
Analyzing Flickr metadata to extract location-based information and
semantically organize its photo content

Evaggelos Spyrou a, Phivos Mylonas b,n

a Technological Educational Institute of Central Greece, 3rd km Old National Road Lamia-Athens, P.C. 35100, Lamia, Greece
b National Technical University of Athens, Iroon Polytechneiou 9, P.C. 15780 Zografou, Athens, Greece

a r t i c l e i n f o

Article history:
Received 2 November 2013
Received in revised form
1 December 2014
Accepted 26 December 2014

Keywords:
Social media content analysis
Geo-tagging
Tags
Content clustering
Information processing

a b s t r a c t

The first step towards efficient social media content analysis is to understand it and identify means of
user interaction. Trying to study the problem from the user perspective, we analyze user-generated
photos uploaded to famous Flickr social network, in order to extract meaningful semantic trends
covering specific research aspects, like content popularity, spatial areas of interest and popular events.
Initially, we select a geographical area of social interest, like a city center, defined by a strict bounding
box. We then cluster photos taken within the box based on their geo-tagging metadata information (i.e.,
their latitude and longitude information) and divide large areas into smaller groups of fixed size, which
we will refer to as “geo-clusters”. Within these geo-clusters, we further identify semantically meaningful
“places” of user interest, by analyzing any additional textual metadata available, i.e., user selected tags
that characterize each place's photos. By post-processing the latter, we are then able to rank them and
thus select the most appropriate tags that describe landmarks and other places of interest, as well as
events occurring within these places of interest. As a next step, we place these tags on a map and help
users to intuitively visualize places of interest and the actual photo content at a glance. Finally, we
examine the temporal dynamics of analyzed photos over a long period of time, so as to obtain the
underlying trends to be identified within this kind of social media generated content.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The recent growth of social networks coupled together with an
extreme amount of multimedia content data, mostly in the form of
digital still images, deriving from both personal and social media,
gave rise to interesting applications and technologies that support
them. In this work we initiate our research by first trying to under-
stand the mechanisms that allow users to interact and exchange
photo content on social media platforms such as Flickr1 and by
analyzing the underlying trends that accompany mass online
multimedia content sharing. Being the center of attention, online
user-generated multimedia content met an unprecedented inter-
est increase in terms of its organization and manipulation. Con-
sequently, there is an urgent and growing need to facilitate effor-
tless user access and manipulation to these rather unorganized
and unsorted media archives, in order for typical users (a) to take
advantage of the inherent additional meta-information that is
present within them (e.g., geo-tags) and (b) to exploit it. Typical
approaches for assisting such information access, like browsing,

searching, filtering, or recommendation techniques, although quite
advanced in the textual domain, are still in their early steps with
respect to the mass online multimedia content domain.

The latter observation may be attributed in the most part to the
lack of sufficient – additional to the actual content itself – textual
annotations, tags or geo-tags associated with multimedia content,
which firstly hinders the application of text-based retrieval techni-
ques and secondly, obstructs efficient organization of such enriched
multimedia content. In addition, the art of analyzing and identifying
patterns of temporal variation with respect to online content in
general, forms another difficult task, mainly due to the fact that
human behavior – that is inherent behind the temporal variation –

is considered to be highly unpredictable and outside of any known
model; the latter ranging typically between “random” [40] and
“highly correlated” [10] states.

In this paper we shall focus on a subset of the above described
information handling problems, which, however, lies within current
top research trends and applied services: we aim to analyze large
user-generated digital photos collections (such as the ones derived
from Flickr), in order to select the most appropriate meta-tags to
describe a geographical area of interest and thus characterize the
content itself in terms of its semantics, spatial and chronological
context. In the following we present a holistic attempt of our work
methodology, starting from its very first steps on photo clustering
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based on their respective geo-information, up to: (a) each geo-
cluster's textual metadata analysis, (b) the extraction of meaningful
semantic trends covering the specific geographical areas of interest
and (c) the final computation of their temporal dynamics over a
long period of time. In the evolution of our work description we
shall also illustrate some additional intermediate steps, such as
placing clusters and tags on a map to help readers intuitively
understand both the reasoning in the points of interest selection
and the actual visual content associated. As a result, the main
contributions of this work may be summarized as follows:

(i) we propose a two-level, semantically meaningful clustering
scheme on geo-tags, based on KVQ [55]. We utilize this
scheme in order to create fixed-size clusters that would
semantically correspond to “places”; we define the latter to
be a rather compact and meaningful geographic area. We only
select “places” that involve the collective intelligence of Flickr
users, or in other words “places” that show at least some user
interest,

(ii) we introduce an innovative probabilistic approach for select-
ing the most important tags, which considers certain inter-
esting aspects of tags,

(iii) we provide a principal trend analysis and classify tags as
landmarks and events based on the temporal distributions of
their textual metadata, and

(iv) we place the most important metadata on a map and
visualize their level of importance.

At this stage it is also worth pointing out some novel aspects of
this work. First of all we made a choice to deal with tags and geo-tags
by utilizing fixed-size clusters. In this manner, we are sure that tags
that belong to landmarks or area-specific events always end up to the
same cluster. Secondly, we consider the user factor in the process,
since the clusters that occur do not have predefined boundaries, but
quite on the contrary we only predefine the shape of the clusters,
while their centers are determined after an automatic, unsupervised
approach. As already mentioned, we also propose a probabilistic
framework, in order to select the most representative tags, character-
ized by novel notions in the modeling of tags and their spatial
neighbors and also in the modeling of geo-places. All in all, this
research work attempts to broaden the scope of tag-recommendation
approaches by providing a broader, semantic-based view on it. Last,
but not least, the herein proposed methodology is fully automated, as
it demands only two user-defined parameters, i.e., the radii of geo-
clusters and geo-places; a fact that to the best of our knowledge
constitutes it rather unique in nature.

A last justification is required for selecting Flickr social network
to base all our observations, studies and applications; Flickr was
favored due to the main fact that it has been very popular during
the last few years, both for being the largest collection of commu-
nity collected geo-tagged photos and for offering a public Applica-
tion Programming Interface (API)2 for accessing these photos along
with their metadata information. Each Flickr uploaded photo may
contain metadata added by its photographer, such as textual tags
that describe either its visual content or location, or even a free text
that describes the photo from its uploader's point of view. It may
also contain metadata added by the hardware equipment used to
capture it or by the photographer, such as date taken, camera
settings (e.g., ISO, shutter speed or aperture values), equipment type
(e.g., camera, smartphone), etc.

The rest of this paper is organized as follows. In Section 2 we
begin by presenting relevant recent research works on handling
social media content collections, focusing on metadata available

from Flickr, as well as other online social networks, micro-blogging
platforms and content collections. Then, in Section 3 we present
the main aspects of our work, that may be summarized briefly in
the clustering technique we apply on photos based on their geo-
data, the tag-ranking algorithm we apply on each cluster and the
clusters' modeling and transition to semantic “places”, as well as
the definition of trends and time exploitation. Our experimental
results derived from the application of discussed approach on two
datasets are provided through a detailed case study in Section 4.
Finally, in Section 5 we briefly discuss our future plans.

2. Related work

2.1. Exploiting information

As expected, the tasks of semantically characterize, organize
and efficiently exploit user-generated multimedia content towards
the meaningful exploitation of its carrying information are of great
importance within recent research community efforts. Starting
back in 2009, Cha et al. [12] collected and analyzed large-scale
traces of information dissemination derived from Flickr, aiming at
answering a set of information propagation questions. More
recently, Kalantidis et al. [28] proposed a visual-based photo
image retrieval and localization approach, which exploited low-
level image characteristics similarities in order to achieve accurate
results. Another interesting approach is [34], where meaningful
travel route recommendations are proposed, utilizing Flickr's user
histories and past actions behaviors. Still, other approaches focus
on mobile platforms and try to investigate whether knowledge
extracted from massive content user contribution and interaction
may offer any kind of added-value services [64].

Lately, research interest has been given also on statistical appro-
aches to the problem, i.e., Yang et al. [59] developed a k-spectral
centroid clustering algorithm in 2011, so as to identify temporal
patterns in online media. Huberman et al. [24] studied the social
interactions on the famous social microblogging network Twitter, and
came to the conclusion that the underlying driving usage process is a
sparse hidden network of friends and followers, while most of the
links represent meaningless interactions. The almost real-time nature
of information exchange inherent within this social medium consti-
tutes it as the ideal candidate for related trend research, so Java et al.
[26] investigated its social structures and managed to isolate different
types of user intentions, whereas the same social network has been
also examined later on by Jansen et al. [25] as a mechanism for word-
of-mouth advertising.

In an effort to address and overcome some of these issues that
hinder effective content access and interaction, researchers have
focused on the notion of collective intelligence, [19] trying to
identify potential sources of knowledge that would lead to
efficient multimedia content characterization and thus, manipula-
tion. Towards this direction, the addition of the notion of collec-
tiveness aids the overall pattern deviation and complexity
increase, considering all possible differentiations in interactions
between small or larger groups of people. Given the fact that
online user-generated multimedia content is increasingly popular,
several research methods for organizing and providing access to
its data have been emerged on this topic since the last few years,
constituting the fulfillment of our motivation an extremely intri-
guing research task.

