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Abstract—EU FIRE research project “Social and Smart” aims
to formalize and build a complete ecosystem of users, context
sensors and smart home appliances that interact following the
ubiquitous computing paradigm in order to adapt and enhance
the everyday user-appliance interaction. In this framework a user
is modeled through the use of Personas stereotypes. Contextual
information is collected via wireless ambient sensors, such as
temperature and humidity ones, but can also include Smart City
sensors and services. This contextual information is further re-
lated to each user’s model through the enforcement of home rules,
expressed in a high level language. Knowledge representation is
supported through Semantic Web technologies that also ensure
the interoperability between all the actors of the ecosystem.
Preliminary experimental results have been carried in a small
scale Smart Home setting, but also in a larger scale using the
FIWARE1 framework provided by the SmartSandander testbed.

Keywords—Pervasive Computing, Smart Homes, Sensors, Con-
text Awareness, Semantic Interoperability, Smart Cities.

I. INTRODUCTION

Filling a home with sensors and controlling devices by a
computer is nowadays not only possible, but it is commonly
found in homes [1]. Sensors are available off-the-shelf that
localize movement in the home, provide readings for light and
temperature levels, and monitor usage of doors, phones and
appliances. Small, inexpensive sensors are attached to objects
not to only register their presence but also record histories
of recent social interactions. At the same time, in order to
incorporate social contextual real-life interactions via sensors,
the Human-Computer Interaction (HCI) area has widen its
scope considerably, placing the human-user in the center of a
continuous interaction with smart objects and appliances [2].

1http://www.fiware.org/

The latter are identified as Internet resources and are utilized
as such, within the pervasive environment of Smart Homes.

So far, the scope of most applications or services w.r.t.
smart homes have focused on the concept of small regions,
such as hospitals [3], where according to the level and type
of contexts along with the goal of context-aware systems, the
context modeling process, the inference algorithm and interac-
tion method of personas 2 are modified. Although interaction
between personas and cooperation among components of the
same architecture have been investigated, to date, a standard
interaction, cooperation and operation in the different context-
aware system has not been studied.

At the same time, in the areas of ubiquitous or pervasive
computing, collected contextual information may be consid-
ered as information used to characterize the situation of an
entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application,
including location, time, activities, and the preferences of each
entity. A user model is context-aware if it can express aspects
of the user’s contextual information and subsequently help the
system adapt its functionality to the context of use. Neverthe-
less, to provide personalized services to user models according
to user preferences, task and emotional state of user, the cog-
nitive domains such as situational monitoring are needed; so
far few authors have addressed utilizing the cognitive elements
of a user’s context and the semantics of the relations between
the user and the system’s entities [4]. Still, several researchers
have proposed models to capture the internal elements of
context. Different from previous works, our objective is to
specifically target to formalize and build a common context-
aware architecture system in which the user (“eahouker” in
SandS) will be able to control his household appliances in a
collective way via the SNS (Social Network Service) and in
an intelligent way via the adaptive social network intelligence.

2Humans known as personas for computational representation purposes.978-1-4673-8395-0/15/$31.00 c©2015 IEEE

http://www.fiware.org/


As our system is human-centered the UM (User Modeling)
is related to the user’s activity inside the ESN (Eahoukers
Social Network), while the context aware environment refers to
the contextual information that characterize the situation and
conditions of the system’s entities. Finally, the modeling of
the contextual information is completed through the capture
of the semantics of the relationships between the user and
the various entities of the ecosystem (other users, appliances,
recipes) to further improve the overall user experience. The
semantic description framework of our proposed approach,
is based on a number of home rules that are defined for a
specific household and eahouker. Since the SandS architecture
consists of two layers, high and low, respectively, we have on
the one hand recipes for common household tasks produced
and exchanged in the SandS Social Network that are described
in near natural language.

Additionally, on the other hand we have every user’s
context which consists of the actual appliances that the user
has in house with their particular characteristics (type, model,
brand, etc.). To ensure executability and compatibility of a
recipe and to deal with any uncertainly and vagueness in the
process of modeling the contextual information, a number of
axioms are imposed, so as to enforce constraints on all objects
(“things” in the IoT paradigm) of the ecosystem; the latter
were introduced within the proposed Web Ontology Language
(OWL) representation adopted. Experimental results for the
above framework are presented herein that have been con-
ducted inside the “SandS”[5] system, which aims to highlight
the potential of IoT technologies in a concrete user-centric
domestic pervasive environment. Large scale experiments are
planned at SmartSantander [6], a city-scale experimental re-
search facility in support of typical applications and services
for a smart city, comprising a very large number of online
ambient sensors inside a real-life human environment.

