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Affective computing researchers adopt a variety of methods in analysing or synthesizing aspects of
human behaviour. The choice of method depends on which behavioural cues are considered salient or
straightforward to capture and comprehend, as well as the overall context of the interaction. Thus, each
approach focuses on modelling certain information and results to dedicated representations. However,
analysis or synthesis is usually done by following label-based representations, which usually have a
direct mapping to a feature vector. The goal of the presented work is to introduce an interim repre-
sentational mechanism that associates low-level gesture expressivity parameters with a high-level
dimensional representation of affect. More specifically, it introduces a novel methodology for associating
easily extracted, low-level gesture data to the affective dimensions of activation and evaluation. For this
purpose, a user perception test was carried out in order to properly annotate a dataset, by asking par-
ticipants to assess each gesture in terms of the perceived activation (active/passive) and evaluation
(positive/negative) levels. In affective behaviour modelling, the contribution of the proposed association
methodology is twofold: On one hand, when analysing affective behaviour, it can enable the fusion of
expressivity parameters alongside with any other modalities coded in higher-level affective repre-
sentations, leading, in this way, to scalable multimodal analysis. On the other hand, it can enforce the
process of synthesizing composite human behaviour (e.g. facial expression, gestures and body posture)
since it allows for the translation of dimensional values of affect into synthesized expressive gestures.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Human behaviour has been often studied both for the purposes of
inferring internal affective aspects from observations, and for fostering
the quality and believability of synthesized actions of virtual char-
acters. Whether studying low level behavioural cues – and, thus,
focusing on aspects like gestures, body, posture and facial expressions
– or emphasizing high level phenomena such as affective states and
dispositions, often the case is that researchers will adopt different
computational models or representations in order to model emotions
and related phenomena. Such variation is not necessarily problematic
since it enables the investigation of subtle differences amongst
approaches. Nevertheless, when it comes to building an affect aware
system (either targeting analysis, or synthesis components) such
variations raise interesting questions regarding the correspondence
between entities in each representation scheme.
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Affective cues can be broadly categorised across two broad famil-
ies, verbal and non-verbal communication channels. In the presented
work, we focus on the analysis of non-verbal behavioural channels. A
substantive body of research has focused on non-verbal behaviour,
within the fields of psychology, cognitive science and human com-
puter interaction, stressing the importance of qualitative expressive
characteristics of body motion, posture, gestures, facial expressions
(Ioannou et al., 2007), eye gaze (with eye gaze still necessitating
specialized hardware (Bengoechea et al., 2013; Jennett et al., 2008)
and overall human action recognition during an interaction session
(Wallbott, 1998; Pelachaud, 2008; Knapp and Hall, 2013). Qualitative
affective cues contain significant information about the user's non
verbal behaviour and communication. In this context computationally
formulated qualitative expressivity features (e.g. fluidity of a gesture
performance) correspond to the intermediate layer between extracted
quantitative features (e.g. coordinates of the hand position) and the
conveyed emotion in the form of the adopted affective representation
approach.

Behaviour expressiveness is an integral part of the commu-
nication process since it can provide information about the current
pressivity with affective representations. Eng. Appl. Artif. Intel.
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emotional state and the profile of the interlocutor, as well as his
performance.

Although the research field of human behaviour analysis has
primarily focused on human to human interaction, there has been
growing recognition of the importance of accounting for Human-
Computer Interaction (HCI). Most examples of studies incorpor-
ating gesture expressivity in the HCI context (Vinciarelli et al.,
2012; Caramiaux et al., 2015), however, have tended to focus on
the expressively-enhanced synthesis of gestures by virtual agents
and ECAs (Caridakis et al., 2007; Cassell et al., 2004; Martin et al.,
2006; Kipp et al., 2007; Pelachaud, 2008; Hartmann et al., 2005)
which, many times, follow animation patterns that depend on
low-level features (e.g. tracking) and only partly depend on
semantic interpretation of human's emotional or cognitive state.