2.2. Exploiting traditional image analysis techniques

In the seek of efficient social media photo content analysis many
research works exploit the fact that good, old traditional visual content
image analysis may indeed provide a rather powerful description. As a2 http://www.flickr.com/api
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result, many research efforts try to combine visual descriptions with
textual metadata in order to acquire the most out of photos. Crandall
et al. [15] use visual, temporal and geospatial information to auto-
matically identify places and/or events in city and landmark level.
They also add temporal metadata information to improve classification
performance. With the same motivation, Quack et al. [48] divide the
area of interest into non-overlapping, square tiles, then extract and use
visual, textual and geospatial features. They handle tags by a modified
TF-IDF ranking and link their results to Wikipedia.3 Gammeter et al.
[20] overlay a geospatial grid over earth and match pairwise retrieved
photos of each tile using visual features. Then, they cluster photos into
groups of images depicting the same scene. The metadata are used to
label these clusters automatically, using a TF-IDF scheme. Moëllic et al.
[44] aim to extract meaningful and representative clusters from large-
scale image collections. They propose a method based on a shared
nearest neighbors approach that treats both visual features and tags.

Li et al. [38] propose an algorithm that learns tag relevance by
voting from visually similar neighbors. They do not use geospatial
data, nor limit their approach on landmarks/places of interest and
aim to retrieve semantically similar images. Moxley et al. [45]
classify mined geo-referenced tags as places, by extending [49],
landmarks by clustering image datasets considering mutual infor-
mation and prior knowledge from Wikipedia and visual terms
using the mutual information between visual descriptors and tags.
Hays and Efros [23] advance to world-scale geographic estimation
by searching into a database of 6M geo-tagged Flickr images;
however, since their images were represented by global features
like color histograms, GIST descriptors [47], etc., matching accu-
racy is not even comparable to that of local features and the output
is a geo-location probability map. Kalogerakis et al. [29] build also
on previous results by exploiting in addition the time each photo is
taken, much like [15].

2.3. Exploiting only textual metadata

However, since the above described extraction and manipula-
tion of visual content may be proved slow and even computation-
ally difficult in some cases, many researchers propose to work
solely on the textual part of image descriptions, i.e., the available
user-provided textual metadata. Lee et al. [35] create overlapping
geographical clusters for each tag and then, for a pair of two tags
they calculate their geographical similarity. Then they introduce
weighted similarities for both tags and geographical distributions
and use the mutual information of tagging and geo-tagging.
Rattenbury et al. [49] aim to extract semantics such as places
and events from tags and unstructured text-labels. They observe
that event tags follow certain temporal patterns, while place tags
follow certain spatial patterns. They use methods inspired by
burst-analysis techniques and propose scale-structure identifica-
tion. Abbasi et al. [1] identify landmarks using tags and Flickr
groups without exploiting any geospatial information. They use
SVM classifiers trained on thematical Flickr groups, in order to find
relevant landmark-related tags. Ahern et al. [4] analyze tags
associated with geo-referenced Flickr images so as to generate
knowledge. This knowledge is a set of the most “representative”
tags for an area. They use a TF-IDF approach and present a
visualization tool, namely the World Explorer, which allows users
explore their results. Serdyukov et al. [50] adopt a language model
which lies on the user collected Flickr metadata and aims to
annotate an image based on these metadata. The goal herein is to
place photos on a map, i.e., provide an automatic alternative to
manual geo-tagging. Venetis et al. [56] examine techniques to
create a “tag-cloud”, i.e., a set of terms/tags able to provide a brief

yet rich description of a large set of terms/tags. They present and
define certain user models, metrics and algorithms aiming at this
goal. Ye et al. [61] develop a semantic annotation algorithm, which
is based on SVM classifiers. They use check-in information from
users and extract features from places. Their goal is to determine
the probability of each tag for a specific place. Finally, Biancalana
et al. [11] deal with personalization aspects through the imple-
mentation of a social recommender system involving an experi-
mental empirical framework. It allows users to freely leverage and
assign tags, by employing a user-based tag model that derives
correspondences between tag vocabularies and folksonomies.

2.4. Exploiting the geographical aspect

Focusing more on the challenging geographical aspect of the
problem, Lee et al. [35] created overlapping geographical clusters for
each tag, calculated geographical similarity for pairs of tags, and then
introduced similarities for both tags and geographical distributions.
Rattenbury et al. [49] extract semantics such as places and events from
tags and unstructured text-labels, observing that event tags follow
certain temporal patterns, while place tags follow certain spatial
patterns. In the same manner, Abbasi et al. [1] identify landmarks
using tags and Flickr groups, without exploiting geospatial informa-
tion, aiming to find relevant landmark-related tags, whereas the work
presented in [4] analyzes tags associated with geo-referenced Flickr
images and uses a TF-IDF approach to generate knowledge as a set of
the most “representative” tags for an area. Continuing, Serdyukov et al.
[50] adopt a language model which lies on user-collected Flickr
metadata and aims to annotate an image based on these metadata
and place photos on a map, i.e., provide an automatic alternative to
manual geo-tagging. Kennedy et al. [31] could be considered as
pioneers into mining popular locations and landmarks from more
than 10M Flickr images including metadata like tags, geo-tags and
photographers. Their approach, although it performs rather poorly due
to subsequent visual clustering steps based on global image features
involved, is ideal for constructing tag maps for arbitrary areas in the
world. In another interesting approach and in an attempt to combine
both geographic and visual clustering worlds, Zheng et al. [63] perform
also a similar combination coupled together with an inverse search by
travel guide articles containing landmark names, tackling the huge
computational cost of their approach by simply utilizing parallel
computing in the process. Finally, in another interesting recent work,
Stepanyan et al. [52] exploit geo-data in order to semantically annotate
places and toponyms in weblog posts.

2.5. Exploiting the chronological aspect

Last thing to consider, one of the challenges when dealing with
the chronological aspect in terms of trends' identification in social
media, and one we try to partially address within our proposed
work, is to automatically detect and analyze the emerging topics (i.
e., the ‘trends’) [41]. Most works exploit social and human activity
media dynamics to focus on prediction of real-world events and
tendencies [6]. Patterns of human attention [58,60], popularity
[36,54] and response dynamics [10,16] have been extensively
studied in the literature. Recently, researchers investigated tem-
poral patterns of activity of news articles, like Backstrom et al. [9]
and Szabo et al. [54], blogposts, like Adar et al. [3] and Mei et al.
[42], videos, like Crane et al. [16] and online discussion forums, like
Aperjis et al. [5]. Gruhl et al. [22] showed how to generate
automated queries for mining blogs in order to predict spikes in
book sales. Joshi et al. [27] use linear regression from text and
metadata features to predict earnings for movies, whereas Sharda
and Delen [51] transformed the prediction problem into a typical
classification problem tackled by neural networks to classify movies
into meaningful categories. On the other hand, there is also related3 http://www.wikipedia.org
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research on the interesting problem of general time series cluster-
ing, whose main apparatus are typically a distance measure [18]
and a clustering algorithm [57]. The most classical distance measure
utilized is, of course, the Euclidean distance, although more sophi-
sticated measures such as Euclidean squared distance, Minkowsky
distance, or minimax distance may be used, as well. In the clust-
ering domain, there are different types of clustering algorithms for
different types of applications and a common distinction frequently
used is between hierarchical agglomerative [33] and the K-means
clustering [43]. Due to its simplicity and scalability, the latter
algorithm introduced many optimizing variants, e.g., fuzzy K-
means clustering [30] applicable for the topic at hand.

In this context, our work lines up with related researches on
traditional Web search queries that find temporal correlation
between social media [2] or queries whose temporal variations are
similar to each other [13]. After efficient identification of temporal
patterns, one may then focus on optimizing media content manage-
ment, e.g., in order to maximize clickthrough rates [9], predict news
popularity [54] or find topic intensities streams [32]. Still, from all the
content that people create and share online within social media, only
a few topics manage to attract enough attention to rise to the top [7]
and become so-called temporal trends which are meaningful to their
end-users. In addition to this, there is also little research in the field
of identifying and mining such trends from Flickr, where in opposi-
tion to social micro-blogging platforms like Twitter, the temporal
aspect is not of first level importance to its users.

2.6. Exploiting combined methodologies

Lastly, there exist several works that aim to consider the
majority or even all the aforementioned aspects. These works
typically aim at tourist applications and focus mainly on (a) the
recommendation of places of interest, (b) the automatic discovery
of main attractions, which allows users to decide which to visit
and also (c) route recommendation algorithms that not only
recommend main attractions, but also try to organize the users'
schedule and help them visit as many as they wish, using as
criteria time efficiency and/or popularity and interestingness. To
begin with, Zheng et al. [62] propose a novel navigation system,
namely GPSView, which is an augmented GPS navigation system
that aims to incorporate a scenic factor into the routing. It plans a
route not by means of traveling distance and time, but by taking
into account certain tourist attractions that may not be visible
when passing from the shortest road. Nie et al. [46] proposed a
multimedia topic modeling approach which aims to extract venue
semantics from heterogeneous location-related user generated
contents, which are related by leveraging on multiple data sources.
They used a graph clustering method and proposed a semantic
based venue summarization approach. De Choudhury et al. [14]
constructed itineraries by following a novel two-step approach, as
they worked on each city individually and they begun by extract-
ing Flickr photo streams of individual users. They constructed a
POI graph, in order to aggregate all the streams of information and
to automatically construct itineraries based on the popularity of
the POIs and subject to the user's time and destination constraints.
Finally, Sun et al. [53] built a recommendation system that aims to
recommend to users the best travel routings and also suggest the
most popular landmarks. Their dataset was a set of Flickr geo-
tagged photos and they used spatial clustering and machine
learning methods so as to calculate the popularity of the roads
based on the number of users and the number of PoIs. It should be
obvious that our current work differentiates significantly from all
the above, since we are not focusing on either typical time series
clustering methodologies or identifying a unifying global model of
temporal variation, but rather explore techniques that allow us to

meaningfully quantify what kinds of temporal variations exist on
social network user generated content.

