rule,
which captures a very specific type of interaction between roles

(binary predicates of the form R(x, y)) and their inverses (i.e.,
R(y, x)). Moreover, this new rule is strongly related to the ex-
tension of shrinking to n-shrinking. More precisely, if the new
rule is never applied, then n-shrinking reduces precisely to the
shrinking rule of DL-Lite. Hence, our algorithm has very good
“pay as you go” characteristics. That is, if the ontology is ex-
pressed in ELH (i.e., does not allow for inverse roles), then it
is guaranteed that the new rule is never applied and n-shrinking
can be simplified to shrinking, while the more inverse roles
are used in axioms the more the interaction between these two
rules, which can create a bottleneck. However, realistic ontolo-
gies usually contain few inverse roles, hence we expect that the
algorithm would usually behave well in practice. Experimental
evaluation and analysis verify our remarks.

Next, we discuss some implementation and optimisation is-
sues which led us to the design and implementation of Rapid,
a practical resolution-based system for computing rewritings.
More precisely, we discuss how one can present the rewriting
in a compact form reducing its size as well as some further op-
timisation for pruning redundant clauses.

Finally, we conducted an extensive experimental evaluation
using a new test suite that includes several real-world large-
scale DL-Lite and ELHI ontologies hence greatly extending
all existing benchmarks. Regarding the experiments, our com-
parison against several state-of-the-art systems has provided
many encouraging results. More precisely, our results show that
existing systems cannot always handle large-scale and complex
ontologies as in several cases they fail to terminate after run-
ning for more than 3 hours. In contrast Rapid is in the vast
majority of cases able to compute a rewriting within a few sec-
onds. Hence, to the best of our knowledge, Rapid is currently
the only system that can handle ontologies of this complexity
and size. Yet, there are still many difficult cases that no system
can handle.

2. Preliminaries

In this section we introduce the ontology languages ELHI
and DL-Lite which are strongly related to OWL 2 EL and OWL
2 QL respectively; we briefly recall some basic notions from
first-order logic and resolution theorem-proving; we provide
the definition of conjunctive queries and of query rewriting; and
we present an overview of the query rewriting algorithm imple-
mented in the Requiem system since our calculi can be seen as
a refinement of this algorithm.

2.1. OWL Ontologies and Description Logics
We focus on OWL (2) ontologies interpreted under the direct

semantics which are related to Description Logics (DL) [3].
DLs provide the theoretical underpinning for many fragments
of OWL and there is a close connection between the functional
syntax of OWL and DLs [21, 19]. For brevity we will adopt the
DL notation and terminology; hence, we will call classes and
object properties as atomic concepts and roles, respectively.

Let CN, RN, and IN be countable pairwise disjoint sets
of atomic concepts, atomic roles, and individuals. ELHI-
concepts and ELHI-roles are defined using the syntax in the
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left-hand side of the upper two parts of Table 1, while on the
right-hand side the corresponding OWL functional syntax is
given. An ELHI-ontology O is a finite set of ELHI-axioms
of the form depicted in the lower part of Table 1. The Descrip-
tion Logic DL-LiteR,u (for simplicity DL-Lite in the following)
is obtained from ELHI by disallowing concepts of the form
∃R.C in the left-hand side of axioms. We call axioms of this
form RA-axioms while all the rest are called DL-Lite-axioms.

Table 1: ELHI-concepts, -role, and -axioms and correspond-
ing OWL functional syntax.

ELHI-roles
R− ObjectInverseOf(R)

ELHI-concepts
> owl:Thing

C1 uC2 ObjectIntersectionOf(C1 C2)
∃R.C ObjectSomeValuesFrom(R C)

Axioms
C1 v C2 SubClassOf(C1 C2)
R1 v R2 SubObjectPropertyOf(R1 R2)

a : C ClassAssertion(C a)
(a, b) : R ObjectPropertyAssertion(R a b)

In the following and without loss of generality we as-
sume that ontologies are normalised [2, 39], i.e., they con-
tain only axioms of the form A1 v A2, A1 u A2 v A,
A1 v ∃R.A2, or ∃R.A2 v A1, where A(i) ∈ CN ∪ {>}, and
R ∈ RN ∪ {P− | P ∈ RN}. We also make the standard distinc-
tion used in DLs between the schema of an ontology, called
TBox T , which consists of all axioms except assertion axioms
and the data, called ABox A, which consists of all class and
object property assertions.

The semantics of concepts, roles, and axioms in a DL/OWL
ontology O are given by means of interpretations over a do-
main ∆J . An interpretation maps individuals to objects of the
domain, concepts to subsets of the domain, and roles to sets of
pairs of domain objects. Concept > is mapped to ∆J while all
other ELHI-concepts and ELHI-roles are mapped to sub-
sets of ∆J and ∆J × ∆J , respectively, using standard condi-
tions listed in [21, 19]. For example, an interpretation J maps
C1uC2 to the intersection of the sets that C1 and C2 are mapped
to by J—that is, (C1 uC2)J = CJ1 ∩CJ2 . Moreover, J satis-
fies an ELHI-axiom again if J satisfies well-known condi-
tions [21, 19]. For example, J satisfies C1 v C2 if J maps
C1 to a subset of the set that C2 is mapped to. If all axioms
of O are satisfied by J then O is called satisfiable (or consis-
tent) andJ a model of O; otherwise it is called unsatisfiable (or
inconsistent).

Finally, note that in the literature extensions of ELHI and
DL-Lite are considered that allow for disjointness axioms, that
is axioms of the form A1 v ¬A2 and R1 v ¬R2, where A(i) is
an atomic concept and R(i) an atomic role or its inverse. The
use of such axioms can lead to inconsistencies, e.g., if T =

{A v ¬B} and A = {A(a), B(a)} then T ∪ A is inconsistent.
Query answering over inconsistent ontologies is meaningless
unless special techniques and semantics are used [28, 6]. In the

current paper we consider query answering only over consistent
ontologies; hence axioms like the above ones are superfluous
and we have discarded them.

2.2. Resolution-Based Calculi

We use the standard notions of first-order variables, denoted
by letters x, y, z . . ., constants, denoted by letters a, b, c, . . .,
unary function symbols, denoted by letters f , g, . . . (e.g.,
f (x), g(y), . . .), terms which are also denoted by letters s, t, . . .,
atoms (e.g., C(x),R(x, y)), the entailment relation |=, and of sub-
stitutions, denoted by letters σ, µ, . . .. The depth of a term t is
defined as follows: depth(t) = 0, if t is a constant or a variable
and depth( f (s)) = 1 + depth(s) if t contains a functional sym-
bol. The depth of an atom is the maximum depth of its terms.

A list of terms of the form (s1, . . . , sn) is abbreviated by
~s, while we also often abbreviate a conjunction of the form
B1(s) ∧ . . . ∧ Bn(s) by B(s). In addition, we use the notion
of a (Horn) clause C, that is, a disjunction of atoms of the
form H ∨ ¬B1 ∨ ¬B2 ∨ . . . ∨ ¬Bn which can also be written as
H ← B1 ∧ B2 ∧ . . . ∧ Bn. H is called the head of the clause
and the set {B1, . . . , Bn} is called the body and is denoted by
body(C). For an atom A we use var(A) to denote the set of its
variables; var can be extended to clauses in the obvious way.
Finally, we use the notation [B(x)] ([B(x)]) to indicate that the
presence of atom B(x) (conjunction B(x)) is optional. For ex-
ample, A(x)← C(x)∧[B(x)] denotes either A(x)← C(x)∧B(x)
or A(x)← C(x).

We also use standard notions from first-order theorem prov-
ing, like most general unifier (mgu) [16]. Next, we recapitulate
some basic notions. An inference rule, or simply inference is
an n + 2-ary relation usually written as follows:

C C1 . . . Cn

C′

where clause C is called the main premise, C1, . . . ,Cn are called
the side premises and C′ is called the conclusion or resolvent;
both main and side premises are also called premises. An infer-
ence system I, also called calculus, is a collection of inference
rules. Let Σ be a set of clauses, C a clause and I an inference
system. A derivation of C from Σ by I, written Σ `I C (or sim-
ply Σ ` C if I is clear from the context), is a sequence of clauses
C1, . . . ,Cm such that Cm = C, each Ci is either a member of Σ

or the conclusion of an inference by I from Σ ∪ {C1, . . . ,Ci−1}.
In that case we say that C is derivable from Σ by I and that
the derivation starts with C1. We write Σ `i C to denote that
the depth of the corresponding derivation tree [11] constructed
for C from Σ is less than or equal to i. We also often write
Σ,C ` C′ instead of Σ∪{C} ` C′. A set of clauses Σ is saturated
with respect to an inference system I if the conclusion of any
inference by I from Σ is an element of Σ.

A form of derivation with particular interest to us is SLD
derivation [29]. An SLD derivation of a clause C from a set of
clauses Σ is a sequence of clauses C1, . . . ,Cn such that C1 ∈ Σ,
Cn = C and Ci+1 is a resolvent of Ci and some clause in Σ. For
a set of clauses Σ we call SLD calculus, IΣ

SLD, the inference
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system that consists of the (standard) binary resolution rule re-
stricted to producing only SLD derivations as defined before. If
it is clear from the context we simply write ISLD.

2.3. Datalog and Conjunctive Queries
A datalog clause r is a function-free Horn clause where the

variables occurring in the head also occur in the body. A vari-
able that appears at least twice in the body and not in the head
is called ej-variable; we use ejvar(r) to denote all ej-variables
of a clause r. A datalog program P is a finite set of datalog
clauses.

A union of conjunctive queries (UCQ) Q is a set of datalog
clauses such that their head atoms share the same predicate Q,
called query predicate, which does not appear anywhere in the
body. A conjunctive query (CQ) is a UCQ with exactly one
clause. We often abuse notation and identify a CQ with the
single clause it contains instead of a singleton set. The variables
that appear in the head of a CQ Q are called answer variables
and are denoted by avar(Q). For a query Qwith query predicate
Q, a tuple of constants ~a is a certain answer to Q w.r.t. a TBox
T and an ABox A if the arity of ~a agrees with the arity of Q
and T ∪ A ∪ Q |= Q(~a). We use cert(Q,T ∪ A) to denote all
certain answers to Q w.r.t. T andA.

Given two CQs Q1,Q2 with head predicates Q1,Q2 of the
same arity respectively, we say that Q1 subsumes Q2 if there
exists a substitution θ such that Q1θ = Q2 and every atom in
body(Q1θ) also appears in body(Q2).

2.4. Query Rewriting and the Requiem System
Query rewriting is a prominent technique for answering

queries over ontologies. Intuitively, a rewriting of a query Q
w.r.t. a TBox T is a set of sentences (usually a datalog program
or a UCQ) that captures all the information that is relevant from
T for answering Q over an arbitrary ABoxA [9, 39, 41]. This
intuition is formalised next.

Definition 1. Let Q be a CQ with query predicate Q and let T
be a TBox. A datalog rewriting (or simply rewriting) R of a CQ
Qw.r.t.T is a datalog program whose clauses can be partitioned
into two disjoint sets RD and RQ such that RD does not mention
Q, RQ is a UCQ with query predicate Q, and where for eachA2

and using only predicates from T we have:

cert(Q,T ∪A) = cert(RQ,RD ∪A).

If RD = ∅, then R is called a UCQ rewriting.

Note that if T is expressed in DL-Lite, then a UCQ rewrit-
ing always exists. This property is referred to as first-order
rewritability [9, 1].

Example 1. Consider the following TBox and query:

T1 = {A v ∃R.B,R v S , B u E v C}

Q1 = Q(x)← S (x, y) ∧C(y)

2Note that by our previous definitionsA is always consistent w.r.t. T .

Table 2: Translating ELHI axioms into clauses

Axiom Clause
B v A A(x)← B(x)
B uC v A A(x)← B(x) ∧C(x)
∃R v A A(x)← R(x, y)
∃R− v A A(x)← R(y, x)

A v ∃R.B
R(x, f (x))← A(x)
B( f (x))← A(x)

A v ∃R−.B
R( f (x), x)← A(x)
B( f (x))← A(x)

∃R.C v A A(x)← R(x, y) ∧C(y)
∃R−.C v A A(x)← R(y, x) ∧C(y)
P v R R(x, y)← P(x, y)
P v R− R(x, y)← P(y, x)

It can be verified that the set R = {Q1,C1,C2} where C1 =

S (x, y) ← R(x, y) and C2 = C(x) ← B(x) ∧ E(x) is a datalog
rewriting of Q1 w.r.t. T1. ♦

Many query rewriting algorithms for various ontology lan-
guages have been developed in recent years [41, 40, 14, 45].
Since the focus in the current paper is on resolution-based
rewriting algorithms, next, we will briefly introduce the algo-
rithm implemented in the Requiem system [39].

The behaviour of Requiem over a given input CQ Q and
TBox T can be described by the following steps:

1. Clausification: First, the input TBox T is transformed
into a set of (Horn) clauses TC by using the well-known
equivalence of DL axioms with first-order clauses and by
skolemising existential variables with new function sym-
bols [4] (see also Example 2). The equivalence of DL ax-
ioms with Horn clauses is also depicted in Table 2, where
each function symbol f is uniquely associated to the spe-
cific occurrence of concept ∃R.B (∃R−.B).

2. Saturation: Next, the clausified TBox together with the
input query are saturated by using (binary) resolution pa-
rameterised with a selection function [5] producing a new
set of clauses T sat

C
. When the calculus is applied to the

clauses of the form depicted in Table 2 there are only spe-
cific types of resolution inferences that can be performed
as well as specific types of new clauses that can be pro-
duced. The types of clauses that can be derived by Re-
quiem’s calculus are given in Table 3. We give the pos-
sible interactions among them in Appendix B. Note that
in DL-Lite, clauses of type 4.1 and 4.2 can only appear
without the conjunct C(y) and clauses of type 3.3 appear
without functions. We refer the reader to [39] for the pre-
cise definition of the selection function. In brief, it is de-
fined as follows: for clauses of type 2.1, 2.2 it selects the
head atom; for clauses of type 2.3 if there are body atoms
that contain a functional term, then all these are selected;
otherwise it selects the head atom; for clauses of type 3.1,
3.2, 4.1, 4.2 it selects the role atom in the body; for clauses
of type 3.3 it selects the deepest body atom; for clauses of
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Table 3: Types of DL-Lite or ELHI clauses, where ~s is a list of
terms (s1, s2, . . . , sn) and D j(~t j) denotes either a concept atom
D j(t j1 ), or a role atom D j(t j1 , t j2 )

Type Clause
1 Q(~s)←

∧
D j(~t j)

2.1 R(x, f (x))← A(x)
2.2 R( f (x), x)← A(x)
2.3 B( f (x))← C(x) ∧ [A( f (x))]
3.1 R(x, y)← P(x, y)
3.2 R(x, y)← P(y, x)
3.3 A(x)← C(x) ∧ [B( f (x))]
4.1 A(x)← R(x, y) ∧ [C(y)]
4.2 A(x)← R(y, x) ∧ [C(y)]

type 1, if the head contains a functional term, then it se-
lects the head, otherwise it selects the deepest body atom.

3. Unfolding: It applies on T sat
C

the so called unfolding step
which produces a rewriting of an optimal form [39]. Dur-
ing the unfolding step clauses of type 3.1, 3.2, function-
free clauses of type 3.3, and clauses of type 4.1, 4.2 of the
form A(x) ← R(x, y) and A(x) ← R(y, x), are exhaustively
resolved with other function-free clauses. For example,
clause A(x) ← C(x) will resolve with clause B(x) ← A(x)
to obtain B(x) ← C(x). Although this step is in a sense
optional, our proofs of correctness assume that this is also
part of the Requiem calculus. Moreover, we consider a
slightly extended version of unfolding, where also clauses
of the form A(x)← C(x) are considered in the unfolding.