The present work focuses on expressivity in gesturing. The
approach adopted is holistic in the sense that the gestures studied are
not recognized or broken down to their components. Emphasis is
given to the expressive content of a closed set of singular gestures
with clear semantic meaning (such as waving goodbye or clapping).
The contribution of the research work presented in this article lies in
the association of existing results on automatically calculated
expressivity parameters (Caridakis et al., 2006), with dimensional
representations of affect. This is done by incorporating a properly,
data-driven trained neuro-fuzzy network. The proposed association
allows for the inclusion of expressivity parameters in the fusion pro-
cess with other modalities that commonly use dimensional repre-
sentations of affect.
2. Related work

In computational behaviour analysis, according to a survey paper
by Kleinsmith and Bianchi-Berthouze (2013), research on non-verbal
affect recognition has mostly focused on facial expressions starting
with the FACS coding system developed by Ekman and Friesen (1977)
and moving to more recent computational approaches (Zhao et al.,
2003; Pantic and Rothkrantz, 2000). The research shift towards bodily
expressions has only started recently. According to the same survey,
specific features of bodily expressivity have been identified to con-
tribute to the recognition of specific affective states. In the case of
upper body expressivity and gestures, there exist several manual
annotation approaches on gesture analysis (Foster, 2004; Ferré et al.,
2007; Kipp and Martin, 2009), while research on the automatic ana-
lysis of gesture expressivity is ongoing (Varni et al., 2010; Caridakis
et al., 2006; Sanghvi et al., 2011; Pantic et al., 2007; Griffin et al., 2013;
Glowinski et al., 2011, Kleinsmith and Bianchi-Berthouze (2007),
Kleinsmith et al. (2011)), rendering human action analysis asymme-
trically less studied with regards to its synthesis counterpart. Themain
reason behind this is that robust software or dedicatedmotion capture
hardware (Pfeiffer et al., 2013) are needed in order to support analytic
methods such as hand trajectory extraction which returns an abun-
dance of data of high detail and richness, especially when it comes to
these observations taking place in spontaneous, natural interaction
contexts (Cowie et al., 2008). The attribution of affective labels on such
data is not a straight forward task. Gesture expressivity – similarly to
other types of bodily expressivity – can be interpreted in various ways,
leaving a lot of room for subjective assessment. In order to establish
ground truth for emotion expression, it is common practice to rely on
the judgment of observer coders (Kleinsmith and Bianchi-Berthouze,
2013).

Another trend that has attracted attention in non-verbal behaviour
studies is the role of multimodality (Caridakis et al., 2010): signals
coming from different emotional channels (Zeng et al., 2009) inform a
system's computational intelligence module regarding the emotional
or cognitive state of the user. Synergy of multiple modalities (Kapoor
et al., 2007) is expected to overcome problems related to reliability,
Please cite this article as: Malatesta, L., et al., Associating gesture e
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noise and personalization. Other typical examples are reported
in Castellano et al. (2009) and Sanghvi et al. (2011) where a Bayesian
network uses information coming from posture and gaze, in order to
detect engagement with a robot companion (Van Breemen et al.,
2005) that is able to pose various expressions. Salem et al. (2012) also
investigated the gesture and posture expressivity aspects from a
Human Robot Interaction perspective.

Expressivity of body movement (Laban and Lawrence, 1974) is a
qualitative cue that is, or at least should be, incorporated in the
design process of such applications. In the words of Alex Pentland
(1996): "The problem, in my opinion, is that our current computers
are both deaf and blind: they experience the world only by way of
a keyboard and a mouse… I believe computers must be able to see
and hear what we do before they can prove truly helpful". Moving
a step further, we might add, that they should also interpret
appropriately what they see and hear.

