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Fuzzy extensions to Description Logics (DLs) have gained considerable attention
the last decade. So far most works on fuzzy DLs have focused on either very
expressive languages, like fuzzy OWL and OWL 2, or on highly inexpressive ones,
like fuzzy OWL 2 QL and fuzzy OWL 2 EL. To the best of our knowledge a fuzzy
extension to the language OWL 2 RL has not been thoroughly studied so far. This
language is very relevant since it combines both adequate expressive power as well
as efficient reasoning algorithms which can be realised using rule-based (Datalog)
technologies. In contrast to previous fuzzy extensions, a fuzzy extension of OWL
2 RL is not a straightforward task for the following reason. The main motivation
of OWL 2 RL is that its axioms can be equivalently represented as Datalog rules.
Hence, to achieve our goal we need to investigate which OWL 2 RL axioms when
interpreted under the fuzzy setting can be transformed to equivalent fuzzy Datalog
rules. We show that this is not, in general, possible for all axioms but we show
that this “issue” can to a large extent be alleviated. Moreover, we have performed
an experimental evaluation with many well-known ontologies which showed that

such axioms are not used so often in practice.

Keywords: Fuzzy Ontologies; Fuzzy Description Logics; Fuzzy OWL 2 RL; Fuzzy Datalog

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

The Semantic Web [1] is envisioned to be an extension
of the existing Web, where data would be organized in
a formal machine understandable way. In such setting,
agents would be able to semi-automatically carry out
complex tasks assigned by humans, like booking a
doctor appointment (see [1]).
Prominent role in the development of Semantic Web

is played by ontologies—controlled vocabularies that
describe in a formal meaningful way the entities of
a domain of interest, hence capturing the schema
of the data. For example, in the previous case an
ontology could contain concepts like “GoodDoctor”,
“EarlyAppointment”, and more. Moreover, ontologies
contain axioms like that every “EarlyAppointnemt”
is also an “Appointment”. Then, answers to user
queries (e.g., return all appointments) would reflect
both the data and the schema. For example, an
“EarlyAppointment” would be a result to the previous
query because every early appointment is also an
appointment.
Ontologies in the Semantic Web are mostly expressed

using the OWL (2) Web ontology Language [2, 3],

which has been standardised by W3C.3 OWL 2 consists
of a family of languages containing namely, OWL 2
DL, OWL 2 QL, OWL 2 EL, and OWL 2 RL. All
aforementioned languages correspond to Description
Logics (DLs) [4]—a modern knowledge representation
formalism with well defined semantics and efficient
reasoning algorithms.

Despite its expressive power, however, OWL suffers
from some limitations. More precisely, it is not able
to represent vague/fuzzy knowledge. For example, in
our hypothetical scenario one cannot capture the fact
that doctor “a” is better than doctor “b” who is still
quite good though. Managing fuzzy knowledge is of
great importance in many applications, like multimedia
processing [5, 6], decision making [7], negotiation [8],
and more. For these reasons many fuzzy extensions to
OWL and DLs have been proposed [9, 10, 11, 12, 13, 14,
15, 16, 17]. Using fuzzy DLs we can state axioms like
GoodDoctor(a) = 0.8 and GoodDoctor(b) = 0.7 which
capture the fact that “a” is a better doctor than “b”.

To support reasoning over fuzzy DLs many algo-
rithms and systems have also been developed. Im-
portant examples are, extensions to tableaux algo-

3http://www.w3.org/2007/OWL/wiki/OWL Working Group
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rithms [11, 17], implemented in the system FiRE [18],
tableaux coupled with mixed integer linear program-
ming algorithms [19, 20], implemented in the system
fuzzyDL [8], algorithms that reduce fuzzy DLs to crisp
DLs [21, 22, 23], implemented in the DeLorean sys-
tem [24], SMT-based methods [25], and the direct
crispification method [26]. In addition, several optimi-
sations have also been proposed [18, 27].
Despite fruitful results all aforementioned systems

have yet to prove their efficiency in practice. All
of them implement exponential algorithms which do
not scale well when applied to large ontologies.
Even the reduction approach, which was intended
to take advantage of the existing optimised crisp
DL reasoners, has not shown good behaviour in
practice [28]. Furthermore, recent results have
shown that expressive DLs under several families
of fuzzy operators (fuzzy complement, conjunction,
disjunction) are undecidable [29, 30], hence new
approaches to decidable and scalable reasoning need to
be investigated.
The main issue in the previous cases is that the

logics that are being extended or implemented are
very expressive and hence the extended logics are
either undecidable or require exponential reasoning
algorithms. To alleviate complexity of reasoning, in
classical OWL, the OWL 2 QL and OWL 2 RL profiles
of OWL 2 have been defined which provide (sub-
)polynomial data reasoning complexity. OWL 2 QL can
be directly implemented using relational databases [31],
however, it is highly inexpressive. In contrast, as noted
in the W3C standard:

“The OWL 2 RL profile is aimed at applica-
tions that require scalable reasoning without
sacrificing too much expressive power.”

Unfortunately, not much attention has been spent by
the fuzzy DL community to OWL 2 RL. In the current
paper we attempt to fill this gap by investigating a
fuzzy extension of OWL 2 RL. Compared to previous
fuzzy extensions, where one “fuzzifies” the constructors
of the language using the fuzzy set theoretic operators,
such an extension is not straightforward. This is
because the main motivation behind OWL 2 RL is
that all axioms expressible in OWL 2 RL must have
an equivalent representation in Datalog, thus enabling
the use of efficient Datalog engines to perform query
answering. Hence, to define fuzzy OWL 2 RL one needs
to investigate which of the axioms, when interpreted in
the fuzzy setting, have an equivalent representation in
fuzzy Datalog. Since there are many fuzzy set theoretic
operators, this in turn depends on what properties these
operators satisfy. A preliminary account of fuzzy OWL
2 RL can be found at [32]. However, the presented
language assumes that constructors are interpreted only
under specific fuzzy operators—that is, under the Gödel
conjunction, implication, and fuzzy complement. This
logic corresponds only to one of those we identify here.

In the current paper, we first provide a brief overview
of fuzzy set theory and logic (Section 2) and of
fuzzy OWL 2 (Section 3). Then, we also define
a fuzzy extension of Datalog (Section 4) and we
provide a brief introduction to the classical OWL 2
RL language (Section 5). For more details we provide
several pointers to the literature. Next, we give the
first main contribution of our paper. That is, we
perform an elaborate investigation on which axioms
of OWL 2 RL, when interpreted in a fuzzy setting,
can be captured by fuzzy Datalog (Section 6). Our
investigation shows that this is not, in general, possible
but it sometimes depends on the properties of the
fuzzy operators. However, we next show that one can
to some extent “bypass” this issue by restating these
axioms in an alternative way (Section 7). For each
unsupported axiom we provide alternative expressions
and we analyse why we feel that these might capture the
intended meaning better in practice. In Section 8 we
study one additional feature/constructor of fuzzy DLs
that commonly appears in the literature and we show
when it can be captured by fuzzy Datalog. Finally, we
conduct an experimental evaluation using many well-
known ontologies showing that the problematic cases
rarely appear in practice (Section 9) and if they appear
then the number of unsupported axioms is quite small.

2. FUZZY SETS

Fuzzy set theory is a well-founded theory and in the
following we recall some basic notions and properties
while we point the interested reader to [33].

A fuzzy set A is defined by a membership function
of the form µA : X → [0, 1], or simply A : X → [0, 1],
where X is the universal set and A is called a fuzzy
subset of X. Then, given an object x ∈ X, µA(x)
returns the membership degree of x to the fuzzy set
A. For example we can say that John belongs to the
(fuzzy) set Tall to a degree of 0.7, writing Tall(John) =
0.7. Similarly, a fuzzy relation R is defined by a function
of the form R : X ×X → [0, 1].

The classical set theoretic operations of complement
(c), union (u), intersection (t) and the logical
implication (J ) are also extended to the framework
of fuzzy set theory and logic. In the new context
they are performed by special mathematical functions
over the unit interval called triangular norm operations
[33] which satisfy certain properties. For example,
all fuzzy complements satisfy the boundary conditions,
c(0) = 1 and c(1) = 0, and are monotonically
decreasing, for n ≤ m, c(n) ≥ c(m) while all
fuzzy intersections (unions), called t-norms (t-conorms)
satisfy the boundary condition, t(n, 1) = n (u(n, 0) = n)
are monotone functions, commutative, and associative.
The set of all valid fuzzy implications can be partitioned
into many different classes. Two important classes
of implications that are commonly used in fuzzy
logics and we are going to use here as well are
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TABLE 1. Common fuzzy logics and their respective operators
Gödel Lukasiewicz Product Zadeh

t(n,m) min(n,m) max(0, n+m− 1) n ·m min(n,m)
u(n,m) max(n,m) min(n+m, 1) n+m− n ·m max(n,m)
c(n) 1 if n = 0; 0 otherwise 1− n 1 if n = 0; 0 otherwise 1− n
J (n,m) 1 if n ≤ m; m otherwise min(1, 1− n+m) 1 if n ≤ m; m/n otherwise max(1− n,m)

S-implications and R-implications. S-implications
are defined by the equation J (n,m) = u(c(n),m)
which stems from a fuzzy expression of the classical
equivalence ϕ→ ψ ≡ ¬ϕ ∨ ψ while R-implications by
the equation sup{k ∈ [0, 1] | t(n, k) ≤ m}, where
t is a left-continuous function.4 Both functions
are monotonically decreasing (increasing) in the first
(second) argument. Every R-implication satisfies the
well-known adjointness property:

t(n,m) ≤ ℓ iff J (n, ℓ) ≥ m

Finally, every R-implication induces a fuzzy comple-
ment called the pre-complement of J which is defined
by c(n) = J (n, 0).
Table 1 summarises the most important fuzzy logics

and their respective t-norms, t-conorms, complements,
and fuzzy implications. Note that some implications,
e.g., the Lukasiewicz one, might be both an R- and an
S-implication. Consequently, in the rest of the paper,
when we say that J is an S-implication we implicitly
mean an S-implication that is not at the same time also
an R-implication.