3. Processing photo metadata

The main goal of our work is to analyze large user-generated
photo collections in order to select the most appropriate meta-tags
to describe a geographical area of interest and thus characterize the
content itself in terms of its semantics, spatial and chronological
context. The very first step in this process would be to cluster
available photos, based on their respective geo-information. Thus, in
the next subsections we shall initially focus on the notion of a geo-
cluster and a (geo-)place and present the algorithms and techniques
we propose in order to perform efficient textual metadata analysis
for each geo-cluster. Continuing, we shall present the tag-ranking
algorithm we apply on each resulting cluster, as well as our novel
proposition to introduce a preliminary intelligent content interpre-
tation step in our approach by re-applying KVQ technique on the
latter, so as to obtain a refined set of places. Furthermore, we
attempt to understand how, given a set of places, tags and geo-tags
associated to them do vary over time. Finally, we first apply a post-
processing step to identify semantically meaningful user interests
among processed content and then correlate it to time series of
corresponding mentions or social interactions.

3.1. Selecting geo-clusters

As in many recent approaches, we choose not to work on the
full set of metadata at once, but instead follow a clustering scheme
according to their location, i.e., the latitude and the longitude
where their corresponding photo has been taken. This location is
generally being manually tagged by their owner. However, in some
few cases, geo-tagging is automatically added if an appropriate
camera/smartphone is used. We should emphasize that in the first
case, the accuracy depends on the user's knowledge/memory and
is subject to errors. However, in the latter case, the accuracy is
higher since it depends on the GPS metadata of the capturing
device. Such devices (mainly smart-phones) have become com-
mon only during the last few years.

In the following, we shall refer to the clustering procedure as
geo-clustering and to the resulting clusters as geo-clusters. These
geo-clusters are allowed to overlap, if necessary, and they do not
cover the entire area of interest, e.g., omitting parts where no
single photo has been geo-tagged at. Our main objective is to
group photos that may have been tagged with semantically similar
terms in the same cluster(s). We expect intuitively that photos
sharing specific tags should not have been captured at locations
very far apart. For example, photos tagged with term Acropolis
must have been taken within a radius of a few hundred meters. Of
course, photos tagged with more “general/vague” tags, like, e.g.,
Athens, are expected to spatially spread over a significantly larger
area, thus taken even a few kilometers apart. It is clear that we
should select an appropriate clustering algorithm, i.e., an algo-
rithm able to cluster together photos that share certain specific
tags. For reasons that will be clarified in the next subsections, in
order to perform geo-clustering on a given set of photos, we adopt
the kernel vector quantization (KVQ) approach of Tipping and
Schölkopf [55]. We begin by summarizing the properties of KVQ
and present examples of the resulting geo-clusters after its
application on a large Flickr photo dataset.

3.1.1. Kernel vector quantization
It is common knowledge that the selection of a cluster analysis

approach on a specific dataset is generally subject to the problem
at hand. There does not exist an algorithm that may be used in
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every application and few are the completely automatic algo-
rithms. Thus, in the majority of the cases, one should carefully
select both an appropriate algorithm and a distance measure.
Many well known algorithms, such as K-means [43], require a
user-defined number of clusters and create unequally sized clus-
ters. Accordingly, should we apply in our problem an algorithm
such as K-means, in few cases we would expect that geographi-
cally adjacent images could easily end up in different geo-clusters,
i.e., those that reside near the extracted cluster boundaries.

Based on this observation, and since we require that any two
given images, whose distance is below a given threshold (i.e., within
a “small enough” radius from a place of interest), to end up in the
same geo-cluster. As we shall see, this behavior is guaranteed by the
KVQ algorithm. If we consider KVQ as an encoding method, the
maximal distance between images belonging to the same cluster
may be regarded as the maximum level of distortion.

In other words, using KVQ we have a guaranteed upper bound
on distortion, which corresponds to the radius of the cluster.
Accordingly, the number of clusters is automatically adjusted in
order to satisfy this property, while also covering the whole dataset.

Vector quantization [21] is a common approach for data compres-
sion that uses an appropriate set of vectors in order to model
probability density functions. The problem of vector quantization
may be formulated as: “Given a set ofm data vectors x1; x2;…; xmAX,
represent them by a subset of X: y1; y2;…; ynAX, where each xi is
then represented by the nearest yi, in terms of a pre-defined metric d
and so as to minimize a distortion measure”. We say that X and d
form a metric space, namely (X,d). We say that yi form a “codebook”
and we may formulate the aforementioned error as

E¼
Xl

i ¼ 1

dðxi; yðxiÞÞ; ð1Þ

where d may be e.g. an L2 metric function and

yðxiÞ ¼ argmin
yi

dðxi�yjÞ: ð2Þ

KVQ chooses to solve the aforementioned minimization problem
using linear programming in the following way: Given a generic
metric space (X,d) and a finite dataset DDX, D¼ x1; x2;…; xm, the
objective is to select a subset Q ðDÞ ¼ y1; y2;…; ym that is as small as
possible, under the constraint that all points in D are not “too far”
from some point in Q. Let us denote this maximal distance as r. We
may then denote an area of X with radius r, centered at x as

BrðxÞ ¼ fyAX : dðx; yÞorg: ð3Þ
This set contains all the data points of X that are not “too far” away
from a point x, i.e. their distance is smaller than r. We may now
formulate an indicator function 1Br ðxÞ : X-0;1 of set Br(x) as

1Br ðxÞ ¼
0 if yABrðxÞ
1 if y=2BrðxÞ:

(
ð4Þ

Using 1Br ðxÞ, we are now able to define a kernel function k : X �
X-R as

kðx; yÞ ¼ 1Br ðxÞðyÞ: ð5Þ
This function indicates whether points x; yAX lie “too far”, e.g. more
than r40, when it is equal to 1 and not “too far” when it is equal to
0, in terms of the metric d. We shall refer to r as the scale parameter.

Given a point xwemay now define the empirical kernel map as
ϕðxÞ ¼ ðKðx1; xÞ;…;Kðxn; xÞÞT . Now we may observe that if there
exists a vector wARn, such that

w>ϕðxÞ40; 8xAD; ð6Þ
then all points xAD lie within distance r of some point yjAD, with
a corresponding weight wj40. The goal is to find a solution that
satisfies Eq. (6).

To calculate the optimal solution for w, we would end up to a
problem that requires combinatorial optimization. Instead, Tipping
and Schölkopf suggest the calculation of a sparse solution wn,
which results by solving a simpler, linear programming problem.
Since this problem may result to the determination of clusters that
contain the exact same set of vectors with a different center, a
pruning step is applied subsequently. We should note that still
even after this step, the set of cluster centers will still remain a
cover for D.

Given this sparse solution wn, we are now able to define the
resulting codebook Q(D) as

Q ðDÞ ¼ fxjAD : wn

j 40g: ð7Þ

For the interested reader, more details for the solution of the
resulting linear programming problem are given in [55,8].

Now, given a point xAD, we begin by defining a cluster C(x)
with its center at x as

CðxÞ ¼ fyAD : dðx; yÞorg; ð8Þ
or in other words as the set of all points yAD that lie within
distance r from x. It should be clear now that this distance is the
aforementioned upper bound on distortion, i.e., any two given
points in the same cluster are guaranteed to lie “not farther” than r
from the cluster center. By applying KVQ on D, we shall obtain the
codebook Q(D), which defines the resulting set of clusters of our
interest. As a final remark, Q(D) satisfies the following properties:

(a) Q ðDÞDD, that is, codebook vectors are points of the original
dataset. Alternatively, we shall refer to such points as cluster
centers.

(b) By construction, the maximal distortion is upper bounded by r,
that is, maxyACðxÞdðx; yÞor for all xAQ ðDÞ.

(c) The cluster collection CðDÞ ¼ fCðxÞ : xAQ ðDÞg is a cover for D,
that is, D¼⋃xAQ ðDÞCðxÞ. However, it is not a partition, as CðxÞ \
CðyÞa∅ in general for x; yAD.

The third property denotes that all points of D are contained
within the cluster collection, while clusters may overlap. The latter
observation is very useful for our approach, since it guarantees
that images taken within a nearby distance (i.e., lower than r) are
never separated. We should finally note that contrary to other
clustering techniques in the literature, the number of clusters is
automatically adjusted to the user-defined maximal distortion r, so
as to cover all images and is not user pre-defined. Such a user-
defined distance r is strongly desired in our approach, for reasons
that will clarify in the following subsections.