4. Post-processing: Finally, Requiem returns all function-
free clauses in T sat

C
.

We use IREQ to denote the calculus used at step 2. and
RQR(Q,T ) to denote the datalog program returned at step 4.

All the previous steps are illustrated through the following
example.

Example 2. Consider the TBox and query of Example 1. As
stated above the first step is to transformT1 into a set of clauses.
According to Table 2 the clauses that are produced from TBox
T1 are the following:

R(x, f (x)) ← A(x) (1)
B( f (x)) ← A(x) (2)
S (x, y) ← R(x, y) (3)

C(x) ← B(x) ∧ E(x) (4)

As it can be seen, the axiom A v ∃R.B produces two clauses
that contain the function symbol f and which is uniquely asso-
ciated with the specific occurrence of concept ∃R.B in axiom
A v ∃R.B.

Next, IREQ is applied on Q1 and all clauses (1)-(4), where
we have underlined the atoms that Requiem’s selection func-
tion will select. Then, according to the possible interactions

depicted in Table B.10 the following inferences are performed:

(3), (1) ` S (x, f (x))← A(x) (5)
(4), (2) ` C( f (x))← A(x) ∧ E( f (x)) (6)
Q1, (5) ` Q(x)← A(x) ∧C( f (x)) (7)

Referring to Table B.10 the first inference is of the form
3.1+2.1=2.1, the second one is of the form 3.3+2.3=2.3, while
the third one is of the form 1+2.1=1.

It is not hard to see that no new clauses different up to
variable renaming can be produced using IREQ. By dis-
carding the unfolding step mentioned above, the algorithm
can terminate and return all function-free clauses, i.e., the
set R = {Q1, (3), (4)}. If we also consider the unfolding
step, then the algorithm unfolds clause (3) into Q1 to pro-
duce Q2 = Q(x)← R(x, y) ∧C(y), clause (4) into Q1 to obtain
Q3 = Q(x) ← S (x, y) ∧ B(x) ∧ E(x), and finally clause (4) into
Q2 to obtain Q4 = Q(x) ← R(x, y) ∧ B(x) ∧ E(x).3 Then, the
rewriting returned would be R′ = {Q1,Q2,Q3,Q4}. ♦

Since our topic is resolution algorithms which, to the best
of our knowledge, always transform the input into clauses,
in the following we assume that ontologies are already given
in a clausal form to simplify the presentation. Moreover,
clauses that are produced by clausifying RA-axioms and DL-
Lite-axioms are called RA-clauses and DL-Lite-clauses, respec-
tively. These notions are extended to include also clauses of the
form A(x)← B(x) and A(x)← R(x, y) ∧ C(y).

3. Resolution-Based Rewriting for DL-Lite

In the current section we present our resolution based rewrit-
ing algorithm for DL-Lite. We first illustrate the most important
deficiencies of current resolution-based rewriting algorithms
which led us to the new design. Then, we present the calcu-
lus and finally we show its correctness, i.e., that it computes a
rewriting for a given query and DL-Lite-TBox.

Example 3. Consider the TBox T1 and query Q1 from Exam-
ple 2 as well as the inferences performed by IREQ on T1 ∪ Q1.
As it can be observed the algorithm performed three unnec-
essary inferences. More precisely, all inferences producing
clauses (5)–(7) are not necessary because they produce clauses
that are discarded in the final step (they contain a function sym-
bol) and no inference using either of them as a side or main
premise leads to clauses that are members of the rewriting R
for T1,Q1.

Assume now that T1 additionally contained C(x) ← B(x).
This clause resolves with (2) producing C( f (x))← A(x) which
subsequently resolves with (7) producing Q(x) ← A(x). Since
the latter clause is function-free it is a member of a rewriting for
Q1 w.r.t T1∪{C(x)← B(x)}. Clearly, in that case the inferences
that produced clauses (5) and (7) are necessary and cannot be
omitted. ♦

3The last two unfoldings are not performed by the original version of Re-
quiem [39] but as mentioned above we consider this trivial extension here.
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As it has been argued [42], TBoxes of real-world ontologies
typically contain many clauses of the form R(x, fi(x)) ← Ai(x).
Together with clauses like clause (3) and Q1 of Example 2
this implies that typical resolution-based rewriting algorithms,
like Requiem’s, would produce many clauses of the form
S (x, fi(x)) ← Ai(x) and Q(x)← A(x) ∧C( fi(x)). Most of these
clauses would not subsequently participate in additional infer-
ences hence their generation is superfluous and it would be of
benefit to avoid it especially in the case of large ontologies.

In general, allowing the production of clauses containing
function symbols is a too fine-grained approach and can lead
to the construction of the same clause many times, as shown in
the following example.

Example 4. Consider the query Q3 = Q(x) ← S (x, y) ∧
P(y, z) ∧ D(z) and the TBox T2 = T1 ∪ {C1,C2}, where T1 is as
defined in Example 2 and C1,C2 are as follows:

C1 = P(x, g(x))← B(x)
C2 = D(g(x))← B(x)

Then, IREQ would perform the following inferences:

Q3, (5) ` Q(x)← A(x) ∧ P( f (x), z) ∧ D(z) (8)
(8),C1 ` Q(x)← A(x) ∧ B( f (x)) ∧ D(g( f (x))) (9)
(9),C2 ` Q(x)← A(x) ∧ B( f (x)) (10)

(10), (2) ` Q(x)← A(x) (11)

Q3,C1 ` Q(x)← S (x, y) ∧ B(y) ∧ D(g(y)) (12)
(12),C2 ` Q(x)← S (x, y) ∧ B(y) (13)
(13), (5) ` (10)

Construction of clauses (8) to (11) corresponds to one path
in the derivation while construction of all clauses after (12) to
another. We can note that both paths in the derivation lead to the
production of the same clause—that is, clause (10), which can
then be used to produce clause (11). It is also obvious that the
second path is preferable as in addition it leads to the production
of the function-free clause (13). ♦

An initial workaround to the above issues can be achieved by
applying the calculus IREQ in the following way: first, saturate
the clauses of T to obtain a new set of clauses Tsat; then, per-
form only those inferences that if they first introduce a clause
that contains an atom with a function symbol in the body, then
Tsat also contains some clause that would subsequently “elimi-
nate” this atom and create a function-free clause. In Example 2,
this refined strategy would resolve Q1 with (5) only if clause
C( f (x)) ← A(x) also exists in Tsat. If it does, then it is guar-
anteed that after generating clause (7) that contains conjunct
C( f (x)) in the body, clause C( f (x)) ← A(x) can be used as a
side premise in an inference to eliminate C( f (x)) from (7) and
generate the function-free clause Q(x) ← A(x). Actually, both
these inferences can be performed as one macro-inference with
main premise Q1 and side premises (5) and C( f (x)) ← A(x)—
that is, two clauses that have the same function symbol in the
head. In Example 4, this strategy would only generate clauses

(13) and (11) of the second path, while the first part would be
completely discarded.

However, to implement this macro-inference approach we
need to perform a quadratic loop over the set Tsat to look for
pairs of clauses that together introduce and then eliminate some
term that contains a function symbol. SinceTsat can be quadrat-
ically larger than T [39] this approach might not scale well in
practice.

The difficulty to efficiently implement the above macro-
inference step is mostly because the IREQ calculus follows a
“forward” style approach to apply resolution which generates
new clauses that contain function symbols (e.g., clause (5) was
generated by propagating f from clause (1) to (3)) hence caus-
ing a blow-up in the size of Tsat. To implement the aforemen-
tioned macro-resolution step in an efficient way we need to pick
pairs of clauses from T rather than Tsat. To achieve this our
calculus is based on a rather goal-oriented “backwards” style
approach that resembles derivations by ISLD.

Example 5. Consider Q1 and T1 from Example 3. Let also the
TBox T ′ = T1 ∪ {C(x)← B(x)}.

Assume that we have a calculus that instead of resolving
clauses (1) and (3) to propagate the function f (like IREQ

did in Example 2) it resolves Q1 with (3) to produce Q2 =

Q(x) ← R(x, y) ∧ C(y). Subsequently, Q2 resolves with clause
(1) creating Q(x) ← A(x) ∧ C( f (x)) but, as mentioned above,
it can additionally check if T ′ contains a clause of the form
C( f (x)) ← A(x) which can be used afterwards to create a new
resolvent that does not contain C( f (x)). Such a clause does not
exist so the inference is avoided. Next, clause Q2 resolves with
C(x) ← B(x) creating Q3 = Q(x) ← R(x, y) ∧ B(y). Then, Q3
can be resolved with (1) since also clause (2) is in T ′ and by re-
solving them in turn with Q3 we can generate the function-free
clause Q(x)← A(x). ♦

The crucial difference between IREQ and our hypothetical cal-
culus is that, in the latter case, to implement the resolution step
we pick clauses from a TBox rather than from its saturation.
In addition to being much smaller, a (clausified) DL-Lite-TBox
can contain at-most two clauses with a term containing the same
function symbol. This is because function symbols are unique
per occurrence of concepts ∃R.B and no new clauses containing
terms with function symbols are generated by the above calcu-
lus. The latter can be exploited in the implementation by using
proper indexes in order to efficiently retrieve pairs of clauses
for the macro-inference step.

All the previous observations motivate our resolution-based
rewriting algorithm for DL-Lite ontologies defined next.

Definition 2. Let Q be a CQ and let C(i) be DL-Lite-clause(s).
With Ilite we denote the inference system that consists of the
following inference rules:

• unfolding:

Q C

Q′σ
where

1. Q′σ is function-free resolvent of Q and C, and
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2. if x 7→ f (y) ∈ σ, then x < ejvar(Q).

• shrinking:

Q C1 [C2]
Q′σ

where

1. Q′σ is a function-free resolvent ofQ,C1, and C2, and
2. some x 7→ f (y) ∈ σ exists such that x ∈ ejvar(Q).

Finally, for Q a CQ and T a DL-Lite-TBox Rapid-Lite(Q,T ) is
the set of all the function-free clauses derivable from Q ∪ T by
Ilite.

Inferences by the unfolding rule correspond to inferences by
(classical) binary resolution where the resolvent is function-
free. This is achieved by the condition onσ. In contrast, shrink-
ing is a macro-inference rule that packages many inferences
into one and captures the intuition illustrated in our discussion
and examples above—that is, it represents derivations of the
form Q,Q1, . . . ,Qn,Q

′ where Q is function-free, Q1 contains
some function symbol f and then all subsequent inferences at-
tempt to eliminate from each Qi all terms containing f until we
reach a function-free clause Q′.4 Since Q is function-free and
Q1 mentions f , the mgu of the first inference must map an ej-
variable of Q to a term of the form f (y). This is captured by the
second condition on σ. Moreover, as mentioned above, these
inferences can involve at most two different side premises that
mention f and which are from T . Hence, the side premises in
the shrinking rule can be of the form R(x, f (x)) ← B(x) and
A( f (x)) ← B(x). Furthermore, since the resolvent is function-
free, the ej-variable of the main premise is eliminated and since
the DL-Lite-clauses do not contain ej-variables in their bod-
ies the resolvent has (strictly) fewer ej-variables than the main
premise. Finally, note that the side premises always belong in
T and hence Ilite actually produces SLD derivations.

Applied to T ′ and Q1 from Example 5, the calculus Ilite

would perform the steps described in the example. That is, Q2
is obtained as an unfolding on Q1 and (3), Q3 is again produced
by unfolding on Q2 and C(x) ← B(x), while Q(x) ← A(x) is
obtained by shrinking on Q3, (2), and (1).

3.1. Correctness of Ilite

To show that our rewriting algorithm indeed produces a
rewriting we will show that a derivation constructed by IREQ

can be transformed into a derivation by Ilite. Hence, saturating
T ∪ Q by Ilite will create all necessary members of a rewrit-
ing. To do so we proceed in two steps. First, we show that
each Requiem derivation can be transformed into a derivation
by ISLD. This is done by showing how a Requiem inference
of the form Q,C ` Q′ where T `i C, can be “unfolded” into
two inferences of the form Q,C1 ` Q

′′,Q′′,C2 ` Q
′ where

T `i−1 C1,T `i−1 C2 and C1,C2 ` C. Hence, by repeated appli-
cations of this claim we obtain inferences with main premises
type 1 clauses and side premises only clauses from T , i.e., a
derivation by ISLD from T .

4Note that the number of these inferences can be more than two if, for ex-
ample, Q is of the form Q(x)← R(x, y) ∧ R(z, y) ∧ R(w, y) ∧ D(y).

Lemma 1. Let T be a DL-Lite-TBox and let Q be a CQ. Every
type 1 clause derivable from T ∪ Q by IREQ is also derivable
from T ∪ Q by ISLD.

Second, we show that each derivation by ISLD can be trans-
formed into a derivation by Ilite. Since unfolding corresponds
to standard binary resolution, the non-trivial part is clearly the
shrinking inferences. As stated, an inference by shrinking
Q,C1, [C2] ` Q′ corresponds to many inferences of the form
Q,Ci1 ` Q1,Q1,Ci2 ` Q2, . . . ,Qn−1,Cin ` Q

′ for i j ∈ {1, 2},
where Q,Q′ are function-free and all Qk, 1 ≤ k ≤ n − 1 and
C1,C2 mention the same function symbol f . Hence, intuitively,
derivations by Ilite are in a sense “compact” with respect to
terms containing function symbols—that is, one clause con-
taining a function symbol (Q1) is created from a function-free
clause (Q) and then many inferences follow which try to elimi-
nate the terms introduced using side premises that also mention
the same function symbol. We call such derivations function-
compact.

Definition 3. Let Σ be a set of Horn clauses and Q1,Q2, . . . ,Qn

a derivation by ISLD where Qi,Ci ` Qi+1 and Ci ∈ Σ for each
1 ≤ i < n. Assume also that all Q2, . . . ,Qn−1 contain a term of
the form f (si) and of the same depth, and that Q1 and Qn are
function-free. We say that the derivation is function-compact if
all side premises Ci with 1 ≤ i < n used in the derivation also
contain a term of the form f (xi).

Hence, to show correctness of our algorithm we show that
any derivation by ISLD using Horn clauses as side premises
can be transformed into one that is function-compact. This is
done by showing that in every non function-compact deriva-
tion Q1, . . . ,Qn, there exists some inference with side premise a
clause Ck that does not mention f which can be moved “out-
side” of the sequence either at the beginning, hence having
Q1,Ck ` Q

′
2, or at the end, hence having Qn−1,Ck ` Qn. In

the former case, since Q1 is function-free and Ck does not
mention f , Q′2 must be function-free. In the latter case since
Qn is function-free and Ck does not mention f , Q′n−1 must be
function-free. Hence, this re-ordering either pushes downwards
(in the former case) or upwards (in the latter case) all inferences
with side premises that mention f . By repeated application of
this re-ordering only inferences with side premises that mention
f would appear in between the first clause where f was intro-
duced until the last one that mentions it. First, we show a rather
general result that is not based on DL-Lite and which will also
be used later when we extend the calculus to ELHI.

Lemma 2. Any derivation built by inferences that have as side
premises Horn clauses that can contain terms with function
symbols only in the head can be transformed into one that is
function-compact.