Behaviour expressiveness is an integral part of the commu-
nication process since it can provide information about the per-
son's current emotional state, the profile of the interlocutor and
metrics of his/her performance. Many researchers have studied
characteristics of human movement and coded them in binary
categories such as slow/fast, restricted/wide, weak/strong, small/
big, unpleasant/pleasant in order to properly model expressivity.
Expressivity dimensions are considered as the most complete
approach to body expressivity modelling, since they cover the
entire spectrum of expressivity parameters related to emotion and
affect (Karpouzis et al., 2007; Sykes, 2003).
3. Motivation

Non-verbal behaviour has been frequently broken down to its
communicative functions (start/end conversation, emphasize, depict
object etc) and the behaviours that manifest these functions (nod,
body posture, gaze aversion etc.) (Kopp et al., 2006; Vilhjálmsson et al.,
2007). One communicative function can be expressed through one or
more behaviours and, vice versa, one single behaviour can express one
or more functions. In our case we have chosen as behaviours a closed
set of expressive gestures with a non-ambiguous semantic meaning.
Our goal is to investigate and attempt to quantify how the same
gestures, with the same functions, can convey different affective
messages through their expressivity features.

An important aspect when studying gesture expressivity is that of
subjectivity, mostly in terms of perceiving the conveyed emotion
when a gesture is performed. In the case of facial expressions, several
sets of universally recognisable emotions exist, with Ekman's being
the most prominent (Ekman and Friesen, 1977). However, in the case
of gesturing, the cultural background of the interactants plays an
important role both when performing a gesture, as well as inter-
preting it in the receiving end. Kita (2009) (Schroder, 2004) elaborates
on the culture-specific conventions for form-meaning associations in
emblem gestures (e.g., the thumbs-up sign), and on how cognitive and
cultural differences shape iconic and deictic gestures expressing spa-
tial or temporal concepts. As a result, a perceiver-based annotation
scheme is needed so as to obtain labels and ratings which can be used
as ‘ground truth’ for any machine learning approach.

This work extends research by Caridakis et al. (2006) on gesture
expressivity parameters. These parameters are the result of a quali-
tative approach to modelling non-verbal upper body expressivity
based on computer vision algorithms. Castellano et al. (2009) and,
later, Glowinski (Glowinski et al., 2011) have also studied abstract
representations of gesture expressivity and their relation to emotion
expression and perception, however they rely on machine learning
and data processing to arrive at relations between parameters, values
and emotion perception, without taking into account the inherent
subjectivity in the observed emotion classes. An overview of the
xpressivity with affective representations. Eng. Appl. Artif. Intel.
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parameters’ definition and their computational formalization is pro-
vided in Section 4.3.

The proposed methodology is a step towards investigating
the relationship between gesture expressivity and higher level
representations of affect, keeping an expressivity parameters’ view
point. A correlation between gestures and the dimension of activation
has already been established in an influential study by Wallbott
(Wallbott and Scherer, 1986). Previous work on gesture expressivity
parameters, carried out by Caridakis et al. (2006) is used as a starting
point in order to investigate whether the information captured in
these parameters is sufficient to make judgments on the affective
dimension of evaluation (i.e., the pleasantness/unpleasantness a ges-
ture encompasses). An additional goal is to render expressivity para-
meters more versatile by introducing an association methodology of
these parameters with the dimensions of activation and evaluation.
According to a survey on multimodal computer interaction by Jaimes
and Sebe (2007), a common meaningful representation framework is
required for all modalities in order to achieve a late (semantic/deci-
sion) fusion scheme of different modalities. By choosing these
dimensions of activation and evaluation as the common representa-
tion scheme, the incorporation of expressivity parameters in such a
fusion architecture will be greatly facilitated.

The structure of the rest of the paper is as follows: Section 4 sets
the theoretical grounds of the semantic bonds between gestures and
expressivity parameters and gives a detailed definition of the models
adapted for our analysis and representation. Section 5 presents the
user perception study conducted, its design and results, as well as the
reliability measures taken in order to use it as ground truth. Section 6
evaluates statistical relations between expressivity parameters and
maps them to the Activation/Evaluation dimensions through fuzzy
reasoning.
4. Gestures in human-computer interaction

4.1. Expressivity in gestures

Various ways of grouping and classifying hand movement have
been put forward depending on its function and linguisticity (Kendon,
1988; McNeill, 1992). In most cases gestures are considered to com-
plement spoken language. Nevertheless, hand movements, voluntarily
or not, tend to convey additional information, besides speech,
regarding the internal mental processes of the speaker including
emotional aspects of expression. Our work isolates gestures from
speech and aims at focusing less on the function and more on the
expressive content of hand movement. A hand movement is classified
as semiotic when it communicates meaningful information and
results from shared cultural experience. We chose a set of semiotic
gesture classes such as clapping, waving, raising hand, etc. According
to the approach adopted, their iconic, metaphoric, deictic or beat
function (according to McNeill's classification (McNeill, 1992)) is not
investigated. The focus is rather on their expressive content, since each
chosen gesture class is performed with varying expressivity in order
to capture different nuances in a systematic manner. We study the
way such differences occur and are perceived both by humans and
machines.