3. FUZZY OWL AND DLS

In this section, we provide a brief account to the fairly
standard fuzzy DL f-SROIQ (see also [34, 23, 35]).
This logic is of particular interest since it consists of the
logical underpinnings of fuzzy OWL and fuzzy OWL
2 (excluding datatypes which we do not deal with
here). The interested reader is referred to [36] and
particularly to [37] for an investigation on how fuzzy
OWL 2 constructors and axioms can be translated to
f-SROIQ. Note that, in most cases this translation is
straightforward, however, there are a few cases where
there are more than one choices. Although in the crisp
case the choice is irrelevant, in the fuzzy case, preferring
one over the other could be more desirable. We revisit
this at the end of this section.
Let C, R, and I be countable pairwise disjoint

sets of atomic concepts (unary predicates), atomic
roles (binary predicates), and individuals (constants),
respectively. An f-SROIQ-role is either an atomic
role R or its inverse, denoted as R−. For example,
if hasPart ∈ R then hasPart− is an f-SROIQ-role.
Using the building blocks in C, R, and I, together

with so-called constructors we can define more complex
concepts called concept descriptions. More precisely, if

4In the following whenever we use an R-implication it is
assumed that the underlying t-norm is left-continuous.

a ∈ I, A ∈ C, R ∈ R, and p ∈ N, then f-SROIQ-
concepts are defined inductively as follows:

C,D −→ ⊥ | ⊤ | A | C ⊔D | C ⊓D | ¬C | ∀R.C |
∃R.C | ≥ pR.C | ≤ pR.C | {a} | ∃R.Self

For example, the following are f-SROIQ-concepts, the
left one denoting all persons that have at least one
female child, while the right one those that if they have
a child then that child is necessarily a female:

Person ⊓ ∃hasChild.Fem Person ⊓ ∀hasChild.Fem

An f-SROIQ ontology O is a finite set of axioms
partitioned into so-called TBox T and ABox A. Let
C,D be f-SROIQ-concepts and let R(i), R be f-
SROIQ-roles. A TBox can contain a finite set of
concept subsumptions of the form C ⊑ D, of fuzzy
concept subsumptions [19] of the form ⟨C ⊑ D,m⟩,
where m ∈ (0, 1], of role subsumptions of the form
R1 . . . Rm ⊑ R, of functional role axioms of the form
Func(R), of reflexive role axioms of the form Ref(R), of
irreflexive role axioms of the form Irr(R), of asymmetric
role axioms (ASym(R)), and of disjoint role axioms of
the form Dis(R1, R2). We have omitted concept (resp.
role) equivalence axioms of the form C ≡ D (resp.
R1 ≡ R2), since they can be reduced to two axioms
of the form C ⊑ D and D ⊑ C (resp. R1 ⊑ R2 and
R2 ⊑ R1). Moreover, we have omitted symmetric and
transitive role axioms since again all of them can be
reduced to standard concept/role subsumptions [36, 37].
Finally, let a, b ∈ I, ▷◁ ∈ {≥, >,≤, <} and n ∈ [0, 1]. An
ABox is a finite set of concept and role assertions of the
form (a : C)▷◁n, ((a, b) : R)▷◁n, and ((a, b) : ¬R)▷◁n,
or of individual equalities and inequalities of the form
a ≈ b or a ̸≈ b. If n is restricted to be equal to 1 and ▷◁
to ≥, then we obtain the syntax of the classical (crisp)
SROIQ language [38]; in that case assertions can be
written simply as a : C and (a, b) : R.

As it is well known, in order to ensure decidability
of (fuzzy) SROIQ several syntactic restrictions are
enforced to concept descriptions and role axioms [38].
For example, roles appearing in concepts of the form
≤ pR.C, ≥ pR.C, and ∃R.Self should neither be
transitive (a role is transitive if RR ⊑ R ∈ T ) or have
any transitive sub-role (a role S is a sub-role of R if
S ⇝∗ R where ⇝∗ is the reflexive-transitive closure
of ⇝= {⟨S,R⟩ | S ⊑ R ∈ T or S− ⊑ R− ∈ T }).
To emphasise this, in the following, we would use the
role name S (possibly with subscript) in such axioms.
Additional restrictions on role axioms are required,
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TABLE 2. Syntax and Semantics of f-SROIQ concepts and axioms
Constructor Name Semantics

⊤ top concept ⊤I(o) = 1
⊥ bottom concept ⊥I(o) = 0

C ⊓D conjunction (C ⊓D)I(o) = t(CI(o), DI(o))
C ⊔D (C ⊔D)I(o) = u(CI(o), DI(o))
¬C negation (¬C)I(o) = c(CI(o))
{a} nominal {a}I(o) = 1 iff aI = o, {a}I(o) = 0 otherwise

∃R.C existential restriction (∃R.C)I(o) = supo′∈∆I t(RI(o, o′), CI(o′))
∀R.C value restriction (∀R.C)I(o) = info′∈∆I J (RI(o, o′), CI(o′))

≥ pS.C at-least restriction (≥ pS.C)I(o) = sup
o1,...,op∈∆I

t(
p
t

i=1
t(SI(o, oi), CI(oi)), t

i<j
{oi ̸= oj})

≤ pS.C at-most restriction (≤ pS.C)I(o) = inf
o1,...,op+1∈∆I

J (
p+1
t

i=1
t(SI(o, oi), CI(oi)), u

i<j
{oi = oj})

∃S.Self self-restrictions (∃S.Self)I(o) = SI(o, o)
R− inverse role (R−)I(o1, o2) = RI(o2, o1)

Axiom Name Semantics

C ⊑ D concept subsumption CI(o) ≤ DI(o), for every o ∈ ∆I

⟨C ⊑ D,m⟩ f-concept subsumption info∈∆I J (CI(o), DI(o)) ≥ m
R1 . . . Rm ⊑ R role subsumption RI

1 ◦t . . . ◦t RI
m(o1, o2) ≤ RI(o1, o2), where ◦t is the sup-t composition [33]

Func(R) functional role if t(RI(o, o1), RI(o, o2)) > 0, then o1 = o2
Ref(R) reflexive role RI(o, o) = 1, for every o ∈ ∆I

Irr(R) irreflexive role RI(o, o) = 0, for every o ∈ ∆I

ASym(R) assymetric role t(RI(o1, o2), RI(o2, o1)) = 0, for every o1, o2 ∈ ∆I

Dis(R1, R2) disjoint roles t(RI
1 (o1, o2), R

I
2 (o1, o2)) = 0, for every o1, o2 ∈ ∆I

(a : C)▷◁n concept assertion CI(aI)▷◁n
((a, b) : R)▷◁n role assertion RI(aI , bI)▷◁n
((a, b) : ¬R)▷◁n neg. role assertion c(RI(aI , bI))▷◁n
a ≈ b (a ̸≈ b) indv. (in)equality aI = bI (aI ̸= bI)

however, these are not relevant in the case of OWL 2 RL
and we won’t present them here; the reader is referred
to [38].
Using f-SROIQ axioms we can describe the

knowledge of a domain of interest. For example, we
can state the axiom Son ⊑ Child, meaning that the son
of someone is also his/her child, and (john : Tall) ≥ 0.8,
meaning that john is tall to a degree at least 0.8.
Fuzzy DLs have a formal semantics defined using

fuzzy interpretations [10]. A fuzzy interpretation I is
a pair I = (∆I , ·I), where ∆I is a non-empty set of
objects and ·I is an interpretation function mapping:

• each a ∈ I to an object aI ∈ ∆I ,
• each A ∈ C to a function AI : ∆I → [0, 1], and
• each R ∈ R to a function RI : ∆I ×∆I → [0, 1].

Finally, I can be extended to give semantics to concept
descriptions. The semantics are presented in the upper
part of Table 2, where sup is the supremum, inf is the
infimum, c is a fuzzy complement, t is a t-norm, u is a
t-conorm, J is a fuzzy implication, and o ∈ ∆I . Note
that for the interpretation of number restrictions we
use the equations oi = oj and oi ̸= oj as entities that
have a degree; we define oi = oj to be equal to 1 iff
indeed oi is identical to oj , otherwise oi = oj is equal
to 0; analogously for oi ̸= oj . Regarding axioms, lower
part of Table 2, we say that a fuzzy interpretation I
satisfies an axiom listed in the left-hand side of the
table if the condition in the right-hand side is satisfied.
If an axiom is satisfied by I, then I is called a model
of the axiom. From the table we see that to “fuzzify”

SROIQ one simply has to interpret all building blocks
⊓,⊔,¬, etc. using fuzzy operators. Moreover, note that,
if J is an R-implication a concept subsumption C ⊑ D
is equivalent to a fuzzy concept subsumption ⟨C ⊑ D, 1⟩
since by the properties of R-implications, the latter is
satisfied iff CI(o) ≤ DI(o) for every o ∈ ∆I .