The remainder of this paper is structured as follows: we
discuss corresponding user modeling in section II and further
introduce context-awareness in HCI along with the collection
of ubiquitous data in section III. The semantic representation
and the experimental results will be analyzed in sections
IV and V, respectively, with related conclusions derived and
presented within section VI.

II. USER MODELING

User modeling is the process through which systems gather
information and knowledge about users and their individual
characteristics. Therefore, a user model is considered a source
of information about the user of the system, which contains
several assumptions about several relevant behavior or adapta-
tion data. Approaching user modeling from the HCI perspec-
tive, there is the potential that user modeling techniques will
improve the collaborative nature of human-computer systems.
During the last 20 years, there has been a lot of work done
in this area. Authors attempted to cover all possible scenarios
through the development of different definition for users and
user modeling approaches respectively.

Reviewing how “user models” term has been approached,
within HCI literature, it is indicated that users are part of an
enlarged communication group in which users change through
time and according to the environmental conditions and the

experience they gain. Thus, in the end, there are three types
of users: “novel”, “intermediate” and “expert”. Another more
oriented work, is that of [7], as it focuses on the specific
group of elderly people with none, one, or more than one
disabilities respectively, whose needs and capabilities change
as they grow older underlying the need for having more diverse
and dynamic computing systems for modeling users. A few
years later, in terms of having rich adaptive output information,
ontology-based approaches have been used for the design of
the “Ec(h)o” audio reality system for museums to further
support experience design and functionality related to museum
visits.

Based on ontology approaches to characterize users ca-
pabilities within adaptive environments, in 2007, the GUMO
ontology has been proposed [8]. The latter takes into account
the emotional state, the personality, the physiological state of
the user and particularly stress. Five years later, Evers and his
colleagues [9] implemented an automatic and self-sufficient
adaptation interface to measure the user’s stress levels. The
“Persona” concept has then been introduced to distinguish
between different user groups within an adaptive user interface
domain. These “Persona” concepts have been proved really
useful as a wide range of potential users could be covered by
assigning random values to characteristics, such as: age, educa-
tion, profession, family conditions, etc.. From a computational
perspective, using “personas” is a quite common approach in
UM due to its correlation with the actors and roles used in
software engineering systems, its flexibility, extensibility, re-
usability and applicability [10]. It is thus observed, that from
product design to multimedia and user interfaces adaptation,
the approaches described above, even though they differ a lot
with respect to the collected personal data characteristics which
use to improve the system and user’s satisfaction, still share the
same goal. For a more extended review the reader is directed
to [11].

III. CONTEXT

As social interaction is an aspect of our daily life, social
signals have long been recognized as important for establishing
relationships, but only with the introduction of sensed environ-
ments where researchers have become able to monitor these
signals. Hence, it is possible to look at socialization within the
smart home and cities and examine the correlation between the
socialization parameters and productivity, behavioural patterns
or even health. These results will help researchers not just to
understand social interactions but also to design products and
behavioral interventions that will promote more socially real-
life interactions.

A. Context aware in HCI

In everyday social contextual situations, humans are able
to, in real-time, perceive, combine, process, respond and evalu-
ate to a multitude of information including semantics meaning
of the content of a interaction, non-verbal information such
as facial and body gestures, subtle vocal cues, and context,
i.e., events happening in the environment. Multimodal cues
unfold, sometimes asynchronously and continuously express
the interlocutors’ underlying affective and cognitive states,
which evolve through time and are often influenced by environ-
mental and social contextual parameters that entail ambiguities.



These ambiguities with respect to contextual aspect range from
the multimodal nature of emotional expressions in different
situational interactional patterns [12], the ongoing task, the
natural expressiveness of the individual, to the intra- and
interpersonal relational context [13]. According to the first
work which introduced the term context-awareness in CS,
[14] the important aspects of context are: Who you are with,
When, Where you are, What resources are nearby. Thus,
context-aware applications look at the Who, Where, When and
What (the user is doing) entities and use this information to
determine Why the situation is occurring. Other approaches
such as Ryan et al. [15] include context as the user’s loca-
tion, environment, identity and time while others have simply
provided synonyms for context. However, to characterize a
situation, the categories provided by [14] have been extended
to include activity and timing of the HCI.