The next proposition follows straightforwardly by the form
of clauses of DL-Lite-TBoxes.

Proposition 1. Let T be a DL-Lite-TBox and Q a query. Any
derivation from T ∪ Q by ISLD is produced by using as side
premises Horn clauses that have terms with function symbols
only in the head.
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Summarising, a derivation from T ∪ Q by IREQ can be trans-
formed into a derivation by ISLD which can then be transformed
into a function-compact one. Moreover, the inference rules of
Ilite are trivially sound as they are based on resolution. These
imply that Ilite indeed produces a rewriting for an input CQ and
DL-Lite-TBox (see proofs in Appendix C). Finally, termina-
tion follows from the fact that there is a bounded number of
symbols (variables, constants, roles, and concepts) with which
we can construct a clause that can be derived from Ilite. More
precisely, Ilite always produces function-free clauses, hence no
resolvent containing a term of the form f (x) can be produced
by Ilite. Moreover, every resolvent produced by Ilite has at
most the same number of ej-variables as the input query Q:
first, only clauses from T are used as side premises and by
Table 3 it is clear that their body atoms that are introduced
in the resolvent after the inference, do not contain any new
ej-variable. For shrinking, in more detail, the produced resol-
vent has strictly fewer ej-variables: the main premise must con-
tain two atoms of, e.g., the form R(x, y) and C(y), y is the ej-
variable, the side premises are of the form R(x, f (x)) ← A(x)
and C( f (x)) ← A(x), the mgu maps y to f (x), and since the
resolvent is function-free, y is eliminated. An inference via
unfolding can, however, increase the number of variables of
the main premise, e.g., if the main premise is of the form
Q(x) ← A(x) and the side premise of the form A(x) ← R(x, y),
then the resolvent is of the form Q(x) ← R(x, y) and y is a
new variable. However, y can never become an ej-variable and,
moreover, it is necessarily associated with an answer or an ej-
variable (e.g., x here). This implies, that for k the number of
clauses in T of the form A(x) ← R(x, y), the number of these
new variables that can be introduced by subsequent unfoldings
is bounded by k and the number of answer and ej-variables of
the main premise (which as stated is bounded). Hence, by all
the previous it follows that the number of clauses produced by
Ilite is bounded by the number of answer and ej-variables of the
input CQ and the number of symbols and axioms in T .

Theorem 1. Let a DL-Lite-TBox T and a CQ Q. Every deriva-
tion fromT∪Q by Ilite terminates. Moreover, Rapid-Lite(Q,T )
is a rewriting of Q w.r.t. T .

4. Resolution-Based Rewriting for ELHI

In the current section we extend the inference system Ilite

in order to provide a resolution-based rewriting algorithm for
ELHI ontologies. Our goal is to design an optimised al-
gorithm that is going to use as much as possible the macro-
inference (shrinking) of Ilite.

In addition to clauses stemming from DL-Lite axioms,
ELHI also allows for RA-clauses, i.e., clauses of the form
E(x)← R(x, y) ∧ F(y). A straightforward approach to obtain a
calculus for ELHI ontologies would be to extend Definition 2
to allow for arbitrary RA-clauses as side premises in shrinking
and unfolding. Then, Lemmas 1 and 2 apply with few modifi-
cations and hence this calculus would produce a rewriting.

Example 6. Let T be the ELHI-TBox consisting of the fol-
lowing clauses:5

C(x) ← S (x, y) ∧ D(y) (14)
S ( f (x), x) ← B(x) (15)

K(x) ← S (y, x) ∧C(y) (16)

Let also the query Q1 = Q(x)← K(x).
By unfolding on Q1 and (16) we obtain the clause

Q2 = Q(x)← S (y, x) ∧C(y); then, by unfolding on Q2 and (14)
we obtain the clause Q3 = Q(x) ← S (y, x) ∧ S (y, z) ∧ D(z); fi-
nally, by shrinking on Q3 and (15) we can obtain the clause
Q4 = Q(x) ← B(x) ∧ D(x). It can be verified that R =

{Q1,Q2,Q3,Q4} is a rewriting of Q w.r.t. T . ♦

However, as the previous example shows, using RA-clauses as
side premises can produce resolvents that contain more vari-
ables than the main premise of the inference (e.g. clause Q3
contains a variable z that does not appear in Q2) and hence to
variable proliferation which implies termination problems. In
general, one could remedy this issue by deciding a bound on
the number of times (variables) that such clauses can be used
as side premises (introduced to the resolvent). This problem
is loosely related to query and predicate boundedness and al-
though some recent results have been obtained [7], most of the
proposed algorithms are based on complex automata which, to
the best of our knowledge, have not yet been implemented.

Consequently, to provide an efficient and terminating al-
gorithm the calculus should not allow RA-clauses as side
premises. But then, to be able to deal with ELHI ontologies
the new algorithm would need to produce intermediate clauses
that are derivable by RA-clauses in a similar way to the stan-
dard IREQ calculus. The next example shows how IREQ would
behave when applied to the input of Example 6 which we will
use to illustrate the extensions that are needed to Ilite.

Example 7. Consider the TBox T and query Q1 from Exam-
ple 6. When applied to T and Q1 the Requiem algorithm would
perform the following inferences with the respective conclu-
sions:

(14), (15) ` C( f (x))← B(x) ∧ D(x) (17)
(16), (15) ` K(x)← B(x) ∧C( f (x)) (18)
(18), (17) ` K(x)← B(x) ∧ D(x) (19)
Q1, (19) ` Q(x)← B(x) ∧ D(x) (20)

The set R = {Q1, (14), (16), (20)} is a (datalog) rewriting of Q1
w.r.t. T .

First, we can observe that, if we extend shrinking to accept
RA-clauses as main premises, then the inferences performed to
produce clause (19) from clause (16) can be captured by a single
shrinking inference over clause (16) with side premises (15) and
(17). However, clause (17) that is used as side premise in this
shrinking inference does not belong in T but is produced by
resolving an RA-clause together with a DL-Lite-clause. This
interaction cannot be captured by any of the rules of Ilite. ♦

5Note that these clauses are produced by clausifying the DL axioms
∃S .D v C, B v ∃S , and ∃S −.C v K, respectively.
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Motivated by the above example, our calculus for ELHI-
ontologies consists, first, of a new inference rule which can
produce clauses like clause (17) from RA-clauses and clauses
of the same form as clause (15) and, second, of an extension of
unfolding and shrinking to allow as main premises besides type
1 clauses also RA-clauses, hence being able to compute, e.g.,
clause (19) from (16), (15), and (17). Because of the new infer-
ence rule that can produce new clauses with function symbols
in the head (cf. clause (17)), there can now be more than two
clauses that can mention the same function symbol f . Hence,
shrinking has to be extended further to allow for (possibly) n
side premises instead of at most two.

Our calculus for ELHI-TBoxes is defined next.

Definition 4. Let Υ be either a CQ or an RA-clause and let C(i)
be DL-Lite-clause(s). With IEL we denote the inference system
consisting of the following rules:

• unfolding:

Υ C

Υ′σ
where

1. Υ′σ is a function-free resolvent of Υ and C, and
2. if x 7→ f (y) ∈ σ then x < ejvar(Υ).

• n-shrinking:

Υ C1 [C2 . . . Cn]
Υ′σ

where

1. Υ′σ is a function-free resolvent of Υ and all
C1, . . . ,Cn for n ≥ 1, and

2. some x 7→ f (y) ∈ σ exists such that x ∈ ejvar(Υ).

• function:

B(x)← R(x, y) ∧ [C(y)] R( f (x), x)← A(x)
B( f (x))← A(x) ∧ [C(x)] or

B(x)← R(y, x) ∧ [C(y)] R(x, f (x))← A(x)
B( f (x))← A(x) ∧ [C(x)]

Finally, for Q a CQ and T an ELHI-TBox, Rapid-EL(Q,T )
is defined as the set of all function-free clauses derivable from
Q ∪ T by IEL.

Note that an inference by n-shrinking with more than 2 side
premises is only possible if the function rule has been pre-
viously “fired” to produce new type 2.3 clauses with some
function symbol in the head; however, the function rule cap-
tures a quite complex interaction between a clause containing
R(x, f (x)) (R( f (x), x)) and an RA-clause containing the inverse
R(y, x) (R(x, y)) which, as shown next in our experimental eval-
uation, does not happen often in practice. Moreover, note that
the application of the calculus IEL over some input T ∪ Q can
be partitioned into two phases. First, we can saturate T by IEL
having as a main premise only RA-clauses. Second, we can
collect all DL-Lite-clauses from T and those produced in the
previous step and use them as side premises in inferences of

IEL (modulo the function rule) with main premise only type 1
clauses. All the above imply excellent “pay as you go” proper-
ties for IEL. That is, in case T is expressed in DL-Lite the first
phase is simply omitted; if T is expressed in ELH , i.e., it does
not contain inverse roles, then the function rule is never applied
and n-shrinking can be restricted to n = 2, i.e., to the DL-Lite
shrinking. Finally, note that the number of inverse roles and
RA-clauses in T is likely to affect the number of times the func-
tion rule is applied and hence the parameter n of the n-shrinking
rule.

Example 8. Consider Example 7. The inference between
clauses (14) and (15) that produces clause (17) corresponds to
an inference using the function rule. Then, clause (19) can be
produced by n-shrinking over (16) with side premises clauses
(15) and (17), while (20) is produced by unfolding on Q and
(19), hence computing the required rewriting. ♦

4.1. Correctness of IEL
As mentioned in Section 3 correctness of Ilite is based on

showing that derivations by IREQ can be transformed into
derivations by Ilite. Since Ilite always uses as side premises
clauses from T , our first intermediate step was to show that
derivations by IREQ can be unfolded into derivations by ISLD

which are closer to the derivations produced by Ilite. In a sim-
ilar way, we also show here that derivations by IREQ can be
transformed into extended forms of SLD derivations and then
into derivations by IEL. This will be done by analysing the
structure of the derivations produced by IEL and by taking
again the two step approach.

Consider an inference of the form Υ,C ` Υ′, where
T `IREQ C. If the derivation of C does not involve an RA-clause,
then (like in DL-Lite) we can show that Υ′ can be derived from
Υ by ISLD using as side premises only DL-Lite-clauses. This
can be done via our unfolding technique of Υ,C ` Υ′ into
Υ,C1 ` Υ2, . . . ,Υn−1,Cn ` Υ′ where for each 1 ≤ i ≤ n we
have Ci ∈ T and Ci is a DL-Lite-clause. In a different case, as
explained in the previous section, the calculus IEL is expected
to produce new clauses using the new inference rules that do
not allow for RA-clauses as side premises. Hence, to match the
derivations constructed by IEL the previous inference should be
unfolded up to a certain level—that is, for some Ck we might
have Ck < T and Ck might be derivable by a sequence that be-
gins with an RA-clause. By inspecting Definition 4 we can see
that IEL can produce either of the following non-type 1 clauses,
hence, unfolding should stop when either of the following cases
occurs:

1. Ck is of type 2.3 of the form A( f (x)) ← B(x) ∧ [C(x)]
produced by the function rule over an RA-clause, or

2. Ck is a function-free type 3.3 clause produced by n-
shrinking and unfolding starting with an RA-clause.
This is because from an RA-clause of the form
A(x)← R(x, y) ∧ B(y) n-shrinking can produce a clause of
the form A(x) ← C(x) ∧ [D(x)], i.e., a function-free type
3.3. Note that this inference captures many inference steps
which start from the RA-clause and then several type 3.3
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clauses containing a function symbol follow until we reach
the function-free type 3.3 clause.

Consequently, to show correctness we first show that deriva-
tions by IREQ can be partially unfolded into an extended form
of SLD derivations, which (modulo the macro-inference) re-
semble those produced by IEL. These derivations are built by
using inferences which allow as side premises DL-Lite-clauses
from T , clauses produced by the function rule (case 1. above),
or function-free clauses of type 3.3 possibly produced previ-
ously (case 2. above).

Definition 5. Let Σ be a set of Horn clauses. An extended-SLD
derivation from Σ is a sequence of clauses C1, . . . ,Cn such that
each Ci can be one of the following:

• a type 1 or an RA-clause from Σ; or

• the conclusion of an inference by binary resolution hav-
ing as a main premise a type 1, type 3.3, or RA-clause
from {C1, . . . ,Ci−1} and as a side premise a clause from
Σ, a function-free type 3.3 clause from {C1, . . . ,Ci−1}, or
a clause produced by the function rule with side premise
from Σ.

A system producing such derivations is denoted by ISLD+ .

Note that the first condition allows a kind of restart step, i.e.,
one can copy some RA-clause from Σ into the sequence and use
it for deriving new clauses.

Next we show that indeed each derivation by IREQ can be
transformed into an extended-SLD derivation.

Lemma 3. Let T be an ELHI-TBox and let Υ be a CQ (resp.
RA-clause). Then, every type 1 clause (resp. type 3.3 clause)
derivable fromT by IREQ starting with Υ is also derivable from
T by ISLD+ starting with Υ.

Moreover, it follows by the structure of extended-SLD
derivations that side premises can only contain function sym-
bols in the head.

Proposition 2. Let T be an ELHI-TBox and Q a query. Any
extended-SLD derivation from T ∪ Q by ISLD+ is produced by
using as side premises clauses that have function symbols only
in the head.

Proof. By Definition 5 ISLD+ uses as side premises either
clauses from T , which can contain function symbols only in
the head, clauses produced by the function rule, which by Defi-
nition 4 only contain function symbols in the head, or function-
free type 3.3 clauses. �

Consequently, Lemma 2 applies and any extended-SLD
derivation of function-free type 1 or type 3.3 clauses can be
transformed into a function-compact one. Similarly to the case
of DL-Lite, the above together with soundness of the inference
rules can be used to show correctness of IEL. Finally, regarding
termination we have the following: first, only a finite number
(up to renaming of variables) of RA-clauses can be produced

(these can be produced only by unfolding); second, the func-
tion rule can also be applied only a finite number of times (its
side premise is always a clause from T and its main premise
is an RA-clause and as stated there can only be a finite number
of them); third, like in DL-Lite, n-shrinking and unfolding on
either type 1 or RA-clauses can only produce a finite number of
clauses.

Theorem 2. Let an ELHI-TBox T and a CQ Q. Ev-
ery derivation from T ∪ Q by IEL terminates. Moreover,
Rapid-EL(Q,T ) is a datalog rewriting of Q w.r.t. T .

5. Practical Implementation and Optimisations

A resolution calculus provides a general mechanism for rea-
soning over a given knowledge base, while to provide with a
well-behaved practical implementation several aspects need to
be taken into consideration like the strategy of rule applica-
tion. In the current section we discuss some implementation
and optimisation issues that help us provide a well-behaved (op-
timised) rewriting algorithm that is based on the calculus Ilite.

As illustrated by the following example, inferences using the
unfolding rule can, in many cases, lead to the generation of
redundant or even previously computed queries.

Example 9. Let T be a TBox consisting of the following
clauses:

R(x, f (x))← A(x) (21)
C( f (x))← A(x) (22)

D(x)← C(x) (23)
S (x, y)← R(x, y) (24)

and let also the query Q1 = Q(x)← A(x) ∧ S (x, y) ∧ D(y).
By applying Ilite on T ∪ {Q1} we obtain the following infer-

ences and the respective conclusions:

Q1, (23) ` Q(x)← A(x) ∧ S (x, y) ∧C(y) (25)
Q1, (24) ` Q(x)← A(x) ∧ R(x, y) ∧ D(y) (26)

(25), (24) ` Q(x)← A(x) ∧ R(x, y) ∧C(y) (27)
(26), (23) ` (27)

(27), (21), (22) ` Q(x)← A(x) (28)

It can be verified that the set containing Q1 and (25)–(27) is a
UCQ rewriting for Q1 w.r.t. T .