As mentioned before, there are a couple of (fuzzy)
OWL 2 DL axioms which have more than two ways
to be translated into (f-)SROIQ. More precisely, in
OWL 2 DL one can state that two concepts are disjoint
by an axiom of the form DisjointClasses(C D). In
SROIQ this can be translated as either C ⊑ ¬D or
C ⊓ D ⊑ ⊥ which in the crisp case are equivalent.
According to Table 2, however, these are satisfied
by a fuzzy interpretation if CI(o) ≤ c(DI(o)) and
t(CI(o), DI(o)) ≤ 0, respectively, which in general
are not equivalent; as we will show latter on they are
equivalent only if J is an R-implication and c is the pre-
complement of J . Finally, (fuzzy) OWL 2 DL allows
for role range axioms of the form PropertyRange(R C)
which can be translated to ∃R−.⊤ ⊑ C or ⊤ ⊑ ∀R.C.
Strictly speaking, the latter form is even outside crisp
OWL 2 RL hence the former one should be used.

4. FUZZY DATALOG

In this section we provide a short introduction
to fuzzy rules by presenting a fuzzy extension of
Datalog [40]. The syntax of our (fuzzy) Datalog
language is the standard one found in the literature
[41, 42] but restricted to binary and unary predicates
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since DLs do not support predicates of higher arity.
However, the semantics would be based again on fuzzy
interpretations. Note that, due to the flexibility allowed
in the fuzzy setting, there is a spate of fuzzy extensions
of Datalog (see [43, 44, 45, 46, 47, 48, 49] to name
just a few). Here, we will stick to the most standard
syntax and features of Datalog, which are enough to
study the correspondence of the fuzzy DLs we defined
in the previous section, and we will not consider such
extensions.
Let A and R be an atomic concept and role,

respectively, and let x, y be variables. An atom is
either an expression of the form A(x), of the form
R(x, y), or of the form x ≈ y. A Datalog rule is
an expression of the form B1 ∧ . . . ∧Bn → H where
H, called head, can be an atom or the special atom f
and {B1, . . . , Bn}, called body, can be a set of atoms
or the special atom t.5 Moreover, each variable in H
also occurs in the body, and all variables are implicitly
assumed to be universally quantified. For example,
hasChild(x, y) → Busy(x) is a Datalog rule.
Fuzzy Datalog extends the definition of an atom; for

m ∈ [0, 1], then m is also an atom. Hence, we can state
rules of the form m→ H, B ∧m→ H, or B → m.
The semantics of fuzzy Datalog can also be given via

fuzzy interpretations. A fuzzy interpretation I is like
before with the addition that it maps:

• a variable x to an object xI ∈ ∆I ,
• an atom m to the rational number m ∈ [0, 1], and
• the special symbols f and t to 0 and 1, respectively.6

Moreover, (u1 ≈ u2)
I = 1 iff uI1 = uI2 ;

otherwise (u1 ≈ u2)
I = 0. Let u⃗i be (possibly

empty) vectors built from variables and individuals.
Then, we say that I is a model of a rule
B1(u⃗1) ∧B2(u⃗2) ∧ . . . ∧Bn(u⃗n) → H(u⃗) if we have:

HI(u⃗I) ≥ t(BI
1 (u⃗1

I), BI
2 (u⃗2

I), . . . , BI
n(u⃗n

I))

5. A BRIEF LOOK AT OWL 2 RL

Datalog can also be used to capture the knowledge
of a domain of interest. In some cases, actually, DL
axioms have equivalent Datalog rules. We say that an
axiom ax is equivalent to a rule r if the models of ax
and r coincide. For example, the axiom Son ⊑ Child
is equivalent to the Datalog rule Son(x) → Child(x).
However, there are (fuzzy) DL axioms that have no
equivalent (fuzzy) Datalog rule. For example, the axiom
Human ⊑ Male ⊔ Female cannot be expressed in Datalog
as it would result in a rule with disjunction in the head
of the form Human(x) → Male(x) ∨ Female(x).

5Note that traditionally Datalog does not allow for equality.
However, since as shown next we consider a type of crisp equality,
then this can be treated as a normal predicate and its semantics
axiomatised using the well-known encoding [50].

6These conditions imply that A → f and A → 0 are interpreted
similarly; similarly t → A and 1 → A.

TABLE 3. Concept Descriptions of OWL 2 RL
Cb Ch

A ̸= ⊤ A ̸= ⊤
⊥ ⊥
{a} ¬Cb

C1
b ⊓ . . . ⊓ Cn

b C1
h ⊓ . . . ⊓ Cn

h

C1
b ⊔ . . . ⊔ Cn

b ∀R.Ch

∃R.Cb ∃R.{a}
∃R.{a} ≤ pS.Cb, where p ∈ {0, 1}
∃R.⊤ ≤ pS.⊤, where p ∈ {0, 1}

TABLE 4. From OWL 2 RL Axioms to Datalog
DL Axiom Datalog Rule

A ⊑ B A(x) → B(x)
⊥ ⊑ B f → B(x)
A ⊑ ⊥ A(x) → f
{a} ⊑ B t → B(a)
A ⊑ ¬B A(x) ∧B(x) → f
A ⊑ B1 ⊓B2 A(x) → B1(x), A(x) → B2(x)
A1 ⊓A2 ⊑ B A1(x) ∧A2(x) → B(x)
A1 ⊔A2 ⊑ B A1(x) → B(x), A2(x) → B(x)
∃R.A ⊑ B R(x, y) ∧A(y) → B(x)
∃R.⊤ ⊑ B R(x, y) → B(x)
∃R.{a} ⊑ B R(x, a) → B(x)
A ⊑ ∀R.B A(x) ∧R(x, y) → B(y)
A ⊑ ∀R.¬B A(x) ∧R(x, y) ∧B(y) → f
A ⊑ ∀R.¬{a} A(x) ∧R(x, a) → f
A ⊑ ∃R.{a} A(x) → R(x, a)
A ⊑ ≤ 0S.B A(x) ∧ S(x, y) ∧B(y) → f

A ⊑ ≤ 1S.B
A(x) ∧

∧2
i=1(S(x, yi) ∧B(yi))

→ y1 ≈ y2
A ⊑ ≤ 0S.⊤ A(x) ∧ S(x, y) → f
A ⊑ ≤ 1S.⊤ A(x) ∧ S(x, y1) ∧ S(x, y2) → y1 ≈ y2
R1 . . . Rm ⊑ R

∧m
i=1 Ri(xi−1, xi) → R(x0, xm)

Func(R) R(x, y1) ∧R(x, y2) → y1 ≈ y2
Irr(R) R(x, x) → f
ASym(R) R(x, y) ∧R(y, x) → f
Dis(R,S) R(x, y) ∧ S(x, y) → f

DL axioms with no equivalent Datalog rule bear an
interesting property: they are usually a source of high
computational complexity [4, Chapter 3]. This has
motivated the design of the DLP language [51] and later
of OWL 2 RL, which is the subset of SROIQ (OWL 2
DL) axioms that have equivalent Datalog rules. Hence,
OWL 2 RL TBox axioms are again defined by concept
subsumptions of the form Cb ⊑ Ch, however, Cb and
Ch are restricted only to the forms depicted in Table 3.

Intuitively, in the equivalent Datalog rule, Cb denotes
concepts that would appear in the body of the rule
while Ch concepts that would appear in the head.
For example, the axiom A ⊑ ¬B is equivalent to the
Datalog rule A(x) ∧ B(x) → f (note that B went to
the body). This is because the axiom is equivalent
to the First-Order formula ∀x.A(x) → ¬B(x) which
according to the semantics of implication can finally be
rewritten as the rule A(x)∧B(x) → f. Table 4 presents
equivalences of OWL 2 RL axioms to Datalog rules.
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For brevity reasons, we only use binary conjunctions
(disjunctions) and assume only atomic concepts.
Using these equivalences a mapping can be defined

which can be applied iteratively to translate any OWL
2 RL axiom to a set of Datalog rules. For example,
according to Table 4 the axiom A ⊑ ∀R.(C ⊓D), can
be first mapped to A(x)∧R(x, y) → (C ⊓D)(y) which,
finally, again according to Table 4, gives raise to the two
rules A(x)∧R(x, y) → C(y) and A(x)∧R(x, y) → D(y).
The reader is referred to [51] for the precise definition
of the mapping or to Section 6.5.
Regarding role axioms, OWL 2 RL allows for all

role axioms mentioned in Section 3 except for reflexive
role axioms. Finally, an OWL 2 RL ABox contains
assertions of the form a : Ch, (a, b) : R, (a, b) : ¬R,
a ≈ b, and a ̸≈ b which correspond to the Datalog rules
t → Ch(a), t → R(a, b), R(a, b) → f, t → a ≈ b, and
a ≈ b→ f, respectively.