Based on context’s broader approach [16], context can be
formalized as a combination of four contextual types: Identity
(e.g., gender, age, children, social and marital status), Time,
Location (e.g., geo-localization, proximity to other homes) and
Activity (e.g., what is occurring in the situation) which are
the primary context types for characterizing the situation of
a particular entity and also act as indices to other sources
of contextual information. As far as real-world, context-aware
HCI computing frameworks, context is defined as any infor-
mation that can be used to characterize the situation that is
relevant to the interaction between the users and the system
[14]. Thus, this definition approaches better the understanding
of human affect signals. An even more suitable definition
is the one that summarizes the key aspects of context with
respect to the human interaction behavior (who is involved
(e.g., dyadic/triadic interactions among persons), what is com-
municated (e.g., “recipes” to perform a specific task), how the
information is communicated (the person’s cues), why, i.e., in
which context the information is passed on, where the pro-
active user is, what his current task is and which (re)action
should be taken to participate actively in content creation [17]).

All these context-aware systems that model the relevant
context parameters of the environment depend on the appli-
cation domain and hence face difficulties in modeling con-
text in an independent way and also lack of models to be
compared. Setting aside the fact that sometimes the domains
such as context-aware computing, pervasive environments and
ubiquitous computing entail similarities with respect to the
necessity of managing context knowledge, the concrete ap-
plications and approaches domains are different. In the area
of pervasive computing, the work of [18] refers to context
in environments taking into account the user’s activity, the
devices being used, the available resources, the relationships
between people and the available communication channels. To
allow developers to consider richer information as activities
and abstract knowledge about the current global context and
to model specific knowledge of the current sub-domain, an
ontology based approach has been proposed [19] in which
context information is modeled into two separate layers (high
and low-level respectively). Modeling high level information
allows to perform deeper computations taking into account
behavioral characteristics, trends information etc. While, on the
other hand, modeling low-level information such as location,
time, environmental conditions, is used to achieve the system’s
final goal which is the adaptation to the user interface.

B. Ubiquitous contextual information

Proliferation of sensors in the home results in large
amounts of raw data that must be analyzed to extract relevant
social contextual information. In this view, researchers have
started to record smart-homes or work situations to further
achieve even higher levels of social naturalistic data. Rep-
resentative examples are the collection of natural telephonic
data that have been gathered by recording large numbers of
real phone conversations, as in the Switchboard corpus or
audio corpora of non-telephonic spoken interaction or even
collections of everyday interactions by having subjects wear a
microphone during their daily lives for extended periods. Once
data is gathered from wearable sensors and smart appliances,
the amount of data may get too large to handle. This reason
justifies the need for more advancements w.r.t. such a situation:
the diffusion of mobile devices equipped with multiple sensors
and the advent of Big-Data.

There is no doubt, that mobile devices can nowadays
collect a large amount of contextual information (geographic
position, proximity to other people, audio environment, etc.)
for extended periods of time. Big-Data analytics can make
sense of that data and provide information about context and its
effect on behavior. Thus, it is possible to overcome limitations
ranging from collecting affect-related data in a large population
or having involved participants in the experiment for too long,
to being able to design algorithms that will enable HCI in a
private, personal and continuous way and allow our sensors
to both know us better and be able to communicate more
effectively on our behalf with the world around us. Conse-
quently, “designing” smart-homes is a hard task. The friendly
design of an intelligent and responsive to our needs eco-
system that can make users feel more comfortable for affective
feedback collection and may change user’s social behavior is
very promising to boost the affect detection performance and
explore the possibility of further HCI techniques.

IV. SEMANTIC REPRESENTATION

In this Section, Semantic technologies are used in order
to represent the knowledge of an ecosystem. This ecosystem
consists of cities, comprising a number of houses. Additionally,
in every city and in every house is located a number of sensors
which give data for the environmental context e.g. humidity,
temperature and so on. They are also able to give more specific
information such as noise and pollution levels or information
about the human presence inside the house. All these data are
received from the sensors and are stored in a database.

In this ecosystem we can define a number of rules, which
we will call home rules, for example defining under which
conditions house appliances should be switched on or off.
Another more concrete example would be “do not operate the
air-condition when the outside temperature is high”.

The OWL 2 Web Ontology Language (OWL 2) [20], an
ontology language for the Semantic Web with formally defined
meaning was adopted for the Semantic Representation of our
ecosystem. OWL 2 ontologies provide classes, properties, in-
dividuals, and data values and they are stored as Semantic Web
entities. The following sections explain in more detail on how
the ecosystem is represented by our ontology. The ontology
was created using the open source Protégé 4.2 platform [21].