3.1.2. Photo geo-clustering
We now have the theoretical background to continue with our

problem, i.e. the application of KVQ on the clustering of a large set
of geo-data. Let P denote a set of photos. Then, each photo pAP
may be represented in terms of its geographic coordinates by
ðplat ;plonÞ, where plat and plon define its geographical capture
location, i.e., its latitude and longitude coordinates, respectively.

Let P denote the set of all “possible” photos. In order to cluster
P in geo-clusters, we apply KVQ in metric space ðP; dgÞ, where
metric dg denotes the great circle distance.4 We also set rg as the
scale parameter, which we remind that it is the only user-defined
parameter of our methodology. In accordance to Eq. (8), given a
photo pAP, a geo-cluster, i.e. a cluster of photos may now be
defined as

CgðpÞ ¼ fqAP : dgðp; qÞorgg: ð9Þ

4 http://en.wikipedia.org/wiki/Great-circle_distance
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This is, the set of all photos qAP that lie within a circle of radius rg,
centered at p. The resulting codebook Qg(P) is the set of the photos
that correspond to the centers of the geo-clusters. Given Qg(P), we
may define the geo-cluster collection as

CgðPÞ ¼ fCgðpÞ : pAQgðPÞg: ð10Þ

In order to illustrate the above, in Fig. 1 we present a map of
Athens depicting all geo-clusters at different zoom levels, for
rg ¼ 700 m. We should note the density of photos in the city
center (Fig. 1) and particularly in the area of the Acropolis (Fig. 1).
Photos taken even 1 km apart, e.g., on different sides of a land-
mark, may be included in the same cluster. The important and
novel point of our approach is the fact that the total number and
position of produced clusters is automatically inferred solely from
the data. In addition, in Fig. 2 we illustrate in detail a randomly
picked geo-cluster from the Athens area (depicting also the notion
of places – to be explained in forthcoming Section 3.3).

3.2. Tag ranking

In this subsection we shall describe the steps towards our
second goal, i.e., ranking of tags within extracted geo-clusters. To
achieve this, we shall use a probabilistic model on the set of terms
that users use to tag their photos (similarly to Serdyukov et al. [50])
and work for each geo-cluster separately, whereas we shall also
exploit some global statistical properties of tags in the process. Still,
our work clearly differentiates from [50] since we aim to find the
most important tags of a geo-cluster, targeting to landmarks, places
of interest or even events, while they try to discover the actual
location of a photo based on its tags. In the following we initiate the
presentation of our approach by modeling the relations among geo-
clusters and tags and we continue by modeling the relations among
clusters and users, as well as among tags and their nearest neighbors.
We conclude by combining our measures into a single one, which
we shall use for the selection of the top-ranked tags, a.k.a. the most
“important” ones, within each geo-cluster.

3.2.1. Modeling clusters and tags
Like previously, let P ¼ fpig represent the set of collected

photos. The nature of the problem at hand demands that set P
should be tagged, geo-tagged and collected from a large region of
interest. In our case, where we have chosen online content
gathered within Flickr social network, we are able to collect all
geo-tagged photos from large urban areas surrounding large
European cities, such as Athens, Greece and London, United King-
dom. Following the process already described in Section 3.1.2, we
first apply KVQ within such each region, so as to extract a set of
geo-clusters denoted as C¼ fCjg. We then denote by

Pj ¼ fpiAP : piACjg ð11Þ

the set of all photos taken within geo-cluster Cj. Let T be the set of
all tags that accompany all collected photos in our region of
interest. For a given set of photos Pk, we will denote the set of
all tags these photos have been tagged with, by

T ðPkÞ ¼ ftAT : tAPkg: ð12Þ

Then, T ðPjÞ is the set of all tags of cluster Cj.
We may now define the probability to obtain a specific geo-

cluster Ci, given a tag tj, as (cardinality of a set is denoted by j �j ):

PðCi∣tjÞ ¼
Pðtj∣CiÞPðCiÞ

PðtjÞ
; ð13Þ

where we calculate the probability of a tag tj given a specific geo-

cluster Ci as

Pðtj∣CiÞ ¼
jpjAPj : tjAT ðpjÞj

jpj j
; ð14Þ

or in other words as the ratio of the number of all photos of Ci
being tagged with tj to the number of all photos of Ci. Next we
define the probability of geo-cluster Ci as

PðCiÞ ¼
jPj j
jP j ; ð15Þ

i.e., as the ratio of the number of photos of Ci to all photos, and the
probability of a tag tj as

PðtjÞ ¼
jpjAP : tjAT ðpjÞj

jP j ; ð16Þ

i.e., as the ratio of the number of photos being tagged with tj to all
photos.

The probability PðCi∣tjÞ defined in (13) may be viewed as a
means of defining the “importance” of tag tj for geo-cluster Ci. In
other words, tags spread in many geo-clusters will be ranked lower
than those unique to Ci. To provide an example from the Athens
urban area paradigm, photos tagged with “Patission” (a name of a
downtown city street which spans across more than one geo-
clusters) should be ranked lower to those tagged with “Polytexneio”
(a script in “greeklish” denoting the National Technical University of
Athens, a place of interest located in Patission str.).

3.2.2. Modeling clusters and users
In order to extend the basic approach presented so far, we now

take into account the popularity of a tag. It should be obvious that
tags selected by a large number of users within a specific geo-
cluster, i.e., the most “popular” ones, should be ranked above those
selected by a small number of users. To make this clear, we should
consider a typical case in social media geo-tagging: a single
photographer uploads a large number of photos depicting a non-
landmark scene (e.g., a friend of his or an animal/pet) and uses the
same tag(s) for all. Sometimes the number of such photos may be
large enough, biasing those photos to a higher ranking. Since it
would not be research-wise to ignore this case in our approach, we
extend our baseline method in a way that such photos, i.e., of not
significant importance, get a lower ranking. In order to formalize
this effect we choose a similar approach to the one of Venetis and
al. [56]. Let us first define:

� U as the set of all users,
� Ui as the set of all users whose photos are contained in geo-

cluster Ci, and� Ui
j as the set of all users who have tagged their photos in geo-

cluster Ci with tag tj.

Then, we define the popularity (Pop) of a tag tj in geo-cluster Ci as

Popij ¼
jUi

j j
jUi j

; ð17Þ

where Ui denotes users whose photos are contained within geo-
cluster Ci.

3.2.3. Modeling tags and their nearest spatial neighbors
One way to select meaningful tags for untagged photos would

be to first localize them based on their low-level visual features
and then select the most appropriate tags from their most distant
and visually similar neighbors [28]. Another one, proposed herein,
would be not to exploit any kind of low-level visual information in
the process, but exploit the fact that all photos are geo-tagged,
thus allowing us to identify the spatial neighbors of each photo.
The latter is considered to be a novel, semantically enhanced
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approach and its first step would be to define a meaningful spatial
neighborhood for each photo; let us first define this neighborhood
NDmax

i of a photo Pi as

NDmax
i ¼ fpjAPi : dgðpi; pjÞoDmaxg; ð18Þ

where Dmax denotes the maximum distance of a given photo to pi
in order to be considered as its neighbor.

Now we are able to define the influence of the neighbors as

NBi ¼
jpANDmax

i : tjAT ðPnÞj
jT ðPnÞj

: ð19Þ

3.2.4. Combining measures
The last step towards the efficient selection of the most “impor-

tant” tags within each geo-cluster would be the combination of all
three aforementioned modeling relations. Thus, we shall combine
the three discussed measures (Eqs. (14), (17) and (19)) and produce a
single measure of importance Ri

j for a given tag tj in geo-cluster Ci as

Ri
j ¼ PðCi j tjÞ � Popij � NBi: ð20Þ

Within our current work all co-efficients of the above combination
step are limited to an equally weighted scheme or in other words

Fig. 1. A map of Athens depicting all geo-clusters. By (black) dots, (red) markers and (red) circles we mark photos, geo-cluster centers and geo-cluster boundaries,
respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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all discussed measures equally affect the construction of import-
ance Ri

j.

3.3. From geo-clusters to places

Continuing and in order to advance our approach from the
plain geo-cluster level to the semantically enhanced level of
“places”, we re-apply initial KVQ clustering step on each geo-
cluster. In this case, we select an appropriate percentage of radius
rg of a geo-cluster, namely pr, as the distortion of clustering. This
way, each geo-cluster is further clustered into a second level,
which we denote as its corresponding set of places (see Fig. 2).

We may now assume that a given place Lj contains a set of
photos P ¼ fpig. Let Tp be the set of all tags in this place. For a given
set of photos Pk, we will denote the set of all tags these photos
have been tagged with, by

T ðPkÞ ¼ ftATp : tAPkg: ð21Þ

Then, T ðPjÞ is the set of all tags of place Lj. For each place and using
the dates its photos have been taken, we are then able to create a
cumulative distribution of its “popularity” through time, for a
given date d, as

FpðdÞ ¼ j fpiAP : dirdgj ; ð22Þ

where again by j �j we denote set cardinality.