However, we can note that query (27) is produced twice.
In large ontologies this issue can occur quite often and hence
adversely affect performance. Second, we can also note that
query (28) subsumes all queries Q1 and (25)–(27). Ideally, if
we could compute query (28) directly from Q1 and then iden-
tify that it subsumes Q1, we could subsequently discard Q1 and
hence also avoid constructing all queries (25)–(27). ♦

In general, queries produced via shrinking are likely to subsume
queries produced by unfolding, since the former contain less
variables than the latter (recall that shrinking eliminates an ej-
variable). A technical difficulty is that shrinking might only
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be applicable after first applying several unfolding inferences.
More precisely, in the previous example query (28) can only be
produced after first generating query (27) via unfolding.

To minimise any redundancies due to unfolding our algo-
rithm does not explicitly construct such queries by applying the
rule. Instead, it computes only a minimal amount of informa-
tion that is sufficient to actually construct them. This is made
precise in the following definition.

Definition 6. Let T be a DL-Lite-TBox, let Q be a CQ, and let
A be some atom in the body of Q. Let also QA be a query such
that body(QA) = {A} and avar(QA) = var(A) ∩ ejvar(Q). The
unfolding set of A w.r.t. Q,T is the set defined as follows:

{body(Q′) | Q′ derivable from T ∪ QA using
only the unfolding rule}

Clearly, for a query Q the unfolding sets of its atoms fully
characterise the queries that are derivable from Q via unfolding.

Proposition 3. Let T be a DL-Lite-TBox, and let Q be a
CQ with body atoms A1, . . . , An and respective unfolding sets
S 1, . . . , S n. A query Q′ can be derived from T ∪ Q via unfold-
ing iff for every S i there exists A ∈ S i such that A ∈ body(Q′).

Example 10. Consider the TBox T and query Q1 from Exam-
ple 9. The unfolding set S D of D(y) w.r.t. Q1 contains all body
atoms of queries produced via unfolding from T ∪ {QD(y) ←
D(y)}, that is, the body atoms of queries QD(y) ← D(y) and
QD(y) ← C(y). Similarly, the unfolding set S S of S (x, y)
w.r.t. Q1,T contains the body atoms of QS (x, y) ← S (x, y) and
QS (x, y)← R(x, y), while the unfolding set S A of A(x) contains
only A(x).

It can be seen that all queries (25)–(27) of Example 9 can
be obtained from the previous unfolding sets. For example,
query (27) can be constructed by atom A(x) from S A, atom
R(x, y) from S S , and atom C(y) from S D. ♦

Using the information computed in the unfolding sets, our
algorithm constructs queries that would otherwise be computed
later on via shrinking, directly and without explicitly perform-
ing all intermediate steps.

Example 11. Consider again Example 9 and the query Q1.
Its body atoms S (x, y) and D(y) share the ej-variable y, while
the unfolding set of S (x, y) contains R(x, y) and the unfold-
ing set of D(y) contains C(y). Moreover, the TBox contains
clauses R(x, f (x)) ← A(x) and C( f (x)) ← A(x) and their
body atoms are unifiable. Therefore, we can conclude that
there exists a query constructed after several steps of unfolding
(i.e., query (27) of Example 9) over which shrinking with side
premises clauses (21) and (22) would be applicable. Hence,
from Q1 we can directly construct query (27) by replacing
S (x, y) and D(y) with atom A(x). Finally, the algorithm can de-
tect that query (27) subsumes Q1 and hence none of the queries
(25)–(27) are generated. ♦

We stress that computing the unfolding sets is in most cases
much more efficient than directly computing the queries deriv-
able by unfolding. First, the queries in the unfolding set contain

very few atoms (typically at most one); hence, inferences can be
performed more efficiently. Second, by proper variable renam-
ings previously computed unfolding sets can be reused. For ex-
ample, the unfolding set of some atom D(y) can be readily used
to compute the unfolding set of the atom D(z) by renaming all y
to z. Third, by avoiding computing these queries explicitly we
avoid the redundancy issue highlighted in Example 9.

In case a query Q is not subsumed by the one produced via
shrinking, the algorithm can use the unfolding sets to explic-
itly compute all the respective queries as shown in Example 10.
However, such a step can clearly create an exponential number
of queries (one needs to take all possible combinations of atoms
from all unfolding sets). Alternatively, the system can provide
a more compact representation of the rewriting by encoding the
information in the unfolding sets using datalog clauses. In Ex-
ample 10 the unfolding set of D(y) contains C(y). Hence, in-
stead of using C(y) to compute new queries from Q1 the algo-
rithm can return the datalog clause r1 = D(x) ← C(x). Simi-
larly, for the unfolding set for S (x, y) the algorithm can encode
this information via the datalog clause r2 = S (x, y) ← R(x, y).
It can be verified that {Q1, r1, r2} is a datalog rewriting of Q1
w.r.t. T .

However, there may be cases where one wants to compute
all the respective queries using the unfolding sets (e.g., if one
wants to compute a UCQ rewriting if one exists). Since as
stated above this process can be exponential it should be op-
timised as much as possible. As the following example shows,
the information in the unfolding sets can also be used to easily
identify whether some of these queries will be redundant and
hence discard them.

Example 12. Consider queryQ1 = Q(x)← A(x)∧D(x) and as-
sume the unfolding sets {A(x), E(x)} and {D(x), E(x)} for atoms
A(x) and D(x), respectively. According to these unfolding sets
the queries that are generated via unfolding are (amongst oth-
ers) Q2 = Q(x)← E(x) ∧ D(x), Q3 = Q(x)← A(x) ∧ E(x), and
Q4 = Q(x) ← E(x). It can be easily seen that Q4 subsumes Q2
and Q3. Intuitively, this is because both unfolding sets contain
the atom E(x). Hence, any query constructed by picking atom
E(x) from one of the two unfolding sets and another atom dif-
ferent than E(x) from the other, will eventually be subsumed by
the query that is constructed by picking E(x) from both sets. ♦

Our intuition in the previous example is formalised in the fol-
lowing proposition which can be used by the algorithm in order
to avoid generating queries that would eventually be redundant
in the result.

Proposition 4. Let T be a DL-Lite TBox, and let Q be a CQ
with body atoms A1, . . . , An and the respective unfolding sets
S 1, . . . , S n. Let also a query Q′ obtained via unfolding from
T ∪ Q. If there exist atoms {Bi, B j} ⊆ body(Q′), an unfolding
set S i such that {Bi, B′i} ⊆ S i, and a mapping θ : var(B′i) \
ejvar(Q) 7→ var(Q′) such that B′iθ = B j, then there exists a
query Q′′ obtained via unfolding from T ∪Q that subsumes Q′.

Proof. Let Q′ be derived via unfolding from T ∪Q and assume
that for some {Bk, B`} ⊆ body(Q′), there exists an unfolding set
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S k with atoms {Bk, B′k} ∈ S k, and there also exists θ : var(B′k) \
ejvar(Q) 7→ var(Q′) such that B′kθ = B`.

Now, let Q′′ be the query constructed from Q′ by replacing
atom Bk with atom B′k. By the definition of unfolding sets, it
is easy to see that ejvar(Q′′) ⊆ ejvar(Q); hence θ only maps
variables of B′k. Consequently, for each i , k we have Biθ = Bi

while for B′k we have B′kθ = B`; thus, Q′′θ ⊆ Q′. Finally, by
Proposition 3 it also follows that Q′′ can be derived from T ∪Q
via unfolding, as required. �

The above lemma gives sufficient conditions for deciding
whether a query is redundant. The following example shows
that indeed a query can be redundant without satisfying the con-
ditions of the proposition.

Example 13. Let the query Q = Q(x) ← R(x, y) ∧ A(y) ∧
P(x, z) ∧ A(z) and assume that for some TBox T we have the
unfolding sets {R(x, y), P(x, y)} and {P(x, z),R(x, z)} for atoms
R(x, y) and P(x, z), respectively. Hence, by Proposition 3 the
query Q′ = Q(x′) ← P(x′, y′) ∧ A(y′) ∧ R(x′, z′) ∧ A(z′) can
be produced by unfolding on Q. For θ = {y 7→ z′, z 7→ y′} we
clearly have Qθ ⊆ Q′, however, y, z ∈ ejvar(Q) hence Q′ does
not satisfy conditions of Proposition 4. ♦

However, note that in all previous examples we have that two
different unfolding sets contain an atom with the same predi-
cate name (e.g., E in E(x) of Example 12 and R and P in Exam-
ple 13). If this does not happen (i.e., all unfolding sets contain
different predicate names) then we can deduce that the queries
produced by them are non-redundant. Our algorithm uses such
strategies to identify non-redundant queries in a conservative
way which can very often speed up the algorithm.

6. Evaluation

We have implemented the calculus IEL together with the
optimisations outlined in Section 5 in our prototype tool
Rapid6 [13, 44]. Our system can either output the unfolding sets
as a datalog program or optionally create the respective queries
attempting to construct a UCQ rewriting (see Section 5).

We evaluated Rapid by comparing it against the query rewrit-
ing systems Requiem [39], Presto [41], and Clipper [14] (we
did not use Presto in the ELHI ontologies as it only supports
DL-Lite). In every experiment Rapid uses a final backwards
subsumption deletion step, while no other system does; both
Clipper and Presto do not apply it by default and we used Re-
quiem in the “naive” mode which does not apply it. Only in the
experiments reported in Table 5 we used the “greedy” mode of
Requiem that does apply backwards subsumption.

We have significantly extended the existing benchmark suites
for query rewriting systems by including many real-world large
scale and complex ontologies. In particular, we used DL-Lite

6http://www.image.ece.ntua.gr/~achort/rapid/

Table 4: Statistics of the used test ontologies

Ontology ]Concepts ]Roles ]GCIs ]RIAs
DL-Lite

OBO Protein 35351 6 43351 0
NCI 29173 66 53341 0

OpenGALEN2 23193 851 49046 882
ELHI

OBO Protein 37560 6 52383 0
NASA SWEET 4278 535 6004 411

PERIODIC Table 4282 22 9564 15
NotGALEN 5252 413 10551 416

GALEN-Doctored 4670 413 8140 416
OpenGALEN2 30048 851 63726 882
ExtendedDNS 168 186 664 189

versions of the OBO Protein,7 NCI 3.12e,8 and the Open-
GALEN29 ontologies, and ELHI versions of the LUBM,10

OBO Protein, NASA SWEET 2.3,11 PERIODIC Table,12 Not-
GALEN,13 GALEN-Doctored [20], the OpenGALEN2, and the
DOLCE 397 ExtendedDNS14 ontologies. Table 4 provides
statistics for the ontologies. For many of these ontologies no
test queries exist, hence we manually constructed five. Further
statistics and details about them can be found in Appendix A.
All the previous ontologies and queries are available online.6

In addition, we also attempted to use the query generator pro-
posed in [24] to automatically construct test queries for them.
Unfortunately, due to the complexity of the used ontologies in
most cases the tool failed to terminate. Even after imposing var-
ious bounds, the tool produced such a large set of test queries
(hundreds of thousands) that would be practically impossible
to perform all these tests with all systems. Hence, we consid-
ered its output only for NASA SWEET (706 queries) and the
ExtendedDNS ontology (7603 queries). The results for these
queries are presented in Table 8. Finally, we also used the DL-
Lite ontologies and test queries proposed in [38].

All tests were performed on a dual core 1.8GHz Intel Celeron
processor laptop running Windows 8 and JVM 1.7 with 3.6GB
maximum heap size. The timeout limit was set to 3 hours.

In all subsequent tables column O indicates the name of
the ontology, column “Time” the time to produce a rewrit-
ing (discarding loading the inputs into the systems), and col-
umn “Rewriting size” the number of clauses that the computed
rewriting contains. Moreover, “t/o” denotes a timeout.

6.1. DL-Lite
In Table 5 we present the results for some of the ontologies

and queries in the test suite proposed in [38]. These ontologies

7http://www.obofoundry.org
8http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
9http://www.opengalen.org

10http://swat.cse.lehigh.edu/projects/lubm
11http://sweet.jpl.nasa.gov/ontology
12http://www.cs.man.ac.uk/~stevensr/ontology
13http://www.cs.ox.ac.uk/isg/ontologies/lib/GALEN/

not-galen
14http://www.loa.istc.cnr.it
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Table 6: Evaluation results for large DL-Lite ontologies

Time (hh:mm:ss.msec) Rewriting size
O Rapid Requiem Presto Clipper Rapid Requiem Presto Clipper

OBO Protein

0.154 4.781 59:09.975 1:04.782 29 27 48 29
1.160 45.473 1:04:36.706 1:07.770 1356 1356 2621 1356
7.264 9:51.364 1:17:22.561 1:07.084 33919 33887 33888 33919

10.613 12:31.979 59:35.577 1:03.496 34879 34733 35416 34879
5:26.680 t/o 1:09:05.760 1:08.245 27907 t/o 2670 54430

NCI

0.057 4.423 1:58:34.415 11:49.193 488 5002 469 488
0.043 36.895 2:02:14.930 12:00.461 1804 1765 1766 1804
0.154 t/o 2:02:32.860 13:16.689 4143 t/o 3546 4143
0.063 1:17:51.520 2:04:19.429 13:55.669 1875 219150 1917 1875
0.041 9:39.122 2:09:21.690 13:27.232 256 64500 208 340

OpenGALEN2

0.001 0.024 t/o t/o 3 2 t/o t/o
0.099 6:04.373 t/o t/o 1276 1152 t/o t/o
0.001 0.111 t/o t/o 18 16 t/o t/o
0.004 5:46.020 t/o t/o 155 147 t/o t/o
0.001 0.022 t/o t/o 1 1 t/o t/o

Table 5: Evaluation results using Requiem’s test suite

Time (hh:mm:ss.msec) Rewriting size
O Rapid Requiem Presto Rapid Requiem Presto

P5X

0.004 0.012 0.026 14 14 14
0.021 0.137 0.103 25 25 26
0.022 0.313 0.203 58 58 37
0.040 4.160 2.005 179 179 82
0.445 2:17.683 51.538 718 718 251

UX

0.002 0.023 0.413 5 5 5
0.010 0.170 0.047 1 1 1
0.013 0.691 0.049 12 12 12
0.003 10.317 0.043 5 5 5
0.005 34.232 0.052 25 25 25

AX

0.016 0.028 1.856 41 41 41
0.158 1.595 4.108 1431 1431 1431
0.108 16.751 1:00.466 4466 4466 4466
0.389 13.068 33.729 3159 3159 3159
0.964 1:14:24 1:21:06 32921 32921 36330

are relatively small and simple and hence we present the re-
sults only for the most interesting ones. Because of their simple
structure a UCQ rewriting can be computed in reasonable time.
The purpose of this evaluation is mostly to illustrate Rapid’s
performance for computing a UCQ rewriting when using the
optimisations described in Section 5. The results show that
Rapid has either similar performance to the other systems or
it is much faster, as e.g. in query 5 over AX requires only 1 sec-
ond while Requiem and Presto require about 1 hour. The anal-
ysis showed that Requiem spends most of the time in the final
backwards subsumption step (recall that for these experiments
we used the greedy mode of Requiem that applies subsump-
tion). For example, in query 5 over ontology P5X, rewriting
takes around 45 seconds while subsumption around 1 minute
and 30 seconds while for query 5 over ontology AX rewriting
takes around 14 minutes while backwards subsumption around
1 hour. Hence, even without the final subsumption step Re-
quiem is considerably slow. In contrast, due to the optimi-
sations illustrated in Section 5 Rapid can identify subsumed
queries very efficiently and produce the minimal UCQ rewrit-
ing.