4.2. Expressivity parameters and dimensions

Expressivity parameters are a typical example of an intermediate
level of representation of affective information. They do not corre-
spond to low level tracking features, nor do they directly relate to
higher level representations such as emotion labels or dimensions.
They lie in an intermediate level capturing qualitative information on
expressivity. In order to empower their applicability and allow for
their combined usage with other tracked modalities, we identified the
Please cite this article as: Malatesta, L., et al., Associating gesture ex
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need to come up with an association methodology that will link
expressivity parameters to a more versatile representation such as the
chosen target representation of dimensional emotion representation
(Russell, 1980; Whissell, 1989).

Fontaine et al. (2007) conducted a cross-cultural study on
emotional experience and concluded that there exists no single
universal solution on the number of necessary dimensions for
capturing and representing affective information. Moreover, these
figures vary depending on the studied behaviours. Castellano et al.
(2012) discuss the perceptual aspect of social agents’ expressive
behaviour while Kret et al. (2013) approach the issue using phy-
siology and gaze input streams. In order to distinguish complex
expressions of emotion, we might be forced to introduce more
dimensions beyond the typical Activation-Evaluation dyad. For
example, according to their findings, in order to distinguish
emotional expressions of surprise, they stress the necessity of the
less commonly used dimension of novelty (or unpredictability).
Authors in Glowinski et al. (2011) encode human motion using the
notion of Sample Entropy (Hong and Newell, 2008), in order to
account for the presence of emotion during interactions, not as an
occasional occurrence but as a factor constantly influencing
behaviour. In our case, we purposely chose to restrict our target
representation to the dimensions of Activation and Evaluation.

In contrast to categorical and appraisal based approaches the
dimensional emotion representation approached are gradual and
represent aspects of emotion concepts (e.g. good/aroused/power-
ful) as dimension of an emotional space (Schroder, 2009). The
Activation and Evaluation space is a representation derived from
psychology research and represents emotional states in terms of
two dimensions: the activation dimension measures how dynamic
the emotional state is whereas the evaluation dimension is a
global measure of the positive or negative feeling associated with
the state. Alternative terms for the two dimensions include arousal
(activation) and valence or pleasure (evaluation) levels and is also
related to the PAD (Pleasure, Arousal, Dominance) affective model.

There are two reasons behind this choice: Firstly, expressivity
parameters (a detailed definition is provided in the following
section) are designed to capture qualitative information and thus
attempting a mapping to more than two dimensions increases the
risk of arbitrary decisions. Secondly, in order to achieve the
aforementioned association and introduce a representation brid-
ging mechanism between expressivity parameters and dimen-
sions, we rely on capturing human perception of expressivity. The
selection of only two dimensions is necessary in order not to
overload the recruited raters.
4.3. Gesture expressivity parameters

Many researchers have studied characteristics of human move-
ment and coded them in binary categories such as slow/fast, restric-
ted/wide, weak/strong, small/big, unpleasant/pleasant in order to pro-
perly model expressivity. We utilize the representation scheme of the
expressivity dimensions described in Hartmann et al. (2005), exten-
ded in 3D depth in Caridakis et al. (2013), as the most complete
approach to expressivity modelling, since it covers the entire spec-
trum of expressivity parameters related to emotion and affect. Derived
from the field of expressivity synthesis five parameters have been
defined:

� Overall activation.
� Spatial extent.
� Temporal.
� Fluidity.
� Power.
pressivity with affective representations. Eng. Appl. Artif. Intel.
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In order to provide a more strict definition of these gesture
expressivity parameters, let us consider a gesture G as a sequence, of T
frames, consisting of 2D image coordinates of the left and right hand
respectively. The coordinates of hands are relative to the ðxGli ; yGli ÞðxGri;
yGriÞ position of the head which is defined as the centre of the
bounding box of the region of the head as provided by a face detection
module (Viola and Jones, 2001) and normalized with reference to the
diagonal of this box which is considered indicative of the size of the
head. These transformations are required in order to ensure that the
coordinates are invariant to the position and the distance of the user
with regards to the camera, parameters that are not known a priori.
Thus, a gesture is formally defined as:

G¼ ½ððxGl1; yGl1Þ; ðxGr1; yGr1ÞÞ; ððxGl2; yGl2Þ; ðxGr2; yGr2ÞÞ;⋯; ððxGlT ; yGlT Þ; ðxGrT ; yGrT ÞÞ�
ð1Þ

For simplicity reasons ðxGli ; yGli Þ will be referred to as LGi from this
point forward. Additionally, the quantity of motion Di for one hand
during the time period between frame i and frame iþ1 is defined
as the norm of the vector defined by the coordinates of the hand in
the respective frames:

Di ¼ ðxi; yiÞðxiþ1; yiþ1Þ
������������!���

��� ð2Þ

Overall activation is considered as the quantity of movement
during a dialogic discourse and is formally defined as the sum
instantaneous quantities of motion:

OAG ¼
XT�1

i ¼ 1

DG
li þDG

ri ð3Þ

Spatial extent is expressed as the expansion or the condensa-
tion of the used space in front of the user (gesturing space). Let ei
be the norm of the vector defined by ðxli; yliÞ; ðxri; yriÞ 2D points
corresponding to the left and right hand during time. The spatial
extent expressivity parameter corresponds to the maximum value
of this feature during the stroke phase of the gesture:

SEG ¼ max ei; iA ½1; T �; ei ¼ ðxri; yriÞðxli; yliÞ
����������!���

��� ð4Þ

The temporal expressivity parameter denotes the speed of
hand movement during a gesture and dissociates fast from slow
gestures. Given that quantity Di denotes instantaneous hand speed
during time, the temporal expressivity parameter is defined as the
arithmetic mean of this quantity and OA since, as defined earlier,
corresponds to the discrete integral, temporal expressivity is given
by Eq. (5):

TEG ¼OA
T

ð5Þ

On the other hand, the energy expressivity parameter refers to the
movement of the hands during the stroke phase of the gesture. Ges-
tures are constituted of three phases: preparation, stroke and with-
drawal. The message is primarily conveyed during the stroke phase,
while the phases of preparation and withdrawal occur while the
hands move from and to their neutral position respectively. The for-
malization of the energy expressivity feature according to this defi-
nition however is far from trivial since the automatic detection of the
gesture phases is quite a challenging task. Alternatively, we opted to
associate this parameter qualitatively with the first derivative of the
norm of D, which refers to the acceleration of hands during a gesture:

PO¼ jDj 0 ð6Þ
Fluidity differentiates smooth/elegant from sudden/abrupt ges-

tures. This concept attempts to denote the continuity between hand
movements and is suitable for modelling modifications in the accel-
eration of the upper limbs. Under this prism, we formally define
gesture's fluidity as the variation of the energy expressivity parameter
Please cite this article as: Malatesta, L., et al., Associating gesture e
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as described in the previous paragraph:

FL¼ varðPOÞ ð7Þ
The reader is prompted to note that the quantity FL is reversely

proportional to the notion of fluidity. Thus, a gesture with high
value of the FL expressive parameter demonstrates low fluidity
and consequently is categorized as a sudden/abrupt gesture.
Inversing the definition of fluidity is not a trivial process since the
upper and lower bound of the measure are not a priori known.

4.4. Feature extraction

In order to extract expressivity features from a video sequence
of a gesture, it is necessary to detect and track the movement of
the actor's hands and face. In order to do so, several approaches
have been reviewed. Amongst them only video based methods
were considered, since motion capture or other intrusive techni-
ques may interfere with the person's emotional state which is a
crucial concern in this kind of analysis, while depth sensor devices
would require more dedicated hardware. The major factors taken
under consideration are computational cost and robustness,
resulting in an accurate, near real-time, skin detection and track-
ing module.