3.4. Exploiting data interrelations

At this point we should note that so far our analysis relies on
the properties of the content of each place in a separate manner,
without taking into consideration its neighbors. Continuing, we
shall work on these specific sets of tags and try to understand how
tags and geo-tags vary over time, for different types of places. First,
we group similar tags, using the well-known and widely adopted
Levenshtein distance [37], denoted by dL in the following. In
principle, the Levenshtein distance between two tags is defined
as the minimum number of edits needed to transform one tag into
the other, with the allowable edit operations being insertion,
deletion, or substitution of a single character. We compute this
distance for any two given tags ti, tj, that are considered similar;
the latter are merged together, if and only if

dLðti; tjÞoTlev ð23Þ
where Tlev is an appropriately chosen threshold. We treat each
such tag group:

T d ¼ fti; tkAT ðPjÞ : dLðti; tkÞrTlevg ð24Þ
as a single tag, which will be denoted as the “representative” one.
As an additional verification step, we also calculate the cosine
similarity of the two given tags ti, tj, in order to make the
above algorithmic methodology more robust and since cosine
similarity measure is often paired with other approaches, to also
limit the dimensionality of the problem at hand. Cosine similarity

Fig. 2. A geo-cluster and all places extracted within it, using KVQ. Red markers mark photos. The radius of a geo-cluster utilized is rg ¼ 700 m, while the one of a place is
rp ¼ 100 m. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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is a common, vector-based similarity measure, whereby the
input string is transformed into vector space so that the Euclidean
cosine rule can be used to determine the actual similarity.
Scoring obtained from the latter procedure is again compared
against by an appropriately chosen threshold of 80%. More
specifically, the cosine similarity CSðti; tjÞ between tags ti, tj is
calculated by

CSðti; tjÞ ¼
ti � tj

Jti J � Jtj J
: ð25Þ

We depict an example of the output of the aforementioned
process in Table 8. In this table we present groups of the 6 most
frequent tags for a place near Acropolis, whereas we have also
estimated the most “representative” tag for each group.

The (combined) “representative” tag resulting from the above
methodology is considered to be the most frequent tag of the
group and “inherits” the dates of all tags belonging to its group.
We then calculate the cumulative distribution of each “represen-
tative” tag, for a given date d as

FgðdÞ ¼ j ftiAT g : dirdgj : ð26Þ

The above algorithmic analysis is depicted in the following
pseudo-code:

Algorithm 1. Calculation of ‘‘representative’’ tag.

1: FOR any two given tags from dataset /n Specify

tags to consider n/

2: CALCULATE their Levenshtein distance d

3: SELECT appropriate threshold T

4: IF d oT

5: GROUP any two tags into new representative tag r,

if d oT

6: END IF

7: FOR the two given tags from dataset

8: CALCULATE cosine similarity CS

9: MAINTAIN r if and only if CS score o80% /n Verify

rept. tag r n/

10: END FOR

11: FOR EACH representative tag r

12: FOR a given date

13: CALCULATE cumulative distribution F

14: RETURN F

15: END FOR

3.5. Defining trends

Up to the previous subsection, we have analyzed available user
selected tags that characterize each place's photos. By post-
processing them, we are allowed to select the most appropriate
tags that characterize landmarks and other places of interest that
are contained within, as well as events occurring within these
places of interest. In order to identify the semantically meaningful
“places” of user interest, one should be able to specifically describe
the latter. Thus, in the following subsections we shall specifically
define (a) landmarks, (b) events and (c) places of no-interest that
facilitate the notion of trends within our work.

3.5.1. Landmarks
It is well acknowledged in the literature that the most sig-

nificant places of interest of a given city are denoted by the term
landmarks and may include buildings, statues, squares, archae-
ological sites and so on. In other words, landmarks do denote the
most popular places of a city for its visitors. Since “popularity” is
definitely a vague term, which in turn may not be able to be

measured precisely, in this work, we tend to define and estimate it
in a threefold sense explained in the following:

First One should expect that a large amount of photos is taken
in the close spatial area surrounding a potential
landmark.

Second These photos are generally taken by a large number of
people (Flickr users, in our case), since landmarks are
places of general interest.

Third Since a popular landmark is generally of interest all year,
we expect that photos taken thereby should be distrib-
uted uniformly through time, or, in general, under a
“predictable” distribution.

The latter statement means that, e.g., one should expect an
increasing number of photos taken between June and August in
Athens (i.e., exactly when tourist season reaches its peak) and a
decreasing one between August and April, and so on.

3.5.2. Events
Merriam-Webster dictionary5 defines events as “competitive

encounters between individuals or groups carried on for amuse-
ment, exercise, or in pursuit of a prize”. By the term events, in this
work, we comply to this definition by considering events like
concerts, festivals, musicals, theatrical performances and so on.
We also consider athletic events such as a marathon race, a football
game or even Olympic Games as a whole. Considering its nature,
duration of an event typically varies, still, no periodic behavior is to
be anticipated. More specifically, some such as a football game or a
concert may last a few hours, while a festival and some athletic
events may span across many days. Since events often attract
interest, one should expect an increased number of photos during
an event's lifetime, concentrated either to a small spatial area, e.g., a
football stadium, or to a significantly larger one, e.g., the Marathon
route, which extends itself over more than 40 km.

3.5.3. Places of “no-interest”
Since Flickr defines itself as an online media hosting website, it

is addressed to all kinds of users and particularly to artists, or
tourists. Consequently, one should expect to find many photos of
non-landmarks, or non-events in the considered dataset. Typical
examples of photos that may be denoted as of “no-interest” for our
work may depict a house, a family meeting, an object, an animal/
pet, et al.. We make the assumption that these photos have been
taken at non-popular places (i.e., at least when considering the
notion of popularity from the general public point of view!); such
places generally contain less than 10 photos, typically taken by a
single user and tagged with the same tags. At this point we should
note that this kind of content/photos may also appear in so-called
popular places, but due to their limited number, they may be
acceptably considered as “noise” and have a limited effect on the
overall analysis process.

3.6. Analyzing time

Finally, within this last subsection, we try to identify a time
series of mentions or interactions (i.e., through tagging actions)
with a particular piece of Flickr photo content for the aforemen-
tioned “places”. In the current approach this includes a time series
of tags of a popular photo, but it could also be further extended to
incorporate additional features, like the number of views of a
popular photo on Flickr, the number of times a photo was viewed,
or the number of times that a popular tag was used to describe a
Flickr photo. Of course, the latter demands that all of the above lie

5 http://www.merriam-webster.com/

E. Spyrou, P. Mylonas / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Please cite this article as: E. Spyrou, P. Mylonas, Analyzing Flickr metadata to extract location-based information and semantically
organize its photo content, Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2014.12.104i

http://www.merriam-webster.com/
http://dx.doi.org/10.1016/j.neucom.2014.12.104
http://dx.doi.org/10.1016/j.neucom.2014.12.104
http://dx.doi.org/10.1016/j.neucom.2014.12.104


either within a local (i.e., the specific geo-cluster considered) or
overall geo-location of interest (i.e., the overall urban area geo-
window considered). The next thing would be to identify patterns
within the temporal variation of those time series that are shared
by many pieces of such photo content.

More specifically, let us select P content items (photos) and for
each photo pAP let us have a set of outlines in the form ðuj; zjÞp,
which means that user uj mentioned photo p at time zj. From these P
outlines, we then construct a discrete time series sp(z) by counting
the number of tags of photo p at time interval z. Simply, we create a
time series of the number of tags of photo p at time z, where z is
measured in a meaningful time unit, i.e., hours. Intuitively, sp depicts
efficiently the popularity or attention given to photo p over time. In
other words, time series sp simply represents how the popularity or
attention to photo p changed over time and is the one that really
interests us. At a later stage, it would then be possible to consider the
most popular time series sp and cluster together photos based on this
temporal parameter. The center of each such cluster would be the
representative common temporal pattern for the overall group of
popular photos, thus reducing the overall information overload.

4. Experimental results

The so far herein described methodology has been applied to a
small, yet indicative part of the VIRaL framework,6 which as of
December 2012 includes a total of 2,221,176 digital images col-
lected from 39 cities around the world. In order to collect the
entire dataset we have utilized the quite popular Flickr API to
design and develop a custom Flickr content batch downloader
tool, available to download at http://www.image.ntua.gr/
�espyrou/flickrDloadr. The partial VIRaL dataset utilized herein
consisted of a total of 160,684 geo-tagged photos collected from
two large urban areas surrounding the historical centers of the
cities of Athens (18,356 photos) and London (142,328 photos),
between years 2004–2009 (both subsets are available online at
http://viral.image.ntua.gr/?city&name=Athens and http://viral.
image.ntua.gr/?city&name=London).

For each dataset photo we have also downloaded all its
available textual and location metadata. An indicative set of typical
photos collected from Athens, accompanied with the full set of
their textual metadata is illustrated in Table 10. As one may
observe, the utilized set consists not only from typical “landmark”
photos, i.e., those of tourist interest, but also from “non-landmark”
photos, either of personal interest (e.g., deriving from family
occasions) or of public interest (e.g., deriving from sport or music
events). The locations of these photos span across the geographic
areas depicted in Figs. 3 and 4, for Athens and London, respec-
tively. In the following we present our experimental results in a
twofold approach, with respect to the extraction of geo-clusters
and their meaningful interpretation towards trends’ identification.

4.1. Baseline clustering approach

As a first step, we applied KVQ on the geo-data of the Athens
and London datasets. The clustering process applied with radius rg
¼ 700 m produced 193 geo-clusters for Athens (see Fig. 1) and 356
geo-clusters for London. The choice of this value for the scale
parameter rg originates from our previous work [8,28]; results
were satisfactory both for the geo-clustering problem and also for
a visual clustering problem, where we clustered images based on
their visual features.