The results for the large DL-Lite ontologies are shown in Ta-

ble 6. Since these ontologies are quite large we ran all sys-
tems in the mode of computing compact datalog rewritings.
First, we observe that neither Presto nor Clipper managed to
compute a rewriting for OpenGALEN2, Requiem required up
to 6 minutes depending on the query, while Rapid required
only milliseconds. Similar observations can be made for the
the other two ontologies. Notable cases are all queries over
NCI for Clipper, where it required 12-14 minutes for each of
them, query 5 over OBO Protein and query 3 over NCI for
Requiem, for which it did not manage to compute a rewrit-
ing, and all queries over OBO Protein and NCI for Presto for
which it required about 1 and 2 hours, respectively. Rapid
was slower only in query 5 over OBO Protein, for which it
required 5:26 minutes. However, most of this time was spent
to the final backwards subsumption deletion that Rapid applies
(which guarantees a compact result with no duplicate or sub-
sumed queries), while the actual rewriting time was only a few
seconds. Recall that, no other system performs backwards sub-
sumption and hence, in contrast to Rapid, in query 5 over OBO
Protein Clipper computes a rewriting that is twice the size of
the one computed by Rapid, since it contains many duplicate
(up to variable renaming) clauses; Presto computed a rewrit-
ing with only 2670 clauses which is a surprisingly small num-
ber (also in comparison to the rewritings it computed in pre-
vious queries) but we did not investigate further. Regarding
the rewriting size in other cases, all systems computed rewrit-
ings of roughly similar size, except for query 5 over OBO Pro-
tein (as stated above), and queries 1, 4, 5 over NCI for Re-
quiem. As stated, small differences in the sizes of the rewritings
can be attributed to the different form of the datalog program
that each system produced. For example, in the case of query
1 over the OpenGALEN2 ontology Requiem produces the
datalog program {Q(x)← Heme(x), Q(x)← Haem(x)}, while
Rapid produces the program {Q(x) ← Heme(x), Heme(y) ←
Haem(y), Haem(z) ← Heme(z)}. Clearly, the two rewritings
produce the same certain answer when evaluated over an ABox.
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Table 7: Evaluation results for large ELHI ontologies

Time (hh:mm:ss.msec) Rewriting size
O Rapid Requiem Clipper Rapid Requiem Clipper

OBO Protein

9.626 t/o 1:42.249 51641 t/o 51641
29.764 t/o 1:45.742 52877 t/o 52877

6.247 t/o 1:46.322 51614 t/o 51614
16.940 t/o 1:44.356 52407 t/o 52407

11:23.172 t/o 1:49.475 79427 t/o 105950

NASA SWEET

0.095 0.410 t/o 170 288 t/o
0.015 0.840 t/o 507 1800 t/o
0.013 0.753 t/o 660 1945 t/o
0.028 2.551 t/o 1097 3380 t/o
0.031 42.703 t/o 1107 19515 t/o

PERIODIC Table

0.147 3:31.069 20.512 1103 6800 2892
0.035 4:11.178 19.857 879 6941 2892
0.064 4:26.803 19.610 1653 6889 2892
0.054 4:35.427 20.817 1609 8077 2849
0.094 10:30.913 20.936 1743 57054 2893

NotGALEN

0.002 0.006 23:57.628 1 1 1
1.527 t/o 24:35.363 11907 t/o 11756
0.972 t/o 22:50.269 11913 t/o 11769
0.001 t/o 22:28.542 11 t/o 11
0.988 t/o 22:59.788 11913 t/o 11760

GALEN-Doctored

0.004 0.009 t/o 3 2 t/o
1.772 t/o t/o 9563 t/o t/o
0.772 t/o t/o 9566 t/o t/o
0.001 t/o t/o 11 t/o t/o
0.931 t/o t/o 9576 t/o t/o

OpenGALEN2

0.002 0.01 t/o 3 2 t/o
2:49:21.804 t/o t/o 160817 t/o t/o

t/o t/o t/o t/o t/o t/o
t/o t/o t/o t/o t/o t/o
t/o t/o t/o t/o t/o t/o

ExtendedDNS

0.272 t/o t/o 1996 t/o t/o
0.085 t/o t/o 1999 t/o t/o
0.002 t/o t/o 96 t/o t/o
0.009 t/o t/o 281 t/o t/o
0.077 t/o t/o 2042 t/o t/o

6.2. ELHI
The results for the ELHI ontologies are shown in Table 7.

As it can be seen, Rapid is faster in the case of the medium
sized ontologies, while in the case of the large and more com-
plex ones it greatly outperforms all other systems by several or-
ders of magnitude. Actually, in several occasions the competing
systems did not terminate within the assigned time frame. How-
ever, again in query 5 over the OBO Protein ontology, Rapid
performed worse than Clipper due to the final backwards sub-
sumption checking and Clipper computed a rewriting that is of
about the double size comparing to that produced by Rapid. A
notable case is that, unlike Rapid, both Requiem and Clipper
fail to handle the ExtendedDNS ontology, which is in general
not a very large ontology.

The various versions of the GALEN ontology that we used
allow us to make some additional useful remarks. NotGALEN
and GALEN-Doctored are based on two early versions of the
GALEN ontology that have a relatively simple structure. The
results show that Rapid scales well and can compute rewritings

within a few seconds. Clipper needs about 25 minutes for Not-
GALEN (which is the more simple between the two), and time-
outs for GALEN-Doctored; Requiem timeouts for both. The
situation is different for the OpenGALEN2 ontology, whose
complex structure poses a challenge to all systems. Clipper fails
on all queries, Requiem succeeds for query 1, but Rapid is able
to compute rewritings for queries 1, 2 after requiring, however,
a significant amount of time for query 2 (about 3 hours). For
queries 3, 4, and 5 Rapid also did not manage to terminate.

After analysis we concluded that this failure is due to the ex-
tensive application of the function rule (after several minutes
the rule has already been applied more than a million times),
hence the number of side premises that need to be considered
in n-shrinking is vast. In contrast, this number is much smaller
in the other ontologies. In particular, OBO Protein and Not-
GALEN are actually ELH ontologies hence the rule is never
applied while PERIODIC Table contains very few RA-clauses
of the form ∃R−.C v D and no axiom of the form A v ∃S −.B,
hence again the function rule is never triggered (it would re-
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Table 8: Evaluation results for the queries generated using the
techniques in [24]

Time (hh:mm:ss.msec) Rewriting size
O Rapid Req. Clip. Rapid Req. Clip.

NASA 0.027 19.776 t/o 510.90 3818.74 t/o
ExtDNS 0.065 t/o t/o 1613.91 t/o t/o

quire an axiom ∃R−.C v D paired with A v ∃R.B or an ax-
iom ∃R.C v D paired with A v ∃R−.B). Moreover, in NASA
SWEET, which contains only 12 inverse role axioms, the func-
tion rule is applied from 71 (query 2) to at most 536 times
(queries 4 and 5), in ExtendedDNS, which contains 98 inverse
role axioms, the rule is applied from 11 (query 3) to 510 times
(query 5), while in GALEN-Doctored, which contains 207 in-
verse role axioms, the function rule, depending on the query, is
either not applied at all (queries 1 and 4) or it is applied more
than 20 millions times (queries 2, 3, 5).

Another interesting case is query 1 for the various versions
of the GALEN ontology. This query retrieves all objects of the
concept Heme which is found low in the GALEN hierarchy and
is “isolated” with respect to the complex part of the ontology
(also evident by its small rewriting). We note that Rapid and
Requiem are able to recognize this fact and answer instantly,
while Clipper apparently still processes the whole ontology be-
fore computing a rewriting.

Finally, Table 8 presents the results for the ontologies for
which we could compute test queries using the query genera-
tor in [24]. Due to the large number of queries we present av-
erage times and rewriting sizes. Again, we can see that Rapid
outperforms Requiem and Clipper.

Summarising the above, we can see that the new calculus can
indeed compute a rewriting very efficiently for the vast major-
ity of ontologies. This is also the case for large ELHI ontolo-
gies since the function rule and n-shrinking do not interact that
much. However, for well-known problematic ontologies (e.g.,
OpenGALEN2) computing a rewriting still poses a significant
challenge to all state-of-the-art systems.

7. Related Work

Query answering via rewriting has been extensively studied
for various fragments of OWL during the last decade. The
problem has been studied both from a theoretical point of
view by producing many complexity results and characterising
rewritability [8, 25, 18, 7], as well as from a practical point of
view by designing and developing many algorithms and practi-
cal systems for computing rewritings [9, 39, 41, 36, 13, 40, 14,
45].

The works that are most closest to ours are those that propose
a resolution-based rewriting algorithm. The first algorithm to be
proposed was the one implemented in the KAON2 system [35].
It was based on basic superposition and ordered hyperresolu-
tion and it supported queries with distinguished variables over
the languages SHIQ and Horn-SHIQ. Later, Pérez-Urbina
et al. [39] used binary resolution with free-selection to provide

a rewriting algorithm that supports arbitrary queries over DL-
Lite and ELHI. Recently, resolution was also used to provide
a rewriting algorithm for linear Datalog± [36]. The calculus was
based on SLD resolution but with forward-chaining. Forward-
chaining can create clauses with increasing nesting of function
terms (terms with increasing depth). Hence, an additional con-
dition was employed to ensure termination.

Even in the case of KAON2 that applies restrictions on the
ordering of terms and the selection function, all the aforemen-
tioned calculi explicitly produce resolvents that contain terms
with function symbols, although these clauses are always dis-
carded from the final rewriting and, as it has been shown [42], in
several cases they do not contribute to the generation of mem-
bers of the rewriting. To the best of our knowledge, this is the
first work on resolution-based rewriting for OWL ontologies
that attempts to further optimise the resolution calculus by con-
structing such clauses only when they are guaranteed to con-
tribute to the generation of members of the rewriting.

Finally, it is worth mentioning that the idea behind shrink-
ing as well as the technique of postponing the generation of
queries created via unfolding outlined in Section 5 is related to
the approach of eliminating ej-variables followed in Presto [41].
However, the crucial difference is that Presto does not provide
native support of qualified existential restrictions on the right-
hand side of axioms but it relies on the same encoding as in [9].
This encoding increases the number of the input clauses and the
overhead of dealing with them is evident by our performance
evaluation. Moreover, Presto only supports DL-Lite.

8. Conclusions

In the current paper we have studied the problem of effi-
ciently computing rewritings for ontologies expressed in var-
ious fragments of OWL using the framework of resolution.

First, we studied the problem for the language DL-Lite which
is strongly related to the language OWL 2 QL. We designed a
resolution-based rewriting algorithm which tries to (implicitly)
generate clauses with function symbols only when these are
“necessary”—that is, only when it is guaranteed that these will
further contribute to the generation of function-free clauses. To
achieve this we designed a new rule, namely shrinking, which
accumulates many inferences into a macro-step and has the ad-
ditional restriction that its conclusion must be function-free. In-
terestingly, due to the structure and properties of DL-Lite ax-
ioms this rule is amenable to many optimisations and can be
implemented highly-efficiently.

Second, we studied the problem for the language ELHI,
which is strongly related to the language OWL 2 EL. ELHI
is far more expressive than DL-Lite and the structure of its
axioms makes the task very challenging; it is worth mention-
ing that deciding concept subsumption in ELHI is in ExpTime
while deciding concept subsumption in DL-Lite is in P. How-
ever, by careful analysis of previous resolution-based rewriting
approaches we can see that a calculus which follows similar
principles like the ones designed for DL-Lite can be defined.
More precisely, it suffices to extend the shrinking step so that
it allows for n side premises and for type 1 and RA-clauses as
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main premises, and to add one more inference rule that captures
a very specific interaction between roles and their inverses. In-
terestingly, there is a close connection between the number of
side premises to be considered in the n-shrinking rule and the
application of the new rule. In realistic ontologies we expect
that there are few inverse roles and therefore we expect that the
function rule is rarely applied in practice and that the number
of side premises to consider in the n-shrinking rule is small.
Hence, the nice properties of the DL-Lite calculus are largely
being preserved even for the much more expressive ELHI lan-
guage.

Although optimised in its design, there are several issues to
be considered when implementing our proposed resolution cal-
culus. We have subsequently discussed some issues of the al-
gorithm and have shown how some of its properties can be used
to further optimise it. For example, we have shown how we can
reduce the size of the computed rewriting by encoding much
of the information using datalog clauses. Moreover, we have
shown how we can construct queries produced eventually via
shrinking before applying unfolding.

Finally, we have implemented all algorithms into the rewrit-
ing system Rapid and we have conducted an extensive ex-
perimental evaluation. Our test suite includes many well-
known large and complex ontologies and hence significantly
extends all previous benchmarks that mostly included toy on-
tologies [38, 24]. Moreover, our comparison against many
state-of-the-art systems has provided many encouraging and
important results. More precisely, when tested over the large
and complex ontologies we see that, in most cases, existing
systems fail to terminate within a timeout of 3 hours, while
Rapid manages to compute a rewriting in just a few seconds.
Despite this favourable performance there are still cases that
pose a significant challenge for Rapid, like the highly-complex
GALEN ontology. After analysis we concluded that the struc-
ture of GALEN forces many applications of the function rule
(the additional rule for ELHI) which consequently increases
the number of side premises that need to be considered in n-
shrinking. Hence, there is further room to improve the compu-
tations of rewritings.

Regarding directions for future work we plan to investigate
whether the principles underlying the shrinking step can be
used in resolution-based rewriting algorithms for even more
expressive ontology languages. We plan to target both lan-
guages that can be rewritten into datalog, like linear Datalog±

and Horn-SHIQ but also much more expressive languages like
ALC. The latter is an extremely challenging task as ALC can
only be rewritten into disjunctive datalog [32].
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Table A.9: Statistics of the test queries

OBO Protein NCI
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

|Qi | 2 2 1 2 4 3 1 3 3 5
ejvar 1 1 0 1 2 1 0 1 1 2

NASA SWEET PERIODIC Table
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

|Qi | 3 5 5 1 5 1 1 1 3 3
ejvar 2 1 2 0 1 0 0 0 1 1

NotGALEN/GALEN-Doctored
Q1 Q2 Q3 Q4 Q5

|Qi | 1 1 2 1 2
ejvar 0 0 1 0 1

OpenGALEN2 ExtendedDNS
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

|Qi | 1 2 2 4 2 1 1 2 1 2
ejvar 0 0 1 0 1 0 1 1 2 1

Appendix A. Statistics on Manually Constructed CQs

In Table A.9 we provide statistics for all manually con-
structed test queries we created for each of the test ontologies;
with |Qi| we indicate the number of conjuncts in the query body
and with ejvar the number ej-variables of the respective query.
All queries contain one answer variable except for queries 2 and
5 over the NASA SWEET ontology which contain 2. Finally,
note that all queries are tree-shaped.