6. MAPPING FUZZY DLS TO FUZZY DAT-
ALOG

In this section we investigate fuzzy OWL 2 RL. In
contrast to other fuzzy extensions to DLs where one
can easily give the syntax and semantics using the
fuzzy set theoretic operator (e.g., f-SROIQ in Section 3
is easily defined by interpreting the constructors of
the logic using the respective fuzzy operators), the
definition of fuzzy OWL 2 RL is not straightforward.
This is because, as stated in the previous section,
the form of axioms that are allowed to be stated in
OWL 2 RL is based on the ability to transform them
into equivalent Datalog rule(s). As shown before, in
crisp DLs this translation is sometimes using algebraic
properties which might not always hold in the fuzzy
setting depending on the choice of operators. Hence,
in the following, we will study which OWL 2 RL
axioms interpreted under fuzzy interpretations can
be equivalently represented as fuzzy Datalog rules
according to the properties of each fuzzy operator—
that is, which of the equivalences in Table 4 also hold
in the fuzzy setting.
The rest of this section is structured as follows: in

Section 6.1, we show equivalence of concept, role, and
individual axioms with fuzzy Datalog rules when only
atomic concepts are used, which shows how axioms
are generally mapped to rules. Next, in Section 6.2
we study the cases of concept subsumptions when
concept descriptions are allowed. Subsequently, in
Sections 6.3 and 6.4 we perform similar investigations
for fuzzy concept subsumptions and fuzzy assertions,
respectively. Finally, in Section 6.5 we are using the
previous analysis to define mappings from fuzzy OWL
2 RL axioms to fuzzy Datalog. These mappings can be
used to check which fuzzy OWL 2 RL axioms are valid
under specific choices of operators and are essentially
defining the family of fuzzy OWL 2 RL languages.

6.1. Mapping Axioms

Consider a concept subsumption axiom of the form
A ⊑ B, where A,B are atomic. Recall that, models I of
this axiom need to satisfy the inequalityAI(o) ≤ BI(o).
It is easy to see that these semantics are the same as
those of the fuzzy Datalog rule A(x) → B(x).

Similarly, we can show that all role axioms can be
translated to fuzzy Datalog rules. For illustration
purposes we only show role subsumption axioms.
Consider an axiom of the form R1R2 ⊑ R which is
interpreted as:

sup
o2∈∆I

t(RI
1 (o1, o2), R

I
2 (o2, o3)) ≤ RI(o1, o3)

for every o1, o3 ∈ ∆I . For an arbitrary o2 we
hence have t(RI

1 (o1, o2), R
I
2 (o2, o3)) ≤ RI(o1, o3) which

corresponds to the semantics of the fuzzy Datalog rule
R1(x, y) ∧ R2(y, z) → R(x, z). By the associativity
property of t-norms the previous generalises to role
subsumption axioms with many roles in the left-hand
side and hence, axioms of the form R1 . . . Rm ⊑ R
correspond to rules of the form R1(x, y1)∧R2(y1, y2)∧
. . . ∧ Rm(ym−1, z) → R(x, z). In a similar way, we
can show that functional role axioms correspond to the
Datalog rule R(x, y1) ∧ R(x, y2) → y1 ≈ y2, irreflexive
role axioms correspond to R(x, x) → 0 and so forth.

Consider now fuzzy concept subsumptions of the
form ⟨A ⊑ B,m⟩, where again A,B are atomic.
A fuzzy interpretation I satisfies such an axiom if
info∈∆I J (AI(o), BI(o)) ≥ m. When J is an R-
implication then, by the adjointness property, the latter
is equivalent to t(AI(o),m) ≤ BI(o). Clearly, this
equation corresponds to the semantics of the fuzzy
Datalog rule A(x) ∧m→ B(x). Now, if J is an
S-implication, then in general no equivalent fuzzy
Datalog rule can be obtained since S-implications
do not satisfy the same adjointness property like R-
implications. The cases of fuzzy concept subsumptions
where concept descriptions are used will be further
analysed in Section 6.3.

Finally, we examine ABox axioms. Let r ∈ [0, 1].
Fuzzy OWL 2 RL allows for assertions of the form
(a : Ch) ≥ r, ((a, b) : R) ≥ r, and ((a, b) : R) ≤ r. These
are interpreted as CI

h (a
I) ≥ r, RI(aI , bI) ≥ r, and

RI(aI , bI) ≤ r. The two last equations correspond to
the semantics of the fuzzy Datalog rules r → R(a, b) and
R(a, b) → r. For the former, if Ch is an atomic concept
A, then the equation corresponds to the semantics of
the fuzzy Datalog rule r → A(a). The analysis of the
cases where Ch is one of the concept descriptions in
Table 3 will be performed in Section 6.4.

Moreover, consider negative role assertions of the
form ((a, b) : ¬R) ≥ r and ((a, b) : ¬R) ≤ r. In
case negation is interpreted using an involutive function
(i.e., c(c(n)) = n), then the assertions are clearly
equivalent to ((a, b) : R) ≤ c(r) and ((a, b) : R) ≥ c(r),
respectively, which as shown previously are both
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allowed. In contrast, if negation is interpreted using
the pre-complement then for the case ((a, b) : ¬R) ≥
r we have the following: (¬R)I(aI , bI) ≥ r can
be equivalently rewritten as J (RI(aI , bI), 0) ≥ r
which by the adjointness property is equivalent to
t(RI(aI , bI), r) ≤ 0 hence we obtain the semantics
of the fuzzy Datalog rule R(a, b) ∧ r → 0. Note
that by adjointness the latter is also equivalent to the
rule R(a, b) → m where m = J (r, 0). However, for
((a, b) : ¬R) ≤ r we obtain J (RI(aI , bI), 0) ≤ r which
cannot be rewritten any further.
Consider now assertions of the form (a : Ch) ≤ r.

Such assertions are not allowed already by the OWL
2 RL specification. However, assertions of the form
(a : Cb) ≤ r where Cb = A are equivalent to the fuzzy
Datalog rule A(a) → r; the cases where Cb is a concept
description will be analysed in Section 6.4.
Finally, assertions of the form (a : Ch) > r, (a, b) :

R > r, and (a, b) : ¬R > r are, in general, also not
allowed since there is no fuzzy Datalog rule interpreted
using strict inequality (unless one defines and considers
such an extension of Datalog). However, in some
cases such assertions can be normalised to standard
assertions that use ≥. More precisely, in case we
assume that conjunction, disjunction, and implication
are interpreted using the operators of the Zadeh fuzzy
logic (cf. Table 1 last column) it has been shown [52]
that assertions of the form (a : C) > r can be
replaced by assertions of the form (a : C) ≥ r + ϵ,
where ϵ is a small number converging to 0. Under
the above fuzzy operators an actual value for ϵ can
be computed in practice, hence again, the ability to
represent (a : Ch) > r as a fuzzy Datalog rule is reduced
to the ability to represent (a : Ch) ≥ r + ϵ, which as
stated will be shown in Section 6.4.

6.2. Simple concept subsumptions with con-
cept descriptions

In the previous section we have seen that when
considering atomic concepts and roles there is a
correspondence between concept/role subsumptions
and assertions in fuzzy DLs and rules in fuzzy
Datalog, i.e., a “ground”-level correspondence. In the
current section we take it up one level and study
whether subsumption axioms that allow for OWL 2
RL concept descriptions built using constructors and
atomic concepts can be captured by equivalent fuzzy
Datalog rules.

6.2.1. Conjunction (⊓)
OWL 2 RL allows for axioms of the form A1 ⊓A2 ⊑ B.
In fuzzy settings such axioms are interpreted as
t(AI

1 (o), A
I
2 (o)) ≤ BI(o), where t is a t-norm. This

clearly corresponds to the interpretation of the fuzzy
Datalog rule A1(x)∧A2(x) → B(x), hence such axioms
are allowed in fuzzy OWL 2 RL regardless of the fuzzy
operators that are assumed.

Moreover, OWL 2 RL also allows for axioms of
the form A ⊑ B1 ⊓ B2. As shown in Table 4 such
axioms correspond to two Datalog rules of the form
A(x) → B1(x) and A(x) → B2(x). In fuzzy settings the
previous OWL 2 RL axiom is interpreted as follows:

AI(o) ≤ t(BI
1 (o), B

I
2 (o)) (1)

By the well-known property of t-norms we have
t(n,m) ≤ n and t(n,m) ≤ m. Hence equation
(1) implies that equations AI(o) ≤ BI

1 (o) and
AI(o) ≤ BI

2 (o) also hold and we can see that these
correspond to the interpretation of the two fuzzy
Datalog rules A(x) → B1(x) and A(x) → B2(x).
Consequently, the latter two fuzzy Datalog rules are
satisfied in every model of A ⊑ B1 ⊓B2.

However, the converse does not hold. More precisely,
from AI(o) ≤ BI

1 (o) and AI(o) ≤ BI
2 (o) we

cannot deduce equation (1), hence every model of
A(x) → B1(x) and A(x) → B2(x) is not necessarily
also a model of A ⊑ B1 ⊓ B2. Thus, in general, the
axiom A ⊑ B1 ⊓ B2 has no equivalent expression in
fuzzy Datalog.