A. Ontology Hierarchy

Figure 1a illustrates the ontology’s hierarchy. The ontol-
ogy’s classes describe different aspects of the ecosystem which
may be:

1) The Appliances which contain all the different types
of the ecosystem’s appliances, such as, a) the refrig-
erator, b) the washing machine, c) the air-condition
and d) the television,

2) The Location, which contains both the house and city,
3) The Sensor, which is a class that contains the indi-

viduals of all the existing sensors,
4) The Person, which contains all the individuals,
5) The Gender, the House Role and the Social Status

which for the different types of gender, house roles,
and social status implement the user model.

B. Properties

The ontology also comprises a series of properties. These
properties are both object properties and data properties. Ob-
ject properties provide ways to relate two Objects (also called
predicates). Object properties relate two objects (classes), of
which the one is the domain and the other is the range.
The object properties of the ontology of this ecosystem are
mainly used to relate the sensors with a specific location and
the inhabitants of the house and the appliances. Some of the
ontology’s object properties are described below:

1) hasGender, which relates classes person and gender,
2) hasSensor, which relates a sensor class with a loca-

tion,
3) hasHouseRole, relating a Person class and a house

role,
4) isLocatedIn, which relates a house with a city,
5) livesIn, which relates a person with a house,
6) builtIn, which relates a house with a city.

On the other hand, data properties are similar to object
properties with the sole difference that their domains are typed
words. In our ontology, they relate the actual sensor values
with a sensor, power on or off status of the appliances, and
the user properties with numerical features. Some of them are
described below:

1) hasNoise, which relates a sensor with the actual
captured noise value, e.g. 40dB,

2) hasTemperature, which relates a sensor with the ac-
tual captured temperature value, e.g. 25◦C,

3) isOn, which has a true value if the appliance is turned
on and is false otherwise,

4) numberOfChildren, which relates a person with the
number of his children, which must be a non-negative
integer.

The object’s and the data’s properties of the ontology
appear in Figure 1.

C. Individuals

The ecosystem contains a large number of appliances, sen-
sors and people. Every single appliance, sensor and person is
represented in the ontology as an individual of the Appliance,
Sensor or Person class respectively. Figure 1d illustrates a
small set of Individuals contained in the ontology.

(a) Ontology
hierarchy

(b) Ontology
Properties

(c) Data Prop-
erties

(d) Ontology
Individuals

Fig. 1: Example of Object Properties, Classes and Individuals
of an ontology representing an ecosystem

D. Rules and Consistency Check

In the current section we provide a novel semantic rep-
resentation of the home rules of the ecosystem. These home
rules are expressed using the Semantic Web Rule Language
(SWRL) [22]. SWRL has the full power of OWL DL, only
at the price of decidability and practical implementations.
However, decidability can be regained by restricting the form
of admissible rules, typically by imposing a suitable safety
condition. Rules have the form of an implication between
an antecedent (body) and a consequent (head). This meaning
can be read as: ‘whenever the conditions that are specified
in the antecedent may hold, the conditions that are specified
in the consequent must also hold’. A critical property of our
ontology is that the ontology should always be consistent, a
condition that is verified with the use of a Pellet reasoner [23].
Thereat, whenever a home rule is violated, a corresponding
inconsistency must be detected. Taking it into account and
whenever the conditions that are specified in the antecedent’s
hold, the conditions specified in the consequent must also hold,
hence the home rule’s violation is transformed to the respective
antecedent of the SWRL.

For this reason, a data restriction has to be created in the
Appliance class. A data property, called ‘restriction’ is created.
Its domain is an appliance and its range is a boolean, but
it is also restricted to exist an appliance with the restriction
property. Then, every home rule is transformed to a SWRL,
and if the left side of the rule is satisfied, it leads to the
creation of the ‘restriction’ property for an appliance. This
makes our ontology inconsistency restricting the appliance to
start working. So every time a database record changes, or a
new one is added, the ontology individuals are populated with
the new values querying the database. Then, using the Pellet
reasoner, the system checks for a possible existence of any
inconsistency. Finally the inconsistency is being handled by
forcing the appliance to switch off or on. Figure 2 illustrate
some examples of transformed home rules to the respective
SWRLs in Protégé. For example, the first one means that any
washing machine, existing in a house of the ecosystem, must
not be operating if a person is in this house and there exist
noise more than 40dB, while the third one means that it should
not operate any washing machine when the temperature of the
city is greater than 26◦C in an ecosystem this home rule holds.