Then, we worked on each geo-cluster separately and collected
all tags available from the user-defined metadata. In order to
remove “noisy” words, such as the camera model used to take
a photo (i.e., tags automatically added in EXIF metadata by
certain camera models), we used a manually created stop list
for each city. On this set of tags we first calculated all tag
frequencies. We then applied the proposed probabilistic model
of Section 3.2 first considering only the analysis of Section 3.2.1
and then the effects of both users and nearest neighbors (Sections
3.2.2 and 3.2.3). In the following, we shall refer to this series of
experiments as “all tags”, “baseline” and “baselineþusersþNN”,
respectively.

After calculating all combined measures presented in Section
3.2.4, we obtained a ranked set of tags for each geo-cluster. The
next step was the selection of an appropriate set of tags that
describes in the best possible way each geo-cluster. We used a
manually defined threshold Tm¼10 in order to decide which tags
to keep.

Algorithm 2. KVQ application.

1: Apply KVQ algorithm to cluster dataset

2: FOR each cluster /n Specify radius to be taken

into considerationn/

3: SET radius r_G returning set of geo-clusters

4: FOR each geo-cluster in geo-clusters

/n Re-apply KVQ for each geo-clustern/

5: SET radius p_r returning set of places

6: Apply KVQ algorithm

7: RETURN set of places

8: END FOR

9: END FOR

4.2. The use case scenario – placing user-generated metadata on a
map

In order to evaluate how representative the above datasets are
for the content of their corresponding geo-clusters, we present the
following simple use case scenario: a user of our VIRaL system
visits Athens and/or London as a tourist. This user wishes to
discover popular places of interest within a small city region, so as
to better plan his available time. Thus, he uses his mobile phone to
connect to our system7 and zooms its map at the appropriate
zoom level while centering it at an appropriate position. This could
be for example his hotel or his current position. Our system then
presents a set of tags. The user may then click on each of them,
and is presented with the corresponding set of photos, along with
their position on the map. He could then decide which places he
wishes to visit. In Fig. 5 we illustrate a map that depicts the most
representative tags for an area near Acropolis, Athens, Greece and
in Fig. 6 an area near Big Ben, London, United Kingdom. The font
size of each tag is proportional to the measure of importance we
calculated as described in Section 3.2.4.

We are now able to evaluate the aforementioned scenario.
Since our current goal is to assist users to discover popular places
based on the set of tags that our system extracts for each geo-
cluster, we choose to evaluate focusing on user satisfaction for
the set of tags they have been presented with. We should
emphasize that in general, evaluation of tasks aiming at users’
satisfaction is known to be a difficult and expensive task,
which may involve empirical issues in the process [39]. Having
said that, for the sake of evaluating our system, we have conducted
a user-centered evaluation by involving 58 real-life users from

6 http://viral.image.ntua.gr 7 http://viral.image.ntua.gr/?mobile
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four (4) academic institutions.8 These users were to a great extend
familiar to Athens city center (all 58 of them were current or

previous local residents) and up to an extend familiar to London
city center (45 of them have visited London at least once in their
lifetime).

Our first experiment was to present each student photos deriving
from 52 Athens geo-clusters, i.e., those nearest to the historical
Athens city center, as well as 153 London ones. We then presented
them three (3) sets of tags per each:

Fig. 3. A map depicting the geographical area surrounding Athens. All geo-tagged photos have been extracted by querying Flickr API with the boundaries of this area.

Fig. 4. A map depicting the geographical area surrounding London. All geo-tagged photos have been extracted by querying Flickr API with the boundaries of this area.

8 More specifically, (a) Technological Educational Institute of Central Greece,
Lamia, Greece, 23 students, (b) University of Central Greece, Lamia, Greece, 16
students, (c) Ionian University, Corfu, Greece, 7 students, (d) National Technical
University of Athens, Athens, Greece, 12 students.
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(i) the first consisting from unfiltered tags ranked by their
frequency,

(ii) the second by our probabilistic model of Section 3.2.1 and
(iii) the latter by incorporating filtering and re-ranking achieved

by modeling of users and nearest neighbors, as described in
Sections 3.2.2 and 3.2.3.

We asked the students to select those that describe appropriately
the given geo-cluster. As summarized in Table 1, it turned out that
in all cases and for both cities students were more satisfied from
our system's produced tags.

Our second experiment was to ask them to create a list of 10
tags that best describe each geo-cluster, according to their intui-
tion/experience. We then estimated precision, p and recall r
measures for the sets of tags that our system provides, for both
cases (Sections 3.2.1 and 3.2.2 and 3.2.3, respectively). Results
provided in Table 2 depict a small, but still measurable improve-
ment in terms of precision over the utilization of the enhanced
approach proposed herein (and as expected, recall is slightly worse
than the baseline one). It should be noted that the rate at which p
increases is much better than the r decreases, resulting in an
overall optimized behavior. Thus, we choose to calculate and
demonstrate the results of appropriate F-measures since these

metrics are able to weight in the importance of precision versus
recall.

We first estimated the F-measure (also known as F1 score):

F1 ¼ 2 � p � r
pþr

; ð27Þ

which considers both precision and recall in a moderate manner
and can be interpreted as their harmonic mean. We should note
that the general formula for the F-measures is given by

Fβ ¼ ð1þβ2Þ � p � r
β2 � pþr

; ð28Þ

for any given real positive β. Consequently, we may also estimate
the F0:5 measure, as

F0:5 ¼ 1:25 � p � r
0:25 � pþr

: ð29Þ

Results are provided in Table 3 and indicate a slight improvement
in terms of both F1 and F0:5, as it has been expected, given the
results of p, r. We should note that F0:5 favors p over r, as it has
been previously discussed, and as a result it is the one that
represents more accurately the presented approach.

Fig. 5. A map of an area near Acropolis, Athens, Greece. For this zoom-level system suggested tags are “Acropolis”, “Parthenon”, “Caryatid”, “ancient”, “theatre”.The font-size of
tags is proportional to their importance.

Fig. 6. A map of an area near Big Ben, London, UK. For this zoom-level system suggested tags are “Big Ben”, “Westminster”, “tube”, “bridge”. The font-size of tags is
proportional to their importance.
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A third comparable experiment was then conducted by taking
into account the baseline algorithmic approaches discussed within
the similar research work of Venetis et al. [56] for the particular
Athens Flickr dataset we utilized. More specifically, a sub-group of
32 students was asked in the process to create a list of 5 tags that
best describe each geo-cluster, according to their intuition/experi-
ence. We then followed a 3-fold evaluation approach:

(a) we adopted two custom metrics introduced in the aforemen-
tioned paper and calculated the actual “Overlap” and “Popu-
larity” values for all 6 algorithms, namely: both Tf-idf based
algorithms (TF, WTF), Popularity algorithm (POP), Maximum
coverage algorithm (COV), our Baseline algorithm (Baseline)
and our enhanced by users and nearest neighbors approach
algorithm (BuNN); all algorithms were implemented and
applied on our Flickr dataset,

(b) we calculated Average Precision–Recall values for the user-
generated lists of 5 tags and all geo-clusters, and

(c) we estimated F0:5 measure values for the user generated lists
of 5 tags and all geo-clusters.

Results regarding “Overlap” and “Popularity” values are depicted in
Table 4 and depict that selected tags tend to be more distinctive and
more popular in the BuNN case. In addition Table 5 summarizes
Average Precision–Recall values for the user generated lists of 5 tags
and all geo-clusters for the particular Athens dataset and all 6 algo-
rithms compared, whereas Table 6 depicts the corresponding F0:5
measure value with respect to all of them. Results provided in Table 5

depict a clear and significant optimization in terms of precision values
over the utilization of the enhanced approach proposed herein
compared to the rest of the utilized algorithms. These optimizations
range from 2.97% in our Baseline case up to 12.11% in the COV case.
Finally, results of Table 6 present F0:5 measure improvements up to a
10.23% (COV case), thus demonstrating the numerical contribution of
our proposed approach on the algorithmic front.

Furthermore, in order to enhance the herein user-tag evaluation
scenario, we presented our students with sets of Athens and
London landmark tags. For each set, they were asked to rank the
corresponding landmark tags by composing a list according to their
preferences, with the most preferred tag placed in the first position
and the less appreciated in the last one. While we received their
feedback, we calculated two lists of tags, namely:

� a list where landmarks were ordered only according to their
appearance frequency on Flickr web-site, and

� a list based on custom user profiles defined a priori for each
user/student during a pre-processing phase of the evaluation.

Then, we evaluated how much the feedback proposed by students
was similar to the two aforementioned lists in order to find out
whether the introduction of user profiles in ranking landmark tags
delivers real benefits. To this aim we computed the distance dðu; yÞ
between the list provided by each student and the one returned by
Flickr, and then the distance dðu; sÞ between the list provided by
each student and the one ranked by the system based on the user
model. To compute the distance between two ordered lists of
preferences we utilized the Kendall τ coefficient. If L is the number
of preferences that agree and M is the number that disagree,
Kendall's τ is defined as [17]

τ¼ L�M
LþM

ð30Þ

It should be noted at this point that typically this coefficient varies
between 1 (when all preferences agree) and �1 (when they all
disagree) and therefore it is ideal for measuring which list is closer to
that one expected by the students. In Table 7 we summarize
quantifiable results between all lists provided by students for both
cities and from the proposed approach. It turns out that our students
tend to agree in general with our system's produced tags, as the
rather large value of τ in the last column of Table 7 clearly indicates.