To construct the queries we have tried to use concepts and
roles that appear both low as well as high in the hierarchy of
the ontology or appear in axioms with qualified existential re-
strictions. For example, queries 1, 2 for NotGALEN are the
queries Q(x) ← Heme(x), Q(x) ← BodyProcess(x) where
concepts Heme and BodyProcess have seven and three an-
cestors in the class hierarchy, respectively. Query 4 posed for
ExtendedDNS is the query Q(x) ← duses(x, y) ∧ task(y) ∧
duses(x, z) ∧ description(z), where concepts task, description
and role duses participate in several axioms with qualified
existentials. More precisely, the ontology contains the ax-
ioms plan v ∃duses.task, description v ∃dusedby−.>, and
dusedby v duses−.

Appendix B. Requiem types of inferences

Table B.10 presents all interactions (types of inferences) that
are possible when applying IREQ over clauses expressed in the
language ELHI.

In DL-Lite there are no RA-clauses, hence these are of the
form B(x) ← P(x, y) and B(x) ← P(y, x). Consequently, infer-
ences of the form 4.1+2.1=3.3 are simplified to:

B(x)← P(x, y) P(x, f (x))← A(x)
B(x)← A(x)

where the resolvent is function-free. Moreover, according to
Table 3 the input ontology can only contain function-free type
3.3 clause. Consequently, in DL-Lite all type 3.3 clauses are
function-free; therefore, inference 3.3+2.3=3.3 in Table B.10
is never performed in DL-Lite.
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Furthermore, since we consider normalised ontologies, in
DL-Lite there can only be clauses of the form B( f (x))← F(x).
Hence, inferences of the form 3.3+2.3=2.3 are simplified to be
of the following form:

C(x)← A(x) ∧ [B(x)] A( f (x))← F(x)
C( f (x))← F(x) ∧ [B( f (x))]

That is, there is exactly one function-free atom in the body of
the resolvent. Moreover, the above resolvent can subsequently
be used only as a main premise in an inference of the form
2.3+2.3=2.3, which in the case of DL-lite is simplified to be of
the following form:

C( f (x))← F(x) ∧ B( f (x)) ∧ D( f (x)) B( f (x))← F(x)
C( f (x))← F(x) ∧ D( f (x))

That is, the body part of the side premise is the same at the
single function-free atom of the main premise. This is because
each function symbol f is associated with a single body atom.

Appendix C. Proofs of Section 3

Lemma 1. Let T be a DL-Lite-TBox and let Q be a CQ. Every
type 1 clause derivable from T ∪ Q by IREQ is also derivable
from T ∪ Q by ISLD.

Proof. We show using induction that for each clause Q′ of type
1 such that T ,Q `IREQ

i Q′ (i.e., that is derivable at depth i) we
also have T ,Q `ISLD Q′.

Base case (i=0): In that case Q′ is actually the input CQ Q and
hence we clearly have T ,Q `ISLD Q′.

Induction step: For i some derivation depth assume that for ev-
ery ` ≤ i and Q′ such that T ,Q `IREQ

`
Q′ we have T ,Q `ISLD Q′

(induction hypothesis). Assume now that at a next step a clause
Q′′ of type 1 is produced, i.e., T ,Q `IREQ

i+1 Q′′. By the def-
inition of IREQ Q

′′ is produced by an inference of the form
Q′,C `IREQ Q′′, i.e., one that has as a main premise another
clause of type 1 such that T ,Q `IREQ

`
Q′ and as a side premise a

clause C such that T `IREQ C. Clearly, we have Q′,C `ISLD Q′′.
If C ∈ T then, by the previous and the induction hypothesis
we immediately obtain T ,Q `ISLD Q′′. Otherwise, we have
T `

IREQ
j C with j > 0, and it suffices to show that Q′′ can also

be derived from Qi by ISLD using only clauses of T . This fol-
lows by the following claim:

Claim 1: For each Q′′ and C such that Q′,C `ISLD Q′′,
T `

IREQ
j C, and j > 0 there exist C1 and C2 such that

the following hold:

• T `
IREQ
j−1 C1 and T `IREQ

j−1 C2, and

• Q′,C1 `
ISLD Q∗, Q∗,C2 `

ISLD Q′′.

We show Claim 1 by a case analysis on the types of
clauses that can be deduced from T by IREQ. According
to IREQ, only clauses of type 2.1, 2.2, 2.3 (of the form
B( f (x))← C(x) ∧ [A( f (x))]), or 3.3 (of the form A(x)← B(x))
can be derived from T by IREQ. We show each case next:

Table B.10: Possible Types of Inferences of IREQ

3.3+2.3=2.3
C(x)← A(x) ∧ B(x) A( f (x))← F(x)

C( f (x))← B( f (x)) ∧ F(x)

3.3+2.3=3.3
E(x)← B( f (x)) ∧ C( f (x)) ∧ D(x) B( f (x))← G(x)

E(x)← C( f (x)) ∧G(x) ∧ D(x)

2.3+2.3=2.3
E( f (x))← B( f (x)) ∧ C( f (x)) ∧ D(x) B( f (x))← G(x)

E( f (x))← C( f (x)) ∧G(x) ∧ D(x)

4.1+2.1=3.3
B(x)← P(x, y) ∧ [C(y)] P(x, f (x))← A(x)

B(x)← A(x) ∧ [C( f (x))]

4.1+2.2=2.3
B(x)← P(x, y) ∧ [C(y)] P( f (x), x)← A(x)

B( f (x))← A(x) ∧ [C(x)]

3.1+2.1=2.1
S (x, y)← P(x, y) P(x, f (x))← A(x)

S (x, f (x))← A(x)

3.1+2.2=2.2
S (x, y)← P(x, y) P( f (x), x)← A(x)

S ( f (x), x)← A(x)

1+2.3=1
Q(~s)←

∧
D j(~t j) ∧ R(t1, t2) ∧ B(t) B( f (x))← C(x)

Q(~s)σ←
∧

D j(~t j)σ ∧ R(t1, t2)σ ∧ C(x)σ

where σ is an mgu for {B(t), B( f (x))}
1+2.1=1
Q(~s)←

∧
D j(~t j) ∧ R(t1, t2) ∧ B(t) R(x, f (x))← C(x)

Q(~s)σ←
∧

D j(~t j)σ ∧C(x)σ ∧ B(t)σ

where σ is an mgu for {R(t1, t2),R(x, f (x))}

1. C is of type 2.1. Then, Q′,C `ISLD Q′′ is of the form:

QP(~s)←
∧

D j(~t j) ∧ R(v, u) R(x, f (x))← A(x)

QP(~s)σ←
∧

D j(~t j)σ ∧ A(x)σ

where σ is an mgu for {R(v, u),R(x, f (x))}. Moreover,
IREQ produces clauses of type 2.1 by resolving clauses
C1,C2 of either type 3.1 and 2.1 or of type 3.2 and 2.2. We
show the case that C1 is of type 3.1 (R(x, y)← P(x, y)) and
C2 of type 2.1 (P(x, f (x)) ← A(x)); the case of types 3.2
and 2.2 is similar. Assume w.l.o.g. that the mgu in the in-
ference of C1 and C2 is σ1 = {y/ f (x)}. Clearly, Q′ resolves
with C1 producing clause:

Q∗ = QP(~s)θ ←
∧

D j(~t j)θ ∧ P(x, y)θ

with θ the mgu for {R(v, u),R(x, y)}. The mapping θ1 =
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{x 7→ v, y 7→ u} is an mgu for {R(v, u),R(x, y)}. However,
if v, u are variables, then θ2 = {v 7→ x, u 7→ y} is also
a possible mgu. But, the result of applying θ1 or θ2 to a
clause is equivalent up to renaming of variables. Hence,
w.l.o.g. we can assume that θ = θ1. Moreover, since x, y
do not appear in Q′, clause Q∗ is actually of the form
QP(~s)←

∧
D j(~t j) ∧ P(v, u). Consequently, since the vari-

ables that appear in P(v, u) are the same as those in R(v, u),
Q∗ resolves with C2 with mgu σ to obtain clause Q′′.
Therefore, there are inferences of the form Q′,C1 ` Q

∗

and Q∗,C2 ` Q
′′. Since IREQ never produces clauses of

type 3.1, C1 ∈ T and for C2 we clearly have T `IREQ
j−1 C2.

2. C is of type 2.2. This case is symmetric to the previous
one.

3. C is of type 2.3. Then, Q′,C `ISLD Q′′ is of the following
form:

QP(~s)←
∧

D j(~t j) ∧ B(v) B( f (x))← A(x) ∧ [A′( f (x))]

QP(~s)σ←
∧

D j(~t j)σ ∧ A(x)σ ∧ [A′( f (x))σ]

where σ is an mgu for {B(v), B( f (x))}. Moreover, IREQ

produces clauses of type 2.3 by resolving clauses C1,C2
of either type 3.3 and 2.3, or of type 4.1 and 2.2, or of type
4.2 and 2.1.
First, let C1 be of type 3.3 (B(x′) ← C(x′) ∧ [A′(x′)]) and
C2 of type 2.3 (C( f (x)) ← A(x)), while C is produced
by resolving them with mgu σ1 = {x′/ f (x)}. Clearly, Q′

resolves with C1 producing clause:

Q∗ = QP(~s)θ ←
∧

D j(~t j)θ ∧C(x′)θ ∧ [A′(x′)θ]

with θ mgu for {B(v), B(x′)}. As before, we can as-
sume that θ is the mgu {x′ 7→ v}. Moreover, since x′

does not appear in Q∗, clause Q∗ is actually of the form
QP(~s)←

∧
D j(~t j) ∧C(v) ∧ [A′(v)]. Hence, since the vari-

ables that appear in C(v), A′(v) are the same as those in
B(v), Q∗ resolves with C2 with mgu σ to obtain clause Q′′.
Therefore, there are derivations of the form Q′,C1 ` Q

∗

and Q∗,C2 ` Q
′′. Moreover, we clearly have T `IREQ

j−1 C1

and T `IREQ
j−1 C2.

Second, let C1 be of type 4.1 (B(x′) ← R(x′, y)) and C2 is
of type 2.2 (R( f (x), x) ← A(x)), while is produced using
mgu σ1 = {x′/ f (x), y 7→ x}; the case of 4.2 and 2.1 is
similar. Again, Q′ resolves with C1 producing clause:

Q∗ = QP(~s)θ ←
∧

D j(~t j)θ ∧ R(x′, y)θ

with θmgu for {B(v), B(x′)} and θ can be the mgu {x′ 7→ v};
hence, we have Q∗ = QP(~s) ←

∧
D j(~t j) ∧ R(v, y). Since v

also appears in B(v) of Q′ and y is new in Q∗, Q∗ resolves
with C2 with mgu σ′ = σ ∪ {y 7→ x} which produces Q′′.
Thus, again, there is a derivation of the form Q′,C1 ` Q

∗,
Q∗,C2 ` Q

′′, while since IREQ never produces clauses of
type 4.1, C1 ∈ T , and finally T `IREQ

j−1 C2, as required.
4. C is of type 3.3. Then, Q′,C `ISLD Q′′ is of the following

form:

QP(~s)←
∧

D j(~t j) ∧ A(v) A(x)← B(x)

QP(~s)σ←
∧

D j(~t j)σ ∧ B(x)σ

where σ is an mgu for {A(v), A(x)}. Moreover, IREQ pro-
duces clauses of type 3.3 by resolving clauses C1,C2 of
either type 4.1 and 2.1 or of type 3.2 and 2.2. Assume
that C1 is of type 4.1 (A(x) ← R(x, y)) and C2 of type 2.1
(R(x, f (x)) ← B(x)) while C is produced using the mgu
σ1 = {y/ f (x)} (the case of 4.2 and 2.2 is similar). Clearly,
Q′ resolves with C1 producing clause:

Q∗ = QP(~s)θ ←
∧

D j(~t j)θ ∧ R(x, y)θ

Again we can assume that θ is the mgu {x 7→ v} and Q∗

is actually of the form Q∗ = QP(~s) ←
∧

D j(~t j) ∧ R(v, y).
Hence, since v appears both in R(v, y) and A(v) and y does
not appear in Q′, clause Q∗ resolves with C2 with mgu σ
to obtain clause Q′′.

The previous claim implies that for a clause C such that
T `IREQ C the inference Q′,C `ISLD Q′′ can be transformed
into a sequence of inferences of the form Q′,C1 `

ISLD Q∗1,
Q∗1,C2 `

ISLD Q∗2, . . . ,Q
∗
n−1,Cn `

ISLD Q′′, such that for all
1 ≤ i ≤ n we have Ci ∈ T ; hence T ,Q′ `ISLD Q′′ and com-
bined with the induction hypothesis (T ,Q `ISLD Q′) we get
T ,Q `ISLD Q′′ as required. �

Lemma 2. Any derivation built by inferences that have as
side premises Horn clauses that can contain terms with function
symbols only in the head can be transformed into one that is
function-compact.

Proof. Consider a derivation Q1,Q2, . . . ,Qn by ISLD such that
all clauses Q2, . . . ,Qn−1 contain a term that mentions a function
symbol f while Q1 and Qn don’t mention f . In the follow-
ing to also quantify over the side premises used in a derivation
we write such a derivation as 〈Q1,C1〉, 〈Q2,C2〉, . . . , 〈Qn,Cn〉,
where Qi,Ci ` Qi+1.

The lemma follows by the following claim:

Claim 2: For every derivation like the above and for
which there exists Q j and C j such that C j does not
mention f , then there also exists Ck that does not
mention f and is such that either of the following are
valid derivations by ISLD:

(a) 〈Q1,Ck〉, 〈Q
′
2,C1〉, . . . , 〈Q

′
k,Ck−1〉,

〈Qk+1,Ck+1〉, . . . , 〈Qn,Cn〉 or
(b) 〈Q1,C1〉, 〈Q2,C2〉, . . . , 〈Qk,Ck+1〉,

〈Q′k+1,Ck+2〉, . . . , 〈Q
′
n−1,Ck〉, 〈Qn,Cn〉

The claim says that some inference with side premise Ck that
does not mention f can be moved “outside” of the relevant part
of the derivation. In Case 1., since Q1 and Ck do not mention f ,
so does Q′2. Hence, then the first clause that mentions f is Q′3.
In Case 2., again since Qn,Ck do not mention f , so does Qn−1 (a
function-free clause cannot be created from an inference with
main a clause containing a functional symbol and a function-
free side premise). Consequently, by repeated applications of
the above transformation we can remove all the inferences that
have a side premise that does not mention f and create new
function-free “first” and “last” clauses that are closer together.
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The transformation clearly terminates and it can be done to all
parts of an SLD derivation. Hence after a finite number of steps
we can obtain a function-compact derivation.

We now show the Claim 2.
First, we show that if a pair of inferences Q1,C1 ` Q2 and

Q2,C2 ` Q3 can be rewritten as Q1,C2 ` Q
′ and Q′,C1 ` Q

′′,
then Q′′ is actually Q3—that is, if we can reorder the pair, then
after the reordering we obtain the same final derived clause.
Thus, in Claim 2, after Ck has been pushed to the beginning
(end), we indeed have that Q′k,Ck−1 ` Qk+1 (Q′n−1,Ck ` Qn).