Fig. 2: Examples of transformed Home Rules to the respective SWRLs in Protégé

Fig. 3: SmartSantander sensors locations

V. EXPERIMENTS

A. Smart city sensors

Large-scale tests of the unified user in a smart home in
a smart city, SandS will use context sensor data gathered
at SmartSantander. SmartSantander [6], born as an European
Project is turning into a living experimental laboratory as part
of the EU’s Future Internet initiative. Major companies in-
volved in the project include Telefonica Digital, the company’s
R&D wing, along with other smaller suppliers as well as
utility and service companies. In terms of application areas
five main areas have initially been targeted in the trials so
far: traffic management and parking, street lighting, waste
disposal management, pollution monitoring and parks and
garden management. The sensors are divided into several
categories based on the data they should collect. The sensors
may be, mobility sensors which are sensors giving information
about every vehicle, their speed, altitute, etc, traffic and parking
sensors giving information about the traffic volumes and the
road occupancy, environmental sensors, that are collecting data
concerning, such as temperature, humidity and noise, and
finally park and garden irrigation sensors which mostly they
get information from certain parks and gardens in order to
efficiently control their irrigation and their water consumption.
To this aim the city of Santander, in Spain, has been equipped
with a large number of sensors used to collect a huge amount
of information. The type and the exact location of these sensors
is illustrated in Figure 3.

At the moment the data collected by these sensors are
stored in the USN/IDAS SmartSantander cloud storage plat-
form. This platform stores in its databases all the observations
and measurements gathered by the sensors. It contains live
and historical data. These database are migrating on the Fi-lab
platform as an instance of the FIWARE ecosystem.

In very minimal terms our experiments will manage the

integration of the two systems only in one direction: by
exploiting SmartSantander data in favor of SandS with special
regards to the empowerment of the home rules used by the DI.
Hence the contact between the two systems will happen via
the home rules which may be feed by the SmartCity sensor
data either in their current version or in an enlarged one to
be capable of profiting from the data. Available sensor data,
related to the SandS domain include: temperature, noise, light,
humidity and quantity of rain. Other data, for instance those
concerning traffic, could be considered in a more long-term
planning and scheduling approach. Our goal is to feed the
existing home rules with the signals provided by the SmartCity
system in order to see how the home rules are triggered when
an inconsistency is detected.

B. Sensor Integration

In the ecosystem, there are sensors both in every house and
for the whole city. These sensors send periodically information
about environment, such as the temperature and the noise and
the position they are installed (e.g. the city center, for the
city sensors, and the kitchen, or the bathroom for the in-house
sensors), and their timeStamp. All the sensors send their values
periodically to the ecosystem. These values are stored to a
specific table of a database overwriting the previous record
that was stored. In order to collect the city sensor values
tools such as FIWARE Ops tools [24] are used. Adding all
these information of the sensors to a database, it is every
time feasible for the system to identify the exact condition
inside and outside the house, just doing a simple query in the
database. Then, due to the structure of the home rules it is
possible in a very short time for the ecosystem to know if any
home rule is triggered and if an appliance in a house should
be switched on or off.

Fig. 4: SmartSantander Sensor values of the temperature for a
specific period in a day

Next, an indicative example is presented of how a home
rule is triggered based on the temperature a city sensor, such as



the SmartSantander sensors, is receiving every moment. If in
the ecosystem, the home rules presented in Section IV-D, hold
and the temperature of the city every moment in a day is the
one presented in Figure 4, an inconsistency is detected between
11:00 and 15:00, because of the third home rule, leading the
forcing a house’s washing machine to switch off at this period
of time. For extended justifications through tests on a wider
set of SWRL rules, the reader is referred to [25], where it is
shown that our proposed framework is able to cope with more
complex actions based on user preferences.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we tried to build a new knowledge represen-
tation framework where we first place the human user in the
center of this interaction. Further, we discussed the ubiquity
of context information in relation to the user and the difficulty
to propose a universal formalization framework for the open
world. We showed that by restricting user related context to
the Smart Home environment, we can reliably define simple
rule structures that correlate specific sensor input data and
user actions that can be used to trigger arbitrary smart home
events. This rationale is then evolved to a higher level semantic
representation of the domotic ecosystem in which complex
home rules can be defined using Semantic Web technologies.
Preliminary experimental results confirmed exciting utilities of
our proposed FIWARE framework.

Future directions include further incorporation of user,
usage and context information, through a unified semantic
representation, driving an adaptation mechanism aiming to pro-
vide a personalized service and optimizing the user experience.
Finally, an additional potential extension of that method would
be a larger scale validation at SmartSantander to provide us
with useful insights about the latter. We are also going to
compare our modeling proposal with other related work, such
as [26] and [27].
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