4.3. Athens trends

The next step of our proposed approach was to identify the
so-called trends. Towards this goal we utilized only the smaller
Athens dataset (18,356 images), since we were more familiar and
thus more confident with corresponding Greek events happened

Table 1
User evaluation results; percentages indicate users' choice.

All tags Baseline BaselineþusersþNN (BuNN)

Athens 5.2% 15.5% 79.3%
London 4.9% 17.3% 78.6%

Table 2
User evaluation results; Average Precision–Recall values for user generated lists of
10 tags and all geo-clusters.

Baseline BuNN Difference

Athens Precision 72.41% 75.14% þ2.73%
Recall 78.22% 76.33% �1.89%

London Precision 70.63% 72.93% þ2.30%
Recall 80.33% 79.34% �0.99%

Table 3
User evaluation results; F-measures values for user generated lists of 10 tags and all
geo-clusters.

Baseline BuNN Difference

Athens F0:5 measure 73.50% 75.38% þ1.87%
F1 measure 75.20% 75.73% þ0.53%

London F0:5 measure 72.38% 74.13% þ1.75%
F1 measure 75.17% 76.00% þ0.83%

Table 4
User evaluation results; comparative comparison against custom “Overlap” and
“Popularity” metrics ([56]) on the Athens Flickr dataset.

TF WTF POP COV Baseline BuNN

Overlap 0.25 0.24 0.29 0.22 0.23 0.20
Popularity 0.76 0.68 – 0.71 0.78 0.82

Table 5
User evaluation results; Average Precision–Recall values for user generated lists of
5 tags and all geo-clusters of the Athens Flickr dataset.

TF WTF POP COV Baseline BuNN

Precision 68.23% 69.79% 65.17% 63.25% 72.39% 75.36%
Recall 75.27% 74.64% 74.33% 75.10% 78.30% 76.25%

Table 6
User evaluation results; F0:5 measure values for user generated lists of 5 tags and all
geo-clusters of the Athens Flickr dataset.

TF WTF POP COV Baseline BuNN

F0:5 measure 69.53% 70.71% 66.82% 65.31% 73.50% 75.54%
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during the years under consideration (2004–2009). In order to
further elaborate on this task, let us present some qualitative
characteristics of this dataset. Fig. 7 depicts five distinctive groups
of the most popular (i.e., the top-23) tags used by Flickr users to
semantically characterize their uploaded content, namely three
groups ((a), (b) and (c)) semantically close to landmarks and two
tag groups ((d) and (e)) close to events. Each group contains
following tags:

Table 7
User evaluation results; average τ-values for all pairs of lists, based on Kendall's
evaluation metric.

All tags Baseline BuNN

Athens 0.467 0.619 0.714
London 0.421 0.664 0.728

Fig. 7. Top-23 tags derived from the entire Athens urban area distributed to five groups – groups (a), (b) and (c) refer to landmark-related tags, whereas groups (d) and
(e) refer to event-related tags.
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� group A: (acropolis, parthenon, plaka, syntagma, kallimarmaro)
� group B: (museum, agora, temple, stadium)
� group C: (ancient, architecture, art, ruins, openstreetmap)
� group D: (waterpolo, water, watersports, aquatics)
� group E: (honeymoon, wedding, church, groom, bride)

Interpretation of the above statistical information provided us with
interesting results, at least from the researcher's point of view. More

specifically, in Fig. 7 we observe that tag acropolis is by far the most
popular tag amongst the utilized famous Athens landmarks tag
group, whereas the second tag parthenon is associated to less than
half photos in total. Fig. 7 depicts another landmark-related tag
group, namely tags associated to fundamental topological monu-
ments of Athens city center. Again its most popular tag is associated
to twice as much photos as the rest of the group. Fig. 7 contains
popular generic tags that could have been identified in any con-
sidered dataset (i.e., in comparison to Athens-related tags/landmarks
of previous groups). As expected, their distribution is rather smooth
and no significant outliers are to be identified. In Fig. 7 a list of
populated water sports related tags is depicted that characterize the
Athens seafront area. To our interest, a specific water-polo event is
related to triple as much photos as the rest of them, thus being a
clear event outlier. Finally, Fig. 7 depicts popular tags associated to
generic types of events in general, and a wedding occasion, in
particular. In this case no significant variations are depicted with

Table 8
Six (6) groups of most frequent tags, for a place near the Acropolis. Representative
tags for each group are depicted in bold, whereas Levenshtein metric has been used
to implement similarity calculations (see Section 3.4).

Athens Acropolis Greece street Parthenon monastiraki

Atenas Acropole Greek street art parthenon
Atene Acropoli Grece street art
Ateny Akropoli Grecia openstreetmap
Athen Akropolis Grecja
Athene acropole grecia
Atheny acropoli Greeca
Athina acropolis grece
athen akropoli
athena akropolis
athenes
athens
Aten

Fig. 8. The cumulative distributions of the most frequent representative tags for a
place in the area of Acropolis from 2004 to 2009.

Fig. 9. The cumulative temporal distributions of tags “Athens” and “Athens 2004”
for a place in the Olympic Aquatic Center of Athens from 2004 to 2009.

Fig. 10. The cumulative temporal distributions of tags “Athens” (blue solid line)
and “Athens 2004” (red step-wise line) tags for the entire Athens photos collection
between 2004 and 2009. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 11. The cumulative temporal distributions of tags “concert” (red single step-
wise line) and “theatre” (multiple step-wise line) tags for the entire Athens photos
collection between 2004 and 2009. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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respect to the amount of photos containing this kind of tags. Trying
to reason on all the above observations, one might identify the so-
called “human factor”, i.e., the fact that human content characteriza-
tion might be quite peculiar, meaningful and in principle unpredict-
able at the same time. The latter justifies the need for research
works like ours, so as to be able to identify user-based semantically

meaningful information and understand its importance within the
social networks environment.

Now, as mentioned in Section 4.2 and depicted in the respec-
tive pseudo-code, the first step of our methodology included the
application of KVQ algorithm on to the set of available Athens tags,
which resulted to 193 geo-clusters, as we used a radius of
rg¼700 m. In order to create a set of places we then re-applied
KVQ, this time on each geo-cluster. This time we used a radius of
pr¼100 m. The result of this process was the division of each geo-
cluster to a number of places. From each one of the 2123 resulting
places, we collected all ranked tags.

4.3.1. Landmarks in Athens
Further focusing on the three distinct trend types introduced in

Section 3.5, there may be no doubt that in Athens, Acropolis is by
all means the most popular landmark. Thus, in order to illustrate
some indicative results of our method when tackling trends within

Fig. 12. A geo-cluster of no particular interest with 13 photos, all taken within the same location Pasxa denotes Easter in Greek language.

Table 9
Representative tags, for a place of no particular interest.

Cluster ID # of photos Tags

15 13 Kitties, barbecue, easter, home, pasxa

Fig. 13. Number of photos per quarter for the Athens urban area. The blue line
depicts the cumulative sum of photos over the entire period. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 14. Number of photos tagged for 7 selected landmark and events tags per
quarter for the Athens urban area.
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landmarks, it is a wise choice to select a geo-cluster in the area of
Acropolis. This geo-cluster contains 11,298 photos, divided in 19
places. We should emphasize that in this geo-cluster we encounter
almost 65% of all geo-tagged photos within Athens. These photos
contain a very large number of tags (i.e., more than 100,000).

The analysis of this geo-cluster using the proposed approach
results to a set of 2232 representative tags. For illustrative purposes,
in Table 8 we present the most popular tags, grouped as described
in Section 3.4. One may clearly understand that the more tag
variations available (i.e., the larger the associated tag list column
is), the more difficult it is to identify the centroid “representative”
tag for each cluster. Temporal distributions of certain tags, such as
Athens, Greece, Acropolis, Parthenon and so on, are in a sense
“predictable”. These distributions are depicted in Fig. 8. We should
note herein that each user has taken 25 (geo-tagged) photos on
average.

4.3.2. Events in Athens
Typically an event refers to a specific happening that occurs

once at a specific time and place. Hence, given the set of Athens
photos, an event satisfied following rules:

� the visual content of its photos should be semantically con-
sistent; since we deal with tags, the latter should be semanti-
cally similar

� the group of its corresponding photos should have been taken
within a specific time period

� the group of its corresponding photos should have been taken
around the same geo-location

Once again and for illustrative purposes we selected a geo-cluster in
the Olympic Center of Athens. Following the proposed approach, this
geo-cluster was divided in 17 places. We selected tag “Athens 2004”
and a group of tags represented by tag “Athens”. Their temporal
distributions are depicted in Figs. 9 and 10. More specifically, in the
first picture, one may observe that tag “Athens” is evenly distributed
through time, i.e., such as in Section 4.3.1, while tag “Athens 2004”
forms a so-called “spike” in time. The second picture depicts the
cumulative sum of photos containing both tags for the entire Athens
photos collection; tag “Athens” is steadily increasing, whereas tag
“Athens 2004” remains constant. Of course, such results have been
expected by the assumptions we have already analyzed, given that the
2004 Summer Olympic Games lasted only for a 2 weeks time-span.