In contrast, the axiom is equivalent to rules
A(x) → B1(x) and A(x) → B2(x) if and only if t is the
Gödel t-norm, due to its idempotency property (i.e.,
min(n, n) = n). This is indeed both a necessary and
sufficient condition since the min is the only idempotent
t-norm [53]. Then, in this case we have that AI(o) ≤
min(BI

1 (o), B
I
2 (o)) if and only if AI(o) ≤ BI

1 (o) and
AI(o) ≤ BI

2 (o).

6.2.2. Union (⊔)
OWL 2 RL allows for axioms of the form A1 ⊔A2 ⊑ B.
Again according to Table 4 such axioms correspond to
two Datalog rules where the disjunction in the left-hand
side has been normalised. In fuzzy settings the previous
OWL 2 RL axiom is interpreted as follows:

BI(o) ≥ u(AI
1 (o), A

I
2 (o)) (2)

Again, by the well-known property of t-conorms
u(n,m) ≥ n,m equation (2) implies that
BI(o) ≥ AI

1 (o) and B
I(o) ≥ AI

2 (o) which are precisely
the semantics to the fuzzy Datalog rules A1(x) → B(x)
and A2(x) → B(x), respectively. However, like before,
the converse does not hold—that is, there are models
of the two fuzzy Datalog rules that do not satisfy the
axiom A1 ⊔ A2 ⊑ B. Hence, the aforementioned OWL
2 RL axiom is not allowed in the fuzzy setting.

The above expressions, however, are equivalent if
and only if u is Gödel’s t-conorm, again due to its
idempotency property (i.e., max(n, n) = n). In such
case we have that BI(o) ≥ max(AI

1 (o), A
I
2 (o)) if and

only if AI
1 (o) ≤ BI(o) and AI

2 (o) ≤ BI(o) and thus
A1 ⊔ A2 ⊑ B is equivalent to the two rules A1(x) →
B(x) and A2(x) → B(x).
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6.2.3. Bottom concept (⊥)
OWL 2 RL allows for axioms of the form ⊥ ⊑ B
and A ⊑ ⊥ which correspond to the Datalog rules
f → B(x) and A(x) → f. Since f and 0 are semantically
equivalent, then in the fuzzy case it is not hard to see
that these rules correspond to the fuzzy Datalog rules
A(x) → 0 and 0 → B(x).

6.2.4. Nominals ({o})
OWL 2 RL allows for axioms of the form {a} ⊑ B which
corresponds to the Datalog rule t → B(a), i.e., to the
assertion a : B. Under fuzzy interpretations the OWL
2 RL axiom is interpreted as follows:

{a}I(o) ≤ BI(o) (3)

As mentioned before, by the semantics of nominals the
left-hand side of equation (3) is either equal to 0 or to 1
from which the latter is the interesting case which can
only be if aI = o. In that case equation (3) becomes
BI(aI) ≥ 1, which clearly corresponds to the semantics
of the fuzzy Datalog rule 1 → B(a).

6.2.5. Existential restriction (∃)
OWL 2 RL allows for axioms of the form ∃R.A ⊑ B
which by Table 4 correspond to the Datalog rule
R(x, y) ∧ A(y) → B(x). In fuzzy settings such axioms
are interpreted as supo′∈∆I t(RI(o, o′), AI(o′)) ≤
BI(o), which can be simplified to the following
equation, for o′ an arbitrary object of ∆I :

t(RI(o, o′), AI(o′)) ≤ BI(o) (4)

It is easy to see that equation (4) corresponds
to the semantics of the fuzzy Datalog rule
R(x, y) ∧A(y) → B(x).

6.2.6. Nominals in existentials restrictions (∃R.{a})
OWL 2 RL allows for axioms of the form ∃R.{a} ⊑ B
which correspond to the Datalog rule R(x, a) → B(x).
We have already seen that both existentials and
nominals in the left-hand side of axioms are allowed in
any fuzzy OWL 2 RL language regardless of the fuzzy
operators used. It is not difficult to see that this is again
the case. More precisely, for A = {a} equation (4) is
written as follows:

t(RI(o, o′), {a}I(o′)) ≤ BI(o) (5)

Next, we follow similar reasoning like in Section 6.2.4:
if {a}I(o′) = 0, then by the standard properties of t-
norms t(RI(o, o′), 0) = 0 and equation (5) is vacuously
satisfied; otherwise, if {a}I(o′) = 1 then o′ = aI and
equation (5) can be written as RI(o, aI) ≤ BI(o) which
corresponds precisely to the semantics of the fuzzy
Datalog rule R(x, a) → B(x).
Moreover, OWL 2 RL allows for axioms of the form

A ⊑ ∃R.{a} which in fuzzy settings are interpreted
as AI(o) ≤ supo′ t(R

I(o, o′), {a}I(o′)). Now, since

by definition, the membership degree {a}I(o) is either
0 or 1 the supremum is determined by the value of
the R-connection to aI and hence we obtain AI(o) ≤
RI(o, aI). Consequently, the equation corresponds to
the semantics of the fuzzy Datalog rule A(x) → R(x, a).

6.2.7. Value restrictions (∀)
OWL 2 RL allows for axioms of the form A ⊑ ∀R.B.
According to Table 4 such axioms are translated
into the Datalog rule A(x) ∧R(x, y) → B(y). In
fuzzy settings such an axiom is interpreted as
AI(o) ≤ info′∈∆I J (RI(o, o′), BI(o′)), hence for an
arbitrary object o′ ∈ ∆I we have the following equation:

AI(o) ≤ J (RI(o, o′), BI(o′)) (6)

At this point we must again make a distinction
according to the properties that the fuzzy operators
are satisfying. More precisely, if J is an R-implication
then by the adjointness property equation (6) can be
rewritten as t(RI(o, o′), AI(o)) ≤ BI(o′) which clearly
corresponds to the semantics of the fuzzy Datalog rule
A(x) ∧R(x, y) → B(y).

In contrast, if J is a an S-implication,
then equation (6) can be written as AI(o) ≤
u(c(RI(o, o′)), BI(o′)) from which no further rewriting
can be performed and hence no fuzzy Datalog rule
can be obtained. Note that, even if B = ⊥, then the
equation could be simplified to AI(o) ≤ c(RI(o, o′))
but still one would need Datalog with some kind of
negation or the adjointness property to hold to produce
some kind of equation that corresponds to some fuzzy
Datalog rule (see also next section).

6.2.8. Negation (¬)
OWL 2 RL allows for axioms of the form A ⊑ ¬B which
according to Table 4 are equivalent to the Datalog rule
A(x) ∧ B(x) → f. In fuzzy settings the previous OWL
2 RL axiom is interpreted as follows:

AI(o) ≤ c(BI(o)) (7)

for every o ∈ ∆I . Let t be the t-norm used to interpret
conjunction in the logic and let J be the corresponding
R-implication. Assume also that c in equation (7) is
the pre-complement of J . Then, this implies that
equation (7) is equivalent to AI(o) ≤ J (BI(o), 0)
which by adjointness is written as t(AI(o), BI(o)) ≤ 0
and hence we get the semantics of A(x) ∧ B(x) →
0. Examples of fuzzy logics that satisfy the above
properties are the Lukasiewicz logic and the Gödel logic.
In contrast, equation (7) cannot be rewritten further if
J is an S-implication.

6.2.9. At-Most Number Restriction (≤)
OWL 2 RL allows for axioms of the form A ⊑ ≤ pS.B,
where p ∈ {0, 1}. By the semantics depicted in Table 2
we can see that the interpretation of such axioms is

The Computer Journal, Vol. ??, No. ??, ????



A Fuzzy Extension to the OWL 2 RL Ontology Language 9

similar to that of axioms of the form A ⊑ ∀R.B—
that is, they are of the form AI(o) ≤ J (B,H), where
B,H are some semantic expressions. Consequently, the
analysis performed in Section 6.2.7 applies here directly.
More precisely, it can be easily verified that if J is an
R-implication then the semantics of the axioms of the
form A ⊑ ≤ pS.B can be written as:

t(AI(o),
p+1
t

i=1
t(SI(o, oi), B

I(oi))) ≤ u
i<j

{oi = oj}

Now we examine the cases that p = 0 or p = 1
separately. If p = 0, then the right part of the
equation is vacuously equal to 0. Hence, the equation
corresponds to the semantics of the fuzzy Datalog rule
A(x) ∧ S(x, y1) ∧ B(y1) → 0. Otherwise, if p = 1 then
we have o1 and o2 and the truth value of {o1 = o2} is
either 0 or 1 depending on whether o1 is equal or not
equal to o2. Hence, we can conclude that the resulting
equation corresponds to the semantics of the fuzzy rule
A(x) ∧

∧2
i=1[S(x, yi) ∧B(yi)] → y1 ≈ y2.

In contrast, like in Section 6.2.7, if J is interpreted
using an S-implication, then no equivalent fuzzy
Datalog rule can be formed and hence such axioms are
outside such fuzzy OWL 2 RL languages.

6.3. Fuzzy concept subsumptions with concept
descriptions

In the current section we revisit fuzzy concept
subsumptions and we analyse the cases where concept
descriptions are used, i.e., the cases of axioms of the
form ⟨Cb ⊑ Ch,m⟩, where at-least one of Cb, Ch is not
atomic.