In more detail, the inference Q1,C1 ` Q2 is of the form:

QP(~s)←
∧

D j(~t j) ∧ A ∧ B A1 ← A2

QP(~s)σ←
∧

D j(~t j)σ ∧ A2σ ∧ Bσ

where σ is the m.g.u. for {A, A1}, while Q2,C2 ` Q3 is of the
form:

QP(~s)σ←
∧

D j(~t j)σ ∧ A2σ ∧ Bσ B1 ← B2

QP(~s)σθ ←
∧

D j(~t j)σθ ∧ A2σθ ∧ B2θ

where θ is the m.g.u. for {Bσ, B1}. After reordering, the infer-
ence Q1,C2 ` Q

′ is of the form:

QP(~s)←
∧

D j(~t j) ∧ A ∧ B B1 ← B2

QP(~s)θ′ ←
∧

D j(~t j)θ′ ∧ Aθ′ ∧ B2θ′

for θ′ a most general unifier for {B, B1}, while Q′,C2 ` Q
′′ is of

the form:

QP(~s)θ′ ←
∧

D j(~t j)θ′ ∧ Aθ′ ∧ B2θ
′ A1 ← A2

QP(~s)θ′σ′ ←
∧

D j(~t j)θ′σ′ ∧ A2σ′ ∧ B2θ′σ′

with σ′ an m.g.u. for {A1, Aθ′}. Clause Q′′ contains the same
predicates as Q3. To show that Q′′ is equal (up to renaming
of variables to Q3) we need to show that unifiers θ′ and σ′ ex-
ist such that θ′ ◦ σ′ maps variables of Q in the same way as
σ ◦ θ. To do so, given a mapping s1 7→ s2 ∈ σ and a mapping
t1 7→ t2 ∈ θ, we show how we can build mappings s′1 7→ s′2 ∈ σ

′

and t′1 7→ t′2 ∈ θ
′ such that, w.r.t. the variables that are being

mapped, applying σ and then θ has the same result as applying
first θ′ and then σ′. Consequently, since this can be done for
any combination of mappings in σ and θ, applying θ′ and then
σ′ would have the same effect on all the variables of the query.
Since there are unifiers there are also most general unifiers and
we will have that Q3 = Q′′. Unifiers θ′ and σ′ are constructed
based on σ and θ as follows, where 1. and 2. are applied ex-
haustively first, and then 3., 4., 5., and 6. in that order:

1. If σ contains x 7→ s and θ contains w 7→ s, then add w 7→ x
to θ′ and x 7→ s to σ′. Clearly, θ′ ◦ σ′ maps x and w to the
same terms as σ ◦ θ.

2. If σ contains x 7→ s and θ contains w 7→ g(s) for some
function g, then add w 7→ g(x) to θ′ and x 7→ s to σ′.
Again, σ ◦ θ maps x and w to the same terms as σ ◦ θ.

3. In all other cases copy all mappings of θ to θ′.
4. Let σ contain x 7→ y and let x be a variable of Q1. If θ′

contains no mapping of the form y 7→ s, then add x 7→ y to
σ′; otherwise, add x 7→ s to σ′; similarly if x 7→ f (y) ∈ σ

and y 7→ s ∈ θ, then add x 7→ f (s) to σ′. Again, θ′ ◦ σ′

maps variables x and y to the same terms as σ ◦ θ.
5. In all other cases copy all mappings of σ to σ′.
6. If σ contains a mapping of the form x 7→ s and x is a

variable of C1, then add x 7→ sθ′ to σ′. In this case this
mapping has no effects on the variables of Q′′ as x belongs
in C1.

Note that the construction is well-founded: Cases 1. and 2. are
independent from each other and do not depend on previously
introduced mappings. Moreover, Case 3. is also independent.
Case 4. has an if condition over θ′. However, θ′ is never altered
again, hence the if condition is either always satisfied or not and
the construction of σ′ is well-defined. Finally, Cases 5. and 6.
are also well-defined.

Before proceeding we note that a pair of inferences
Q1,C1 ` Q2 and Q2,C2 ` Q3 cannot be rewritten as Q1,C2 ` Q

′

and Q′,C1 ` Q
′′ only if the head of C2 resolves with some atom

that was introduced when resolving Q1 with C1 —that is, C1
is of the form A ← B, C2 is of the form B ← C and B ∈ B
and hence the inference with side premise C2 requires that the
inference with side premise C1 occurs first. If reordering of the
previous inference is possible then we say that C2 is indepen-
dent of C1, while if they cannot then we say that it is dependent.

Finally, we show that clauses that do not mention a functional
symbol can indeed be pushed either at the beginning or at the
end of the sequence.

Consider a sequence Q1, . . . ,Qn where all Q2, . . . ,Qn−1 men-
tion a function symbol f while Q1 and Qn do not. Assume also
in contrast that none of the clauses Ci with 2 ≤ i ≤ n − 1 that
does not mention f can be moved either at the beginning or at
the end.

Let Ck be the first side premise that does not mention f .
By assumption it cannot be moved at the beginning of the se-
quence. Hence, Ck is of the form A ← B and there is some
previous inference Q j,C j ` Q j+1 with j > 1, where C j is of
the form F ← A with A ∈ A and hence Ck cannot be moved
outside. If C j is function-free then the assumption also applies
to it and hence there is some other clause before over which C j

depends. It follows that for some clause that cannot be moved
outside the clause obstructing the move contains f in the head.
Let that be C j, that is, for C j we additionally have that F con-
tains the function symbol f . It also follows that no clause C` in
between, i.e., where j < ` < k can depend on C j for otherwise
the inference with C` would eliminate A and hence Ck would
not depend on C j. Consequently, all these clauses in between
can be moved before C j, that is, the sequence can be reordered
such that j = k − 1.

Next, again by assumption, Ck cannot be moved downwards
either. Hence, this implies that there is also some clause Cm

that depends on Ck—that is, it is of the form B ← C, where
B ∈ B. Again no clause in between Ck and Cm can depend on
Ck. Moreover it can also not depend on C j as A is eliminated
by the inference with side premise Ck. Hence, all these clauses
can also be moved before clause C j, i.e., Ck−1 in the reordered
sequence. By applying this reasoning repeatedly we can reorder
the sequence such that after clauseCk−1 we have inferences with
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side premises clauses Ck−1,Ck,Ck+1 such that the head of each
clause resolves with some body atom of its clause immediately
on the left. Let Ck+1 be the clause produced by the inferences
Ck−1,Ck ` C

′, C′,Ck+1 ` C
k+1. By the form of the clauses

used in these inferences (see before) Ck+1 must be of the form
F ← C. Moreover, we can easily see that instead of obtaining
Qk+2 through the inferences Qk−1,Ck−1 ` Qk,Qk,Ck ` Qk+1,
and Qk+1,Ck+1 ` Qk+2 we can obtain it as a resolvent of Qk−1
and Ck+1. Furthermore, since Qk−1 mentions f , the inference
Qk−1,Ck−1 ` Qk creates a clause that also mentions f , and Ck+1

has the same head as Ck−1, then so would Qk+2 mention f .
Consequently, if Ck+1 is the last clause in the sequence, i.e.,

Cn−1, then we reach a contradiction: in that case Qk+2 is Qn and
as shown before it must mention f . Otherwise, there are other
inferences and side premises between Ck+1 and Cn−1. First note
that these can only depend on Ck+1. If some dependent clause
exists then, reorder the sequence by moving it after Ck+1, and
compute the clause Ck+2 where Ck+1,Ck+2 ` C

k+2; otherwise,
starting from the topmost, push all independent clause one by
one before Ck−1. We can repeat this reordering until we reach
a sequence where all inferences have side premises of the form
Ck−1,Ck,Ck+1,Ck+2, . . . ,Cn−1, all clauses depend on the clause
immediately on the left and as stated before Qn can be obtained
as a resolvent of Qk−1 and some clause Cn−1 which is built by
resolving one-by-one in an iterative way all the side premises
of the previous list. Hence, we can reach a contradiction. �

Theorem 1. Let T be a DL-LiteRTBox and let Q be a CQ.
Every derivation from T ∪ Q by Ilite terminates. Moreover,
Rapid-Lite(Q,T ) is a UCQ rewriting for Q,T .

Proof. Termination follows by our observations stated in Sec-
tion 3. Next we show correctness. Let RQ = Rapid-Lite(Q,T ).
To show that RQ is a UCQ rewriting we need to show that for
eachA we have cert(Q,T ∪A) = cert(RQ,A).

In order to show that cert(Q,T ∪ A) ⊇ cert(RQ,A), it suf-
fices to show that T ∪ Q |= RQ, which is equivalent to showing
T ∪ Q |= Qi for each Qi ∈ RQ. This follows trivially since each
Qi is built using a resolution based calculus.

Now we show that cert(Q,T ∪ A) ⊆ cert(RQ,A). Con-
sider the Requiem algorithm. It suffices to show that for each
Q′ ∈ RQR(Q,T ) a query Q′′ ∈ RQ exists such that Q′ and Q′′

are equivalent up to renaming of variables. RQR(Q,T ) is con-
structed in two steps. First, T ∪Q is saturated by IREQ to obtain
a (non-recursive) datalog program P, and then P is unfolded to
obtain a UCQ.

By Lemma 1, every clause of type 1 in P can also be derived
from T ∪ Q by ISLD, while by Lemma 2 the SLD derivation
can additionally be assumed to be function-compact. Hence,
it suffices to show that for each function-free clause of type 1
derivable from T ∪ Q by ISLDis also derivable from T ∪ Q by
Ilite.

Let Qi be the i-th query derived from T ∪Q by ISLD. We use
induction.

Base case (i=0): In that case Q0 = Q and by definition of
Rapid-Lite(Q,T ), we have Q0 ∈ RQ.

Induction step: Assume that for all 1 ≤ i ≤ n, all function-
free clauses Qi derivable by ISLD are also derivable by Ilite and
assume that a new function-free clause Qi+1 is derived next by
ISLD. There are two cases:

1. Qi+1 is derived from some function-free Q j with j ≤ i and
side premise some clause C j ∈ T . Since both Q j and Qi+1
are function-free this inference can be captured by the un-
folding inference rule; hence, Q j,C j `

Ilite Qi+1 and thus
Qi+1 ∈ RQ.

2. Qi+1 is derived from some Q j by ISLD with an SLD deriva-
tion of the form Q j,Q j+1, . . . ,Q j+k where Q j+k = Qi+1, all
intermediate clauses contain a term f (s j), while also by
function-compactness all side premises contain f (t j). By
definition of ISLD all side premises belong to T and T is
normalised; hence, function symbols are unique per axiom
of the form ∃R.A and consequently, all side premises are
either of the form R(x, f (x)) ← D or A( f (x)) ← C, while
the atoms of all intermediate clauses of type 1 over which
they resolve are of the form R(u j, f (s j)), R( f (s j), u j) or
A( f (s j)) for s j, u j terms. Moreover, since Q j is function-
free andQ j+1 mentions f , the atom ofQ j that resolves with
C j is of the form R(s, t) or A(t) and the mgu must contain
a mapping of the form x 7→ f (y) for x an ej-variable of Q j.
Let S 1 contain all the role atoms of Q j that participate in
the inference and S 2 all the concept atoms. (Note that ei-
ther can be empty) Since there is an mgu for all interme-
diate SLD inferences, there is also a simultaneous mgu for
S 1∪{R(x, f (x))} and S 2∪{A( f (x)} [16]. Moreover, as anal-
ysed above and by construction of the simultaneous mgu,
this must contain a mapping of the form x 7→ f (y′) for x
an ej-variable. Consequently, there is an inference of the
form Q j,C1, [C2] ` Qi+1 using the shrinking rule.

Hence, in either case all function-free clauses of type 1 are
derivable by Ilite.

Finally, we show that all queries derived using unfolding are
also derivable by Ilite. This is straightforward: again all such
inferences can be unfolded to be captured by inferences using
as side premises only clauses from T and moreover all these
always produce function-free type 1 clauses; hence, they can
be captured by the unfolding rule of Ilite and hence all such
queries belong to RQ. �

Appendix D. Proofs of Section 4

Lemma 3 Let T be an ELHI-TBox and let Υ be a CQ (resp.
RA-clause). Then, every type 1 clause (resp. type 3.3 clause)
derivable fromT by IREQ starting with Υ is also derivable from
T by ISLD+ starting with Υ.

Proof. First, let Υ be an arbitrary RA-clause that produces
some clause of type 3.3 from T by IREQ. We show the claim
via induction. Assume that at some point all 3.3 clauses deriv-
able from T by IREQ starting with an RA-clause are also deriv-
able from T by ISLD+ (IH1). Assume that a new 3.3 clause C is
derived in some part of the derivation that is starting with Υ. We
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show only the case that Υ is of the form A(x)← R(x, y) ∧D(y),
i.e., of type 4.1; for Υ of type 4.2 the proof is similar.

Clause C is of type 3.3. According to Table B.10 such clauses
can be produced by inferences of the form C1,D1 `

IREQ C

where C1 andD1 can be one of the following forms:

1. Clause C1 is of type 4.1 and clause D1 is of type 2.1; the
case C1 is of type 4.2 and D1 is of type 2.2 is similar.
Since IREQ never produces clauses of type 4.1, C1 ∈ T .
In contrast, D1 can be produced by an inference of the
form E2,D2 ` D1, where E2 is of type 3.1 and D2 is
again of type 2.1. Consequently, as shown in the proof of
Lemma 1, C1,D1 `

IREQ C can be unfolded into the infer-
ences C1,E2 ` C2 and C2,D2 ` C. Clauses of type 3.1 are
never produced by IREQ, hence E2 ∈ T , while D2 (again
of type 2.1) is of lower derivation depth. By a straight-
forward inductive claim we can show that we can exhaus-
tively unfold these inferences until we have a derivation of
the form C1, . . . ,Cn,C where Ci,Ei ` Ci+1, all Ci are of
type 4.1, C1 ∈ T , all Ei are of type 3.1 (or 3.2) also in T
and C is derived by some Cn,Dn ` C, whereDn is of type
2.1 (or 2.2) and again in T . Consequently, C is derivable
from T by ISLD+ .

2. Clause C1 is of type 3.3 and clause D1 is some clause.
Since C is derived by a sequence starting with Υ, so does
C1. Hence, by induction hypothesis IH1 C1 is derivable
from T by ISLD+ . Now, we turn our attention to D1. By
a second induction we can show that if D1 is derivable
by inferences over other clauses, then C1,D1 `

IREQ C can
either be unfolded using these clauses which are of lower
derivation depth or D1 is derivable. More precisely, we
have the following claim:

Claim 3: For each C1,C, and D1 such that
C1,D1 ` C and T `IREQ

j D1 we have that if
D1 is of type 3.3., then it is function-free and
moreover either D1 is produced by ISLD+ or
there exist clauses F and G such that T `IREQ

j−1

F ,T `IREQ
j−1 G, and C1,F ` C

′,C′,G ` C

proof of Claim 3: We study different cases according to the
form ofD1:

(a) D1 is of type 2.3. Such clauses can be produced by
inferences of the form F ,G `IREQ D1, where F and
G can be one of the following forms:

i. F is of type 4.1 (4.2) and G is of type 2.2 (2.1).
We show only the case 4.1+2.2.
First, assume that F contains the conjunct
[C(y)], i.e., it is of the form A(x) ← R(x, y) ∧
C(y). Then, inference F ,G `IREQ D1 corre-
sponds to an inference by the function rule and
moreover, recall that since F is of type 4.1 we
have F ∈ T . Consequently, if additionally
G ∈ T , then D1 can be derived by ISLD+ as
required. In contrast, G can be produced by an
inference between a clause J1 of type 3.1 and
a clause G1 of type 2.2. Then, the inference
F ,G ` D1 can be unfolded into F ,J1 ` F1

and F1,G1 ` D1. Furthermore, we haveJ1 ∈ T

since such clauses are never produced by IREQ

and hence F1 can be derived by ISLD from F .
This can be done exhaustively until we reach a
derivation of the form F0,F1, . . . ,Fn,D1 where
for 0 ≤ i < n we have Fi,Ji+1 ` Fi+1, F0 = F ,
allJi+1 are of type 3.1, andFn,Gn ` Ci for some
Gn ∈ T . Since allJi are of type 3.1 and F0 ∈ T ,
then Fn is derivable by ISLD. Moreover, the last
inference in the sequence corresponds the func-
tion rule and since Fn is derivable by ISLD and
Gn ∈ T , then we can conclude that D1 can be
produced from T by ISLD+ .
Second, assume that F does not contain
the conjunct [C(y)], i.e., it is of the form
A(x)← R(x, y). Then, the inference F ,G ` D1
can be used to unfold the inference C1,D1 ` C

into C1,F ` C
′ and C′,G ` C, where G and F

are derivable at lower depths.
ii. F is of type 3.3, G is of type 2.3 and according

to Table B.10 F is function-free. In this case
the inference C1,D1 ` C can be unfolded into
C1,F ` C

′ and C′,G ` D1 and F and G ob-
viously have smaller derivation depths and ac-
cording to Table B.10 clause F is function-free;
hence, all conditions in Claim 3 are satisfied.

iii. both F and G are of type 2.3. Then, inference
C1,D1 ` C can be unfolded into inferences of
the form C1,F ` C

′, C′,G ` C where F and G
are derivable at lower depths.