Last, but not least, in Fig. 11 we provide information for two
additional events identified in the dataset, namely a single day
concert event taken place in early 2008 and several theatrical
events spread out between 2004 and 2009. We observe that due to
the repetitive nature of the theatrical events, (blue) theater line
depicts a step-wise performance, i.e., there are several theatrical
events scattered around the utilized dataset, whereas the (red)
line corresponding to the one-time concert event spikes and
remains unchanged over time.

4.3.3. Places of “no-interest” in Athens
In Fig. 1, one could easily notice that in the large urban area

surrounding the center of Athens, there exist many geo-clusters
which contain only few photos, typically geo-tagged within small
distance, i.e., smaller to the radius of a place. Such geo-clusters
contain a sole place. We randomly select one of them and depict it

Table 10
A couple of indicative typical Athens photos accompanied with their textual metadata.
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in Fig. 12. We depict its corresponding representative tags in
Table 9. The observation of these tags indicates that photos within
this geo-cluster consist a small photo album of a family gathering
during Easter time. Furthermore, it is also identifiable that this set
of photos has been taken over a timespan of only 3 days. As a
result, one could easily classify this place as of “no-interest” for
touristic purposes.

4.3.4. Time series in Athens
In an attempt to illustrate and evaluate the chronological aspect of

social media content, we present in Fig. 13 a meaningful distribution
of acquired photos with respect to the quarter each photo was taken.

Table 11
Symbols utilized throughout the manuscript and their description.

Symbol Description Occurrence

j �j Cardinality of a set Entire text
(X,d) A generic metric space, i.e., a set on which we can

measure distances d
Section
3.1.1

D A finite dataset Section
3.1.1

DDX D is a subset of X Section
3.1.1

Q(D) The resulting codebook after KVQ clustering on D Section
3.1.1

x A point in X Section
3.1.1

y A point in X Section
3.1.1

Br(x) An area of metric space X centered around point x Section
3.1.1

dðx; yÞ Distance metric between points x and y Section
3.1.1

r Radius of area Br(x) Section
3.1.1

1Br ðxÞ The indicator function of set Br(x) Section
3.1.1

k A kernel function Section
3.1.1

w A vector in Euclidean vector space Rn Section
3.1.1

xj A point in D Section
3.1.1

wj Corresponding weight of point xj Section
3.1.1

wn A sparse vector Euclidean vector space Rn Section
3.1.1

C(x) A cluster centered at point x Section
3.1.1

CðDÞ A cluster collection, being a cover for D Section
3.1.1

P A set of photos Section
3.1.2

p A photo belonging to the set P Section
3.1.2

plat Latitude coordinate of photo p Section
3.1.2

plon Longitude coordinate of photo p Section
3.1.2

dg The great circle distance metric Section
3.1.2

P The set of all “possible” photos Section
3.1.2

(P;dgÞ A metric space Section
3.1.2

rg A scale parameter Section
3.1.2

q A photo belonging to set P Section
3.1.2

Cg(p) A photo geo-cluster Section
3.1.2

Qg(P) The resulting codebook Section
3.1.1

CgðPÞ The geo-cluster collection Section
3.1.1

pi A photo in P Section
3.2.1

Cj A geo-cluster Section
3.2.1

C A set of geo-clusters Section
3.2.1

Pj The set of all photos taken within geo-cluster Cj Section
3.2.1

T A set of tags Section
3.2.1

Pk A given set of photos Section
3.2.1

t A tag Section
3.2.1

T ðPkÞ The set of all tags Pk photos have been tagged with Section
3.2.1

Table 11 (continued )

Symbol Description Occurrence

T ðPjÞ The set of all tags of cluster Cj Section
3.2.1

Ci A geo-cluster Section
3.2.1

tj A tag Section
3.2.1

pj A photo in Pj Section
3.2.1

U The set of all users Section
3.2.2

Ui The set of all users whose photos are contained in geo-
cluster Ci

Section
3.2.2

Ui
j The set of all users who have tagged their photos in geo-

cluster Ci with tag tj

Section
3.2.2

Ui Users whose photos are contained within geo-cluster Ci Section
3.2.2

Pop The popularity of a tag tj Section
3.2.2

Dmax The maximum distance of a given photo to pi Section
3.2.3

NDmax
i

Neighborhood of a photo Pi Section
3.2.3

NBi Influence of neighbors Section
3.2.3

Ri
j A single measure of importance for a given tag tj in geo-

cluster Ci
Section
3.2.4

pr A percentage of radius rg Section 3.3
Lj A given place Section 3.3
Tp The set of all tags in Lj Section 3.3
Pk A given set of photos Section 3.3
T ðPkÞ The set of all tags these photos have been tagged with Section 3.3
T ðPjÞ The set of all tags of place Lj Section 3.3
d A given date Section 3.3
pi A photo Section 3.3
di A date Section 3.3
Fp(d) A cumulative distribution of a place's “popularity”

through time for a given date d
Section 3.3

ti A tag Section 3.4
tj Another tag Section 3.4
dL Levenshtein distance for any two given tags ti and tj Section 3.4
Tlev Levenshtein threshold Section 3.4
T d A group of tags – “representative” tag Section 3.4
CSðti ; tjÞ Cosine similarity between tags ti, tj Section 3.4
Fg(d) A cumulative distribution of each “representative” tag Section 3.4
uj a user Section 3.6
zj A moment in time Section 3.6
z A time interval measured in hours Section 3.6
ðuj ; zjÞp a set of outlines Section 3.6
sp(z) A discrete time series Section 3.6
sp The popularity of photo p over time Section 3.6
Tm A threshold on the amount of tags considered Section 4.2
β Any given real positive Section 4.2
dðu; yÞ Distance between the list provided by each student and

the one returned by Flickr
Section 4.2

dðu; sÞ Distance between the list provided by each student and
the one ranked by the system based on the user model

Section 4.2

τ Kendall coefficient Section 4.2
L The number of preferences that agree Section 4.2
M The number of preferences that disagree Section 4.2
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In principle, a calendar year may be divided into four quarters
(abbreviated as Q1, Q2, Q3 and Q4), where:

� First quarter (Q1) ranges from January 1st to March 31st
� Second quarter (Q2) ranges from April 1st to June 30th
� Third quarter (Q3) ranges from July 1st to September 30th
� Fourth quarter (Q4) ranges from October 1st to December 31st.

As expected and depicted also by the (blue) cumulative sum line,
the amount of online available social media content increases over
time following a rather smooth approach. However, this constant
content increase includes also periods of low activity, e.g., the
period between Q4 2007–Q1 2008 or the third and second quarter
of years 2008 and 2009, respectively. On the other hand, it is
dominated by high activity peaks, like the second quarter of years
2007 and 2008, as well as the fourth quarter of year 2008, that
significantly boost the overall amount of available content.

As a second step, based on our expert knowledge on the Athens
urban area, we selected five representative landmark tags, namely:
acropolis, parthenon, agora, plaka and syntagma and two represen-
tative events tags, namely: theatre and concert, and analyzed their
distribution over the entire large period of time under considera-
tion. The amount of photos characterized by these semantically
important tags over the 22 quarters between years 2004 and 2009
is presented in Fig. 14. For each tag, we have built a time series
describing its volume using a quarter time unit. Peak volume of
each landmark-related time series is chronologically closer to
present time, illustrating the constant growth of online available
social media information for this particular type of content (i.e.,
landmark photos). On the contrary, the repeated theatre event-
related time series depicts a step-wise performance, i.e., several
theatrical events occurred between 2004 and 2009 and were
included in the examined dataset, whereas the single occurrence
event concert peaked and remained unchanged over time.

5. Discussion and future work

Themain conclusion derived from our research involvement in this
work is that while mining from user-generated photos within social
community network collections is becoming popular and new appli-
cations are emerging, several possibilities dealing with the underlying
knowledge, intelligence and semantics remain rather untackled. In this
paper we have presented our approach in order to manage inherent
social media dynamics deriving from such multimedia content and
provide results on the meaningful analysis of the latter with respect to
specific trends, like content popularity, spatial areas of interest and
popular events in time. We have shown that by being able to exploit
different kinds of metadata information, such as textual tags, geo-tags,
time series, as well plain visual data chunks, we are able to identify
meaningful content trends over large periods of time. These trends
would facilitate user interaction with generated and already stored
content, allowing them to capture landmarks and events of their
interest at a glance.

Among our future plans is to further build on the results of this
work by studying tag behavior within a given “place” of interest, as
well as by semantically combining “places” based on a meaningful
semantic popularity criterion to be defined. Another future appli-
cation would be to semantically explore the identified temporal
patterns by which such online user-generated content grows and
fades over time, and by which different pieces of content compete
for attention. We also plan to further extend our evaluation pro-
cess by adding another user experiment; we will hide some of the
tags, ask users to fill them and compare their answers to those
recommended by our system. We believe that herein presented
results would have direct application to the optimal placement of

user-generated online multimedia content and that our approach
would offer a useful starting point for understanding the dynamics
in the online social media and how these dynamics of attention
may evolve over time for specific topics of interest, like landmarks
and events.

Appendix

See Tables 10 and 11.
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