The overall process is described in detail in Caridakis et al. (2006).
Briefly, it consists of the creation of moving skin masks and tracking
their centroid throughout the subsequent frames of the video
depicting a gesture. A real time colour model of the human skin is
constructed by sampling the upper area of a box containing the
headas provided by the Viola-Jones head detection module (Viola and
Jones, 2001). This sampling box corresponds to the forehead of the
user and is defined wrt to the resulting face bounding box (e.g. fore-
head box width equals ¾ of the bounding box width). Such an
adaptive approach tackles illumination issues which often impede the
process of modelling and detecting human skin. Additionally, it
enhances robustness since the head detection module rarely outputs
false positives. Skin-like moving candidate regions are subject to
appropriate morphological operations and correspondence is based
on size, position and direction heuristic criteria in a multiple-criteria,
reward/penalty schema. Object correspondence between two frames
is performed by a heuristic algorithm based on skin region size (pixel
count), distance with reference to the previous classified position of
the region, flow alignment and spatial constraints. In case of occlu-
sions (hand object merging and splitting), a new matching of the left-
most candidate object to the user's right hand and the right-most
object to the left hand is established.
5. User perception study on expressivity

One of the thorniest issues in the field of affective computing is
the fact that ground truth is difficult to come by, annotations are
limited to one or two raters, it can be subjective, and inter-rater
agreement is often very low and non-reliable, especially in nat-
uralistic data. This often motivates researchers to focus on acted
corpora, where a common analysis approach is to rely on the
defined labels as ground truth. However, even in acted data, where
expressed emotions are known, when it comes to interpreting the
expressivity of a gesture, there is a lot of room for subjectivity.
Moreover, it is not a rare case that the representation chosen to
code the affective content influences the quality of the data col-
lected. In order to overcome these obstacles in the case of
expressivity parameters, within the frame of the proposed work, a
two-phase user perception study has been designed and con-
ducted. The goal was to collect annotation data on the available
videos by human raters and investigate ways of comparing these
perception ratings against the employed computer vision
xpressivity with affective representations. Eng. Appl. Artif. Intel.
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Table 1
Correlation coefficients of users' expressivity parameters against machine extracted
values.

Ov.Act. Sp.Ext Speed Fluid. Power

Avg/16 0.38 0.78 0.53 �0.20 0.57
Median/16 0.38 0.76 0.50 �0.21 0.61
Avg/12 0.36 0.74 0.50 �0.22 0.52
Median/12 0.38 0.76 0.48 �0.18 0.55
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components’ results. The two-phase expressivity perception study
consisted of a pilot phase and a full scale study. It was designed
based on the available videos and their analysis in terms of
expressivity parameters from Caridakis et al. (2006). Following
this strategy, it has been made possible to establish an analytical
framework, using fuzzy logic, able to map processed visual fea-
tures to reliable affective annotation from a large population
(more than 100 raters employed in phase II). The result of this
analysis was that a system able to imitate human perception of
motion-related emotional content was developed, based, not on
discrete, subjective interpretations of the actors, but on external
viewers’ perception (Fig. 1).
5.1. Data Collection

Seven volunteer-actors (with no professional acting experience)
were asked to perform the following seven gesture classes in front of a
digital video camera. Each gesture class was performed and recorded
more than once by each volunteer-actor, according to the expressivity
categories appearing in Table 1. Each category corresponds to a
quadrant on Whissell's wheel (Whissell, 1989). A quadrant is deter-
mined by pairs of plus and/or minus that define the half-axis of
activation (vertical axis) and evaluation (horizontal axis). A neutral-in
terms of expressivity-performance corresponds to a circle with (0,0) as
its center and a relatively small radius. Gestures were performed only
with the emotional colouring that made sense (with regards to their
semantic meaning) and, thus, a subset of the four quadrants; e.g., the
“ohmy God” gesture cannot be neutral. A total of 123 video sequences
were recorded in a controlled laboratory setting. Each sequence is
between two and five seconds duration. The data collected belong to
the broader category of acted emotional expressivity data. Fig. 2 holds
snapshots from two different raise hand gestures.