(b) D1 is of type 3.3. By induction hypothesis of Claim
3 it follows that D1 is function-free, thus it is of the
form A(x) ← B(x) ∧ [C(x)]. We now have the fol-
lowing two cases:
First, assume that D1 is actually of the form
A(x)← B(x) (i.e., no conjunct C(x)). Then, for F
and G we have the following cases:

i. F is of the form A(x) ← R(x, y) (type
4.1 without [C(y)]) and G is of the form
R(x, f (x))← B(x) (type 2.1) or F is of the form
A(x) ← R(y, x) (type 4.2 again without [C(y)])
and G is of the form R( f (x), x) ← B(x) (type
2.2). In this case we can unfold the inference
C1,D1 ` C into C1,F ` C

′, C′,G ` C where F
and G are derivable at lower depths.

ii. F is of the form A(x)← D( f (x)) ∧ B(x)
(i.e., type 3.3) and G is of the form
D( f (x))← B(x) (i.e., type 2.3). Since the in-
put TBox T never contains clauses of the form
A(x)← D( f (x)) ∧ B(x), F must have been pro-
duced by applying IREQ on T . F can be pro-
duced again by an inference of the above form,
i.e. 3.3+2.3, where the main premise must con-
tain a functional-term in its body. Consequently,
again this type 3.3 clause cannot belong to T .
We can conclude that in this case the derivation
producingD1 must start with an RA-clause. But
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then, by the induction hypothesis IH1, we have
thatD1 has been produced from T by ISLD+ .

Second assume that D1 is of the form
A(x)← B(x) ∧ C(x) (i.e., with a conjunct C(x)).
Again like in the previous case, we can conclude
from the form of inferences that D1 is produced by
a derivation starting from an RA-clause; hence, by
induction hypothesis IH1D1 is produced from T by
ISLD+ .

This concludes the case where Υ is an RA-clause.
Second, we show the case that Υ is a type 1 clause Q pro-

ducing another type 1 clause Q′—that is, for Q,Q′ we have
T ,Q `IREQ

i Q′.
Let Plt be all DL-Lite-clauses derivable from T by ISLD+ .

We will show using induction that Plt,Q `
ISLD Q′.

Base case (i=0): Then, Q′ = Q and we trivially have
Plt,Q `

ISLD Q.

Induction step: Assume that for every ` ≤ i and Q′ such that
T ,Q `IREQ

`
Q′ we have Plt,Q `

ISLD Q′ (induction hypothe-
sis). Assume now that at a next step a clause Q′′ of type 1
is produced, i.e., T ,Q `IREQ

i+1 Q′′. By the definition of IREQ

Q′′ is produced by an inference of the form Q′,C `IREQ Q′′,
i.e., one that has as a main premise another clause of type 1
such that T ,Q `IREQ

`
Q′ and as a side premise a clause C such

that T `IREQ C. Clearly, we have Q′,C `ISLD Q′′. If C ∈ T
then by the previous, the induction hypothesis, and since Plt is
initialised to T we immediately obtain Plt,Q `

ISLD Q′′. Other-
wise, we have T `IREQ

j C with j > 0 and we need to show that
either C ∈ Plt or that Q′′ can also be derived from Q′ by ISLD

using only clauses of Plt. This follows by the following claim:

Claim 4: For each Q′′ and C such that Q′,C ` Q′′,
T `

IREQ
j C, j > 0, either C ∈ Plt or C < Plt and the

following conditions hold:

• There exist clauses C1 and C2 such that T `IREQ
j−1

C1,T `
IREQ
j−1 C2, and Q′,C1 ` Q

∗, Q∗,C2 ` Q
′′.

• If C is of type 3.3 then it is function-free.

We show Claim 4 by a case analysis on the types of clauses that
can be deduced from T by IREQ, i.e., on the forms of clause C:

1. C is of type 2.1 or of type 2.2. Then, by Table B.10
such clauses can be derived by inferences involving
only DL-Lite-clauses (cf. inferences 3.1+2.1=2.1 and
3.1+2.2=2.2). Hence, the claim follows from the proof
of Claim 1 in Lemma 1.

2. C is of type 2.3 or of type 3.3. These cases are similar to
cases 2a and 2b in the proof of Claim 3, hence we dispense
with the details.

The previous claim implies that for a clause C < Plt such that
T `

IREQ
j C, and j > 0, the inferenceQ′,C `ISLD Q′′ can be trans-

formed into a sequence of inferences of the form Q′,C1 ` Q
∗
1,

Q∗1,C2 ` Q
∗
2, . . . ,Q

∗
n−1,Cn ` Q

′′, such that for all 1 ≤ i ≤ n we
have Ci ∈ Plt; hence Plt,Q

′ `ISLD Q′′ and using the induction

hypothesis (Plt,Q `
ISLD Q′) we get Plt,Q `

ISLD Q′′ as required.
�

Theorem 2. Let an ELHI-TBox T and a CQQ. Every deriva-
tion from T ∪Q by IEL terminates. Moreover, Rapid-EL(Q,T )
is a datalog rewriting of Q,T .

Proof. Using the same arguments as in the case of
Rapid-Lite(Q,T ) it can be shown that only a finite number of
RA-clauses and of clauses of type 1 can be produced by the un-
folding and n-shrinking rule application. More precisely, none
of the side premises allowed by IEL contains (and hence in-
troduces) a new ej-variable to the resolvent. Moreover, the
function rule uses RA-clauses in the main premise position and
clauses from T in the side premise position; hence it can only
be applied a finite number of times.

Now let R = Rapid-EL(Q,T ) that is partitioned into RQ and
RD. Again, by soundness of the inference system IEL we triv-
ially have cert(Q,T ∪ A) ⊇ cert(RQ,RD ∪ A) for each A.
Next, we need to show that we also have cert(Q,T ∪ A) ⊆
cert(RQ,RD ∪A).

Consider the Requiem output Rr ∈ RQR(Q,T ). Rr can be
partitioned into Rr

D and Rr
Q satisfying the conditions of Defini-

tion 1.
By Lemma 3 every derivation of a type 1 Q′ clause from

T ∪ Q by IREQ can be transformed into an extended-SLD
derivation. Moreover, by Proposition 2 the derivation of Q′ can
be transformed into a function-compact one. Hence, by a simi-
lar induction as in the proof of Theorem 1 it follows that every
Q′ derived from T ∪ Q by IREQ is also in R.

Now consider the datalog clauses produced by IREQ. This
consists of clauses of one of the following forms (we have omit-
ted analogous clauses with inverses):

A(x) ← R(x, y) ∧C(y) (D.1)
A(x) ← R(x, y) (D.2)

R(x, y) ← S (x, y) (D.3)
A(x) ← B(x) ∧ [C(x)] (D.4)

Clauses of the form (D.1)–(D.3) are never produced by IREQ.
Hence, it follows that all such clauses are also in R. Clauses of
the form (D.4) either appear in T or are produced by sequences
starting with an RA-clause as shown in Lemma 3. In the latter
case it follows by Lemma 3 and Proposition 2 that these clauses
can be produced by unfolding and n-shrinking, and thus such
clauses are also in R. In the former case (D.4) are unfolded
into type 1 clause and as shown in DL-Lite Requiem unfold-
ing corresponds to many inferences of IEL using the unfolding
rule.

Finally, Rr
D is produced by applying the Requiem unfolding

using the produced datalog clauses and Rr
Q by unfolding the

produced queries using the unfolded clause. As shown before,
Rr

D must be equivalent to the datalog part of R. Moreover, like
in Theorem 1 all unfoldings over queries can be transformed
into inferences with side premises clauses from T or function-
free type 3.3 clauses in R. Hence, Rr

Q ⊆ R. �

22



References

[1] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael
Zakharyaschev. The DL-Lite family and relations. Journal of Artificial
Intelligence Research, 36(1):1–69, 2009.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL En-
velope. In Proceedings of the 19th International Joint Conference on AI
(IJCAI-05), volume 5, pages 364–369, 2005.

[3] Franz Baader, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The Description Logic Handbook: Theory, implementation
and applications. Cambridge University Press, 2002.

[4] Franz Baader and Werner Nutt. Basic description logics. In The Descrip-
tion Logic Handbook, pages 43–95. Cambridge University Press, 2003.

[5] Leo Bachmair and Harald Ganzinger. Resolution Theorem Proving.
In Handbook of Automated Reasoning, pages 19–99. Elsevier and MIT
Press, 2001.

[6] Meghyn Bienvenu. On the Complexity of Consistent Query Answering
in the Presence of Simple Ontologies. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence (AAAI 2012), 2012.

[7] Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First-Order
Rewritability of Atomic Queries in Horn Description Logics. In Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), pages 754–760. AAAI Press, 2013.

[8] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Data Complexity of Query Answering
in Description Logics. In Proceedings of the 10th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 06),
pages 260–270, 2006.

[9] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query
answering in description logics: The DL-Lite Family. Journal of Auto-
mated Reasoning, 39(3):385–429, 2007.

[10] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati,
Marco Ruzzi, and Domenico Fabio Savo. The MASTRO system for
ontology-based data access. Semantic Web Journal, 2(1):43–53, 2011.

[11] Chin-Liang Chang and Richard C. T. Lee. Symbolic logic and mechanical
theorem proving. Computer science classics. Academic Press, 1973.

[12] Pierre Chaussecourte, Birte Glimm, Ian Horrocks, Boris Motik, and Lau-
rent Pierre. The Energy Management Adviser at EDF. In Proceedings
of the 12th International Semantic Web Conference (ISWC 2013), pages
49–64. Springer, 2013.

[13] Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. Optimized
Query Rewriting in OWL 2 QL. In Proceedings of the of 23rd Interna-
tional Conference on Automated Deduction (CADE-23), pages 192–206.
Springer, 2011.

[14] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and
Guohui Xiao. Query Rewriting for Horn-SHIQ Plus Rules. In Proceed-
ings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012),
2012.

[15] Christian G Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel
Tammet. Resolution decision procedures. In Handbook of Automated
Reasoning, pages 1791–1849. Elsevier Science Publishers BV, 2001.

[16] Melvin Fitting. First-order logic and automated reasoning (2. ed.). Grad-
uate texts in computer science. Springer, 1996.

[17] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive
Query Answering for the Description Logic SHIQ. Journal of Artificial
Intelligence Research (JAIR), 31:157–204, 2008.

[18] Georg Gottlob and Thomas Schwentick. Rewriting Ontological Queries
into Small Nonrecursive Datalog Programs. In Proceedings of the 13th
International Conference on Principles of Knowledge Representation and
Reasoning (KR 2012), 2012.

[19] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter
Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL.
Web Semantics: Science, Services and Agents on the World Wide Web,
6(4):309–322, 2008.

[20] Ian Horrocks. Optimising Tableaux Decision Procedures for Description
Logics. PhD thesis, University of Manchester, 1997.

[21] Ian Horrocks, Peter F Patel-Schneider, and Frank Van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language. Jour-
nal of Web semantics, 1(1):7–26, 2003.

[22] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Deciding Expressive
Description Logics in the Framework of Resolution. Information and
Computation, 206(5):579–601, 2008.

[23] Ullrich Hustadt and Renate A Schmidt. Issues of decidability for descrip-
tion logics in the framework of resolution. In Proceedings Automated De-
duction in Classical and Non-Classical Logics, pages 191–205. Springer,
2000.

[24] Martha Imprialou, Giorgos Stoilos, and Bernardo Cuenca Grau. Bench-
marking Ontology-based Query Rewriting Systems. In Proceedings of
the 26th AAAI Conference on Artificial Intelligence (AAAI 2012), 2012.

[25] Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev. On
(In)Tractability of OBDA with OWL 2 QL. In Proceedings of the 24th
International Workshop on Description Logics (DL 2011), 2011.

[26] Atanas Kiryakov, Barry Bishoa, Damyan Ognyanoff, Ivan Peikov,
Zdravko Tashev, and Ruslan Velkov. The Features of BigOWLIM that
Enabled the BBCs World Cup Website. In Proceedings Workshop on
Semantic Data Management (SemData), 2010.

[27] Ilianna Kollia and Birte Glimm. SPARQL Query Answering over OWL
Ontologies. Journal of Artificial Intelligence Research (JAIR), 48:253–
303, 2013.

[28] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi,
and Domenico Fabio Savo. Query Rewriting for Inconsistent DL-Lite
Ontologies. In Proceedings of the 5th International Conference on Web
Reasoning and Rule Systems (RR 2011), pages 155–169. Springer, 2011.

[29] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag
New York, Inc., New York, NY, USA, 1984.

[30] Carsten Lutz. The Complexity of Conjunctive Query Answering in Ex-
pressive Description Logics. In Proceedings of the 4th International Joint
Conference on Automated Reasoning (IJCAR), pages 179–193. Springer,
2008.

[31] Roman Kontchakov Mariano Rodriguez-Muro and Michael Za-
kharyaschev. Query Rewriting and Optimisation with Database Depen-
dencies in Ontop. In Proccedings of the 26th International Workshop on
Description Logics (DL 2013), pages 917–929, 2013.

[32] Boris Motik. Description Logics and Disjunctive Datalog—More Than
just a Fleeting Resemblance? In Proceedings of the 4th Workshop on
Methods for Modalities (M4M-4), volume 194, pages 246–265, 2005.

[33] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fok-
oue, and Carsten Lutz. OWL 2 Web Ontology Language Profiles. W3C
Recommendation, 27 October 2009.

[34] Boris Motik, Ian Horrocks, and Su Myeon Kim. Delta-Reasoner: A Se-
mantic Web Reasoner for an Intelligent Mobile Platform. In Proceed-
ings of the 21st International World Wide Web Conference (WWW 2012),
pages 63–72. ACM, 2012.

[35] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-
DL with rules. Journal of Web Semantics, 3(1):41–60, 2005.

[36] Giorgio Orsi and Andreas Pieris. Optimizing Query Answering under
Ontological Constraints. Journal of Very Large Database (VLDB) En-
dowment, 4(11):1004–1015, 2011.

[37] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data Complex-
ity of Query Answering in Expressive Description Logics via Tableaux.
Journal of Automated Reasoning, 41(1):61–98, 2008.
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