6.3.1. R-implications
As we analysed in Section 6.1, if J is an R-implication
and I a fuzzy interpretation that satisfies ⟨Cb ⊑ Ch,m⟩,
then we can obtain the following:

t(CI
b (o),m) ≤ CI

h (o) (8)

Then, according to the form of Cb and Ch we can
obtain fuzzy Datalog rules like the ones presented in
the previous section with the addition of the atom m
as a conjunct in the body. For example, if Cb =
A1 ⊓ A2 and Ch = B, then equation (8) can be
shown to give the semantics of the fuzzy Datalog
rule A1(x) ∧A2(x) ∧m→ B(x) while if Cb = A and
Ch = ∀R.B (as in Section 6.2.7) equation (8) can
be shown to give the semantics of the fuzzy Datalog
A(x) ∧ R(x, y) ∧m → B(y). Analogously for all other
cases; please consult the mappings in Section 6.5.
The only case to be analysed in detail is if Cb =

A1 ⊔ A2 and Ch = B. Then, equation (8) is written as
t(u(AI

1 (o), A
I
2 ),m) ≤ BI(o). If t and u are distributive

(i.e., if t(a, u(b, c)) = u(t(a, b), t(a, c))), then the last
equation can be written as u(t(AI

1 (o),m), t(AI
2 ,m)) ≤

BI(o). Finally, if u is the Gödel t-conorm, then like in

Section 6.2.2 we obtain the two equations t(AI
1 (o),m) ≤

BI(o) and t(AI
2 (o),m) ≤ BI(o) which correspond to

the rules A1(x) ∧ m → B(x) and A2(x) ∧m → B(x).
Note that, since all t-norms are distributive when paired
with the Gödel t-conorm, then the only real restriction
here is for the t-conorm to be interpreted using the
Gödel one.

6.3.2. S-implications
As stated in Section 6.1, for logics where implication
is interpreted using an S-implication, fuzzy concept
subsumptions are generally not supported since S-
implications do not satisfy the same adjointness
property like R-implications.

However, there are combinations of concepts which
can enforce the membership function to be such that
after some simplifications an equivalent form could be
obtained. Consider for example, Cb = {a}, i.e., axioms
of the form ⟨{a} ⊑ B,m⟩. Then, an interpretation I
satisfies this axiom if info∈∆I u(c({a}I(o)), BI(o)) ≥
m. Again, due to the semantics of nominals if {a}I(o) =
0, then the axiom is vacuously satisfied (since c(0) = 1
and u(1, BI(o)) = 1 ≥ m). In contrast, if {a}I(o) = 1
then o = aI and the equation is simplified to BI(aI) ≥
m which corresponds to the semantics of fuzzy Datalog
rule m→ B(a).

Consider now, the case where Ch = ⊥, i.e., axioms
of the form ⟨A ⊑ ⊥,m⟩. An interpretation I satisfies
this axiom if info∈∆I u(c(AI(o)), 0) ≥ m which, by
the boundary conditions of t-conorms is simplified to
c(AI(o)) ≥ m for some arbitrary o. In case negation
is interpreted using an involutive function, then this
equation can be rewritten as AI(o) ≤ c(m) which
corresponds to the semantics of the fuzzy Datalog rule
A(x) → c(m).

Consider finally, the case where Ch = ¬B, i.e.,
axioms of the form ⟨A ⊑ ¬B,m⟩. An interpretation I
satisfies this axiom if info∈∆I u(c(AI(o)), c(BI)(o)) ≥
m. If the operators of the fuzzy logic used satisfy
the De Morgan’s laws, then the latter can be written
as c(t(AI(o), BI)(o)) ≥ m and then if c is involutive
this can be rewritten as t(AI(o), BI(o)) ≤ c(m) which
corresponds to the semantics of the fuzzy Datalog rule
A(x) ∧B(x) → c(m).

6.4. Fuzzy assertions with concept descriptions

In the current section we also take up one level in
the case of fuzzy assertions—that is, we will consider
fuzzy assertions of the form (a : Ch) ≥ m where Ch is
a concept description built using some constructor and
an atomic concept.

As mentioned in previous section, both under R- and
S-implications, the previous assertion is equivalent to
the fuzzy concept subsumption ⟨{a} ⊑ Ch,m⟩. Hence,
the same analysis as in the previous sections can be
directly applied. For example, if Ch = B1 ⊓ B2, then
the fuzzy assertion can be written as the fuzzy concept
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subsumption ⟨{a} ⊑ B1 ⊓B2,m⟩ which according to
Section 6.1 corresponds to the rule m→ B1(a) ∧B2(a)
which, finally, can be written as m → B1(a) and
m→ B2(a) if and only if conjunction in the language is
interpreted under the min t-norm.
Similarly, if Ch = ∃R.{b}, then we can show that

(a : ∃R.{b}) ≥ m corresponds to the fuzzy Datalog rule
m → R(a, b); if Ch = ∀R.B, then (a : ∀R.B) ≥ m can
be shown to be equivalent to m ∧ R(a, y) → B(y) if
J is an R-implication; if Ch =≤ pS.B then under R-
implications it can be shown that (a : ≤ pS.B) ≥ m is

equivalent to the fuzzy Datalog rule m∧
∧2

i=1[S(a, yi)∧
B(yi)] → G where G = 0 if p = 0 and G = y1 ≈ y2
if p = 1; and finally, if Ch = ¬Cb then, as we did for
negative role assertions in Section 6.1, if negation is
interpreted using an involutive fuzzy complement or a
pre-complement, then the assertion (a : ¬Cb) ≥ m is
equivalent to the assertion (a : Cb) ≤ c(m) (note that
in the case of pre-complements c(m) is by definition
given by J (m, 0)). Again different cases depending on
the form of Cb need to be investigated. By the analysis
in the previous sections we can immediately obtain the
following:

• If Cb = A then the assertion is of the form
(a : A) ≤ k which corresponds to A(a) → k;

• if Cb = A1⊓A2, then by Section 6.2.1 the assertion
is equivalent to A1(a) ∧A2(a) → k;

• if Cb = A1⊔A2, then by Section 6.2.2 the assertion
is equivalent to the rules A1(a) → k and A2(a) → k
if and only if union is interpreted by the max t-
conorm;

• if Cb = ∃R.C, then by Section 6.2.5 the assertion is
equivalent to the Datalog rule R(a, y) ∧C(y) → k;
and

• if Cb = ∃R.{b}, then by Section 6.2.6 the assertion
is equivalent to the Datalog rule R(a, b) → k;

In contrast, if Cb = {b}, then the assertion is of the
form (a : {b}) ≤ k which has not been investigated
previously. For this case, first, recall again that the
expression in the left-hand side is either equal to 0 or 1
which depends on whether aI = bI or not. Hence, the
semantics of this assertion are captured by the fuzzy
Datalog rule a ≈ b→ k.

6.5. Fuzzy OWL 2 RL

Like in the crisp case, the above analysis and
correspondences can be used to define a mapping from
fuzzy OWL 2 RL axioms to fuzzy Datalog as well as
a number of rewrite rules. However, as we have seen,
some of these mappings and rules would need to be
conditional as they only hold under fuzzy operators
that satisfy specific properties. These mappings and
the rewrite rules can thus be applied on any given
OWL 2 RL axiom recursively in order to check if it is a
valid fuzzy OWL 2 RL axiom under the assumed fuzzy
operators. Table 5 presents the mappings µh and µb

TABLE 5. Mapping concepts to atoms.
Any fuzzy operator

µ∗(A, x) ⇝ A(x)
µ∗(⊥, x) ⇝ 0
µ∗(C ⊓D,x) ⇝ µ∗(C, x) ∧ µ∗(D,x)
µb(⊤, x) ⇝ 1
µb(C ⊔D,x) ⇝ µb(C, x) ∨ µb(D(x))
µb(∃R.C, x) ⇝ R(x, y) ∧ µb(C, y), y fresh
µb(∃R.⊤, x) ⇝ R(x, y), y fresh
µb(∃R.{a}, x) ⇝ R(x, a)
µb({a}, x) ⇝ 1{x 7→ a}
µb({b}, a) ⇝ a ≈ b
µh(∀R.C, x) ⇝ R(x, y) → µh(C, y), y fresh
µh(∃R.{a}, x) ⇝ R(x, a)

R-implications
µh(≤ 0S.Cb, x) ⇝ S(x, y) ∧ µb(Cb, y) → 0

µh(≤ 1S.Cb, x) ⇝
∧2

i=1[S(x, yi) ∧ µb(Cb, yi)] → y1 ≈ y2

TABLE 6. Mappings of axioms.
Any fuzzy operator

µ(Cb ⊑ Ch) ⇝ µb(Cb, x) → µh(Ch, x)
µ((a : Ch) ≥ m) ⇝ µ(⟨{a} ⊑ Ch,m⟩)
µ((a : Cb) ≤ m) ⇝ µb(Cb, a) → m
µ((a, b) : R) ≤ m) ⇝ R(a, b) → m
µ((a, b) : R) ≥ m) ⇝ µ(⟨{a} ⊑ ∃R.{b},m⟩)

Involutive negation or pre-complement of J
µ((a : ¬Cb) ≥ m) ⇝ µb(Cb, a) → c(m)

R-implications
µ(⟨Cb ⊑ Ch,m⟩) ⇝ µb(Cb, x) ∧m → µh(Ch, x)

S-implications
µ(⟨{a} ⊑ Ch,m⟩) ⇝ m → µh(Ch, a)

S-implications and involutive negation

µ(⟨Cb ⊑ ⊥,m⟩) ⇝ µb(Cb, x) → c(m)

S-implications, invol. negation and De Morgan’s laws

µ(⟨Cb ⊑ ¬C′
b,m⟩) ⇝ µb(Cb, x) ∧ µb(C

′
b, x) → c(m)

µ(⟨Cb ⊑ ∀R.¬C′
b,m⟩) ⇝ µ(⟨Cb ⊑ ¬∃R.C′

b,m⟩)

from fuzzy OWL 2 RL concepts to fuzzy Datalog atoms.
Whenever the mapping is conditional it is indicated
with the proper heading. Moreover, ∗ denotes either
b or h, 1{x 7→ a} is a special atom that is then used by
a rewrite rule (cf. Table 7), µb(⊤, x) can occur due to
axioms of the form A ⊑≤ pS.⊤, while, finally, µb({b}, a)
can occur due to axioms of the form (a : ¬{b}) ≥ m or
{a} ⊓ {b} ⊑ Ch. Finally, in rules where a new variable
y appears in atoms of the form R(x, y), y is assumed
to be a ‘fresh’ variable, i.e., one that does not appear
elsewhere in the transformed rule.

Subsequently, Table 6 presents how the mapping
is defined for axioms while Table 7 presents rewrite
rules for the fuzzy Datalog rules; the mapping of role
axioms is the same as that in the crisp (cf. Table 4)
so we don’t repeat them here. For both tables, the
conditions of the fuzzy operators that need to hold
for various mappings to be valid are indicated. It
is worth mentioning that the last rule in Table 6 is
due to the well-known equivalence ∃R.C ≡ ¬∀R.¬C
which holds if the fuzzy logic satisfies the De Morgan’s
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TABLE 7. Rewrite Rules; B,G,H are conjunctions of
atoms.

Any fuzzy operator
B ∧ 1{x 7→ a} → H ⇝ (B → H){x 7→ a}

R-implications
B → (G → H) ⇝ B ∧G → H

Gödel t-norm and t-conorm
B → (G ∧H) ⇝ B → G,B → H
B ∨G → H ⇝ B → H,G → H

t and u are distributive
(B ∨G) ∧ F → H ⇝ (B ∧ F ) ∨ (G ∧ F ) → H

R-implication and pre-complement
B → H ∧ µh(¬Cb, x) ⇝ B ∧ µb(Cb, x) → H

laws. Moreover, the given mappings should be applied
one concept at a time, the rewrite rules from Table 7
should be applied eagerly as well as any substitutions
of the form {x 7→ y}. This will also be made more
clear in Example 3. Furthermore, the last rewrite rule
in Table 7 can be applied even if H is empty. In
that case the obtained rewritten rule contains 0 in the
head. Finally, note that the rules are non-deterministic
and a particular choice of a mapping to be applied
may influence the result. For example, consider S-
implications and involutive negation and the axiom
⟨{a} ⊑ ¬B,m⟩. Then, according to Table 6 there are
two possibilities: on the one hand, this axiom can be
mapped to m → µh(¬B, a) which cannot be rewritten
further as the last rewrite rule in Table 7 applies only
to R-implications; however, on the other hand, the
axiom can also be mapped to µb({a}, x) ∧ µb(B, x) →
c(m),which eventually leads to B(a) → c(m).

Example 1. Consider the following f-SROIQ axiom
∃R.C ⊑ ∀R.(A1 ⊓A2). Applying the transformation
defined previously we have the following steps:

µ(∃R.C ⊑ ∀R.(A1 ⊓A2)) ⇒
µb(∃R.C, x) → µh(∀R.(A1 ⊓A2), x) ⇒

R(x, y) ∧ µb(C, y) → (R(x, z) → µh(A1 ⊓A2, z)) ⇒

Now if implication is interpreted using an R-implication
then, the second simplification rule from Table 7 can be
used and hence the latter can be rewritten as

R(x, y) ∧ µb(C, y) ∧R(x, z) → µh(A1 ⊓A2, z)

otherwise the translation is aborted with an error and
the above f-SROIQ axiom is not a fuzzy OWL 2 RL
axiom. In the former case in the following step we
would obtain the equation R(x, y) ∧ C(y) ∧ R(x, z) →
A1(z)∧A2(z) which again can be further rewritten only
if the Gödel t-norm is used to interpret conjunction. In
that case we can obtain the two fuzzy Datalog rules
R(x, y) ∧ C(y) ∧R(x, z) → A1(z) and R(x, y) ∧ C(y) ∧
R(x, z) → A2(z). In summary, the initial f-SROIQ
axiom is a fuzzy OWL 2 RL axiom only under R-
implications and the Gödel t-norm. ♢

Example 2. Consider the f-SROIQ axiom
A ⊑ B ⊓ ∃R({a} ⊓ C). Using similar steps like
before, the left hand side of this axiom is mapped
to the atom A(x), while the right hand side is first
mapped to B(x) ∧ µh(∃R.({a} ⊓ C), x). However, no
mapping exists for µh(∃R.({a}⊓C), x) hence the initial
axiom is not a OWL 2 RL axiom (it is neither a crisp
OWL 2 RL axiom). ♢

Example 3. Consider axiom {a} ⊓ {b} ⊑ B.
According to Table 6 it is first mapped to µb({a}, x) ∧
µb({b}, x) → B(x), then it is transformed to 1{x 7→ a}∧
µb({b}, x) → B(x) and next to [µb({b}, x) →
B(x)]{x 7→ a}. Subsequently, we apply the substitution
obtaining µb({b}, a) → B(a) and finally, again by
Table 5 we obtain b ≈ a→ B(a). ♢

7. APPROXIMATING UNSUPPORTED AX-
IOMS

As noted in the previous sections, under specific fuzzy
operators some axioms fall outside of the fuzzy OWL 2
RL language, like e.g., axioms of the form A ⊑ B1 ⊓B2

under non-idempotent t-norms. In the current section
we show how one can to some extent overcome this
issue by re-stating axioms in a different way. Of course,
the new set of axioms is not equisatisfiable to the
original one but is at least a way to have a “practical”
approximation of them.

Consider, for example, axiom A ⊑ B1 ⊓ B2 which
is not in general equivalent to A(x) → B1(x) and
A(x) → B2(x). It is easy to see that one can still
directly specify in the ontology the axioms A ⊑ B1

and A ⊑ B2, which correspond precisely to the
aforementioned rules, hence in some sense “bypassing”
the inability to express the axiom A ⊑ B1 ⊓ B2. Of
course under non-idempotent t-norms the semantics of
A ⊑ B1 ⊓ B2 are different from those of A ⊑ B1

and A ⊑ B2. More precisely, in fuzzy interpretations
the latter two axioms allow the membership degrees
of BI

1 and BI
2 to be underestimated and the degree

of AI to be overestimated. For example, the fuzzy
interpretation I with BI

1 (o) = 0.4, BI
2 (o) = 0.4, and

AI(o) = 0.4 satisfies the latter two axioms but not the
former for, e.g., the product t-norm. More precisely,
since t(0.4, 0.4) < 0.4, then to get a model either AI(o)
needs to be reduced or BI

1 (o) and/or B
I
2 (o) increased.

However, for a large number of users and application
developers, it may be the case that the intended
conceptual meaning they want to capture in an ontology
is the one stemming from the pair of axioms A ⊑ B1

and A ⊑ B2 rather than from the axiom A ⊑ B1 ⊓ B2,
since (in non-idempotent t-norms) the latter implies a
special relation between the membership degree of AI

and the t-norm of BI
1 and BI

2 .
Similar observations can be made for all axioms that

are not allowed under specific fuzzy operators. To give
another illustrative example consider axioms of the form
A ⊑ ¬B. In general, the intention of such axiom is to
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TABLE 8. Alternative Expressions for Problematic
Axioms.

A ⊑ B1 ⊓B2 ⇝ A ⊑ B1, A ⊑ B2

(a : B1 ⊓B2) ≥ m ⇝ (a : B1) ≥ m, (a : B2) ≥ m

A1 ⊔A2 ⊑ B ⇝ A1 ⊑ B,A2 ⊑ B

(a : A1 ⊔A2) ≤ m ⇝ (a : A1) ≤ m, (a : A2) ≤ m

A ⊑ ∀R.B ⇝ ∃R−.A ⊑ B

A ⊑ ¬B ⇝ A ⊓B ⊑ ⊥
A ⊑ ≤ 0S.B ⇝ A ⊓ ∃S.B ⊑ ⊥
(a : ∀R.¬B) ≥ m ⇝ ⟨{a} ⊓ ∃R.B ⊑ ⊥,m⟩
(a :≤ 0S.B) ≥ m ⇝ ⟨{a} ⊓ ∃S.B ⊑ ⊥,m⟩

state that the sets AI and BI are disjoint. The same
intended meaning can also be captured by the axiom
A ⊓ B ⊑ ⊥ which corresponds to the (fuzzy) Datalog
rule A(x) ∧ B(x) → 0 and which is always allowed in
fuzzy OWL 2 RL. Consequently, instead of A ⊑ ¬B
a user can directly state A ⊓ B ⊑ ⊥ “overcoming” the
inability to state disjointness axioms through the axiom
A ⊑ ¬B.
Table 8 presents in the left-hand side most axioms

that can fall outside of fuzzy OWL 2 RL due to the
underlying fuzzy operators, while in the right-hand side
it shows an alternative axiom which might capture the
intended meaning of the user and which is within all
fuzzy OWL 2 RL languages; for brevity and simplicity
reasons we have omitted alternative forms for fuzzy
subsumptions which follow easily. Clearly, in the crisp
case the axioms in the left-hand side are equivalent to
those in the right-hand side. The table is missing axiom
of the form A ⊑ ≤ 1R.B as this does not have any
alternative equivalent representation. Moreover, note
that axioms (a : Ch) ≥ m where Ch ∈ {∀R.¬B,≤
0S.B} have an alternative form only if fuzzy concept
subsumptions are allowed in the language.

8. AN ADDITIONAL EXTENSION

In the current section we briefly look into one feature
of fuzzy DLs that has been proposed a couple of times
in the literature—that is, on fuzzy nominals [54].
Fuzzy nominals [54] are concepts of the form {a, n}

where a is an individual and n ∈ (0, 1] and their
semantics are given by the following equation:

{a, n}I(o) =
{
n, o = aI

0, otherwise

Such constructors can appear in axioms of the
form {a, n} ⊑ B, ∃R.{a, n} ⊑ A, A ⊑ ∃R.{a, n},
(b : ∃R.{a, n}) ≥ m, (b : {a, n}) ≥ m, (b : {a, n}) ≤ m
and (b : ∃R.{a, n}) ≥ m. We show each case in the
following:

• An axiom {a, n} ⊑ B is satisfied by a fuzzy
interpretation I if for every o ∈ ∆I we have
{a, n}I(o) ≤ BI(o). By the semantics, the left-
hand side is either equal to 0 or to n. If it is

equal to 0 then the axiom is vacuously satisfied,
otherwise it is equal to n only if aI = o. Hence, in
that case the equation becomes n ≤ BI(aI) which
corresponds to the semantics of the fuzzy Datalog
rule n→ B(a).

• Using similar line of reasoning like the ones set in
the previous sections it can be easily verified that
axioms of the form ∃R.{a, n} ⊑ A are equivalent
to the fuzzy Datalog rule R(x, a) ∧ n→ A(x).

• An axiom A ⊑ ∃R.{a, n} is satisfied by a fuzzy
interpretation I if for every a ∈ ∆I we have
AI(o1) ≤ t(RI(o1, o2), {a, n}I(o2)) which, by
following a similar reasoning as before, is simplified
to AI(o1) ≤ t(RI(o1, a

I), n). Like in section 6.2.1,
if t is the Gödel t-norm, then this simplifies to
AI(o) ≤ RI(o, aI) and AI(o) ≤ n and hence to
the two fuzzy Datalog rules A(x) → R(x, o) and
A(x) → n.

• The case of axioms of the form (a : ∃R.{b, n}) ≥ m
is similar to the previous one. That is, if we assume
the Gödel t-norm then we can finally obtain the
rules m→ n7 and m→ R(a, b).

• For axioms of the form (a : ∃R.{b, n}) ≤ m we
can follow a similar analysis as in Section 6.1 and
obtain the fuzzy Datalog rule R(a, b) ∧ n→ m.

• For axioms of the form (a : {b, n}) ≥ m, first note
that the left-hand side is either equal to 0 or to n
depending on whether aI = bI or not. Moreover,
the assertion is satisfied only if aI = bI and n ≥ m
or aI ̸= bI and m = 0. Hence, the semantics can
be captured by the equation m ≤ min((a ≈ b)I , n)
which corresponds to the two fuzzy Datalog rules
m→ a ≈ b and m→ n.

• Finally, for axioms of the form (a : {b, n}) ≤ m
again the left-hand side is either equal to 0 or to
n. Moreover, the assertion is satisfied if aI ̸= bI

(regardless of m) or if aI = bI and n ≤ m. This
can be written as min((a ≈ b)I , n) ≤ m which only
under the Gödel t-norm corresponds to the fuzzy
Datalog rule (a ≈ b) ∧ n→ m.

9. EVALUATION

We have conducted an experimental evaluation to assess
the proportion of OWL 2 RL ontologies that contain
axioms that can only be translated under certain fuzzy
operators, as well as how many axioms of these forms
each ontology contains.

We have considered the Gardiner corpus which is
a well-known ontology library used for evaluating DL
reasoners [55]. It consists of more than 300 ontologies
collected from the Web, research projects, or created
for academic purposes throughout the years.

From all ontologies in the Gardiner corpus we used
146 as all the rest were expressed in OWL Full (i.e.,
they fall outside of OWL 2 DL and its direct model-

7Clearly this can only be the case if m ≤ n, otherwise the
ontology is inconsistent, i.e., it has no model.
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theoretic semantics). Then, we parsed these ontologies
using the OWL API [56], we extracted a (syntactic)
OWL 2 RL fragment (many of them fall outside OWL
2 RL) and finally we checked how many axioms of the
“problematic” forms appear in this fragment.
Out of the 146 ontologies, 41 contained axioms of

some of the forms requiring specific fuzzy operators.
In these 41 ontologies there was a total of 441
axioms containing intersection, 24 containing union, 6
containing negation, 625 containing value restrictions,
and 111 containing number restrictions (all are of the
form ≤ pS.⊤ and only one with p = 0). Hence, in
total there were 1207 “problematic” axioms in a total of
12184 axioms. It is also interesting to note that, by our
analysis in the previous sections, it follows that under
the Gödel semantics all these axioms can be stated in
fuzzy OWL 2 RL, however, under the Zadeh semantics
only 465 (leaving 742 that cannot). Next we give some
illustrative examples of problematic axioms found in the
aforementioned ontologies and the ontology in which
they are found:

• (⊓) from Food-Wine:

RedBordeaux ⊑ Bordeaux ⊓ RedWine

• (⊔) from Pervasive-Time:

InstantEvent ⊔ IntervalEvent ⊑ Event

• (¬) from Aktors:

Tangible-Thing ⊑ ¬Intangible-Thing

• (∀) from Camera:

LargeFormat ⊑ ∀has.BodyWithNonAdjShutterSpeed

• (≤) from Services-OWL:

Services ⊑ ≤ 1describedBy.⊤

As can be seen by our experiments, although about
30% of the ontologies contained at least some type of
“problematic” axiom most of them contain very few
such axioms since in total only about 10% of the total
number of axioms are in one of these forms. Finally,
it is also important to note that most of these axioms
can be stated in an alternative way (with some loss of
semantics) with only 110 being of the form C ⊑≤ 1R.⊤.

10. CONCLUSIONS AND FUTURE WORK

In this paper we studied a fuzzy extension of the OWL
2 RL Web ontology language. Differently than other
fuzzy extensions to DL languages where one simply has
to interpret concepts and relations as fuzzy sets and
relations, respectively, and the constructors using inf,
sup and the fuzzy set theoretic operators, defining a
fuzzy OWL 2 RL is quite involved. To achieve our
goals we have studied which types of OWL 2 RL axioms,
when interpreted in a fuzzy setting, can be represented
equivalently in fuzzy Datalog.

Our analysis showed that some types of axioms
cannot, in general, be represented equivalently as fuzzy
Datalog rules. For such axioms the ability to capture
them in fuzzy Datalog depends on the properties of
the used fuzzy set theoretic operators and we have
analysed which are those. However, we have shown
how one can bypass the issue of invalid axioms by using
different expressions which are always valid in fuzzy
OWL 2 RL. These expressions at least approximate
to a large extent the meaning of these axioms and
moreover, we argue that in many cases the alternative
expressions can be closer to the intended meaning that
an ontology engineer wants to capture. In addition,
we have performed an experimental evaluation using
a large set of well-known realistic ontologies to assess
the proportion of OWL 2 RL ontologies that use
such problematic axioms in practice. Our experiments
showed that ontologies do not usually contain such
axioms and, moreover, those that do, do not contain
a large number of them. Hence, the experiments also
suggest that the issue of unsupported axioms is not so
intense in practice.

To the best of our knowledge no such previous
work on fuzzy OWL 2 RL has been conducted. We
feel that this is an important non trivial step, as it
draws attention to fragments of fuzzy DLs that have
been largely neglected and can perhaps form the basis
of scalable implementations and further theoretical
results. In addition we are also not aware of any
experimental evaluation of this type that used real-
world ontologies from well-known ontology datasets.

Regarding directions for future work, firstly, we plan
to design, implement, and evaluate a reasoner for fuzzy
OWL 2 RL ontologies. Secondly, we feel that the issue
of unsupported axioms is of further theoretical interest.
It was recently shown that reasoning with fuzzy-EL8

when conjunction is interpreted under several well-
known non-idempotent t-norms is co-NP-hard [58],
despite the fact that the same language under the min
t-norm has been shown to be polynominal [59]. Hence,
the fact that such axioms fall outside fuzzy OWL 2
RL under such operators is perhaps an indicator that
reasoning with them is hard (recall that OWL 2 RL is
specifically designed to be polynomial). We leave this,
however, as future work as it is far from trivial (see [58]).
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Straccia, U. (2009) Fuzzy description logics under
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