Due to occlusions and limited weaknesses of the tracker, the
computer vision component did not succeed in returning expres-
sivity parameter values for the full set of 123 videos. Instead,
values for a subset of 67 videos were collected.

In the first phase of the experiment (Section 5.2), a small scale
forced-choice perception pilot test with a small number of parti-
cipants and a restricted set of videos was conducted in order to
acquire a quantitative feel of people's understanding of expres-
sivity parameters. In the second phase (Section 5.3), using the
same web interface, a full scale perception test was run with all
videos and 100 participants.
Fig. 1. Acted gestures.
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5.2. Phase I: perception of expressivity parameters

Twenty people participated in the first phase of the experiment
and watched a subset of 16 videos in custom-made forced-choice
web interface. The selection of this restricted subset was based on
the results of the computer vision component. Only videos with
valid results on all expressivity parameters returned through the
computer vision component were used. Participants were recrui-
ted in person and their contribution was submitted remotely with
no supervision. The group was formed by ten male and ten female
raters, aging from 25 to 35, all of the same nationality and of
similar higher education background (holders of a master's degree
or PhD candidates). They were purposely chosen so as not to be
familiar with concepts of affective computing and in particular of
expressivity parameters. These parameters were first explained in
the introductory page, where the participants’ consent was
requested. Only data from participants that completed the
experiment were taken into account. Each video was presented on
a separate page along with five sliders corresponding to each
expressivity parameter. Videos ranged from 4 to 8 seconds
duration.

The original videos were pre-processed for the requirements of
the perception study. More specifically, the face of the person in
each video sequence was blurred in order to avoid facial expres-
sion effects in the judgment of the human raters. The sound was
also muted in order to account for similar confounding effects of
voice pitch as well as the semantic content of utterances. Partici-
pants were asked to view each video as many times as they
desired, in order to use provided sliders and rate the perceived
behaviour on the five expressivity scales. Videos were randomised
differently for each participant.

Feedback from the participants was recorded through a short
interview after completing the online experiment. They reported dif-
ficulties in grasping the concepts of the parameters and that they “got
the hang” of rating properly only after a couple of videos. It is worth
mentioning that they found the expressivity parameters overlapping
in meaning and had difficulties discerning “subtle nuances”.

One could argue that in acted emotional expressions there are
actually three aspects on which one could perform analysis and
study their correlation or derive useful conclusions concerning
either emotional expression evolution, dynamics, etc. or the user's
personality or even divergence from the expected or instructed
emotional display.

These three aspects could be the following:

1. Instructed emotion: Either in terms of direct guidance or in
terms of the induced emotion, in either case, an explicit pre-
determined emotional state represented as a specific emotional
category or a region in some emotional space (Whissell's wheel/
PAD values)

2. The automatic analysis output in the form of features related to
affect or like an emotional label or any other emotion repre-
sentation entity. Although this aspect is not always indicative of
the quality of automatic affective analysis, it is the fused out-
come of both the feature extraction and the classification
pressivity with affective representations. Eng. Appl. Artif. Intel.
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Fig. 2. Intermediate frames from the raise hand gesture.
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capabilities of the machine learning or any other method
employed to perform the automatic analysis.

3. The expressed emotion in terms of how it was perceived by either
expert annotators or regular viewers. Although the volunteer-
actors may have been instructed to perform an emotional
display according to some scenario, this does not entail that
they succeeded in conveying the emotion or that the emotion
was successfully perceived.

Thus, while the previous two aspects are absolutely defined,
inter-rater agreement (or rather disagreement) and other factors
governing human annotations establish the third aspect as fuzzy,
though indispensable for a complete affective analysis study. This
is the aspect we focus on in the perception study, with regard to
expressivity parameter perception.

We followed a similar approach to Caridakis et al. (2007) who
calculated the correlation of the automatic analysis output with the
instructed behaviour quadrants. A strong correlation was found only
between power and overall activation with the activation dimension.
In this phase of the experiment, we investigated the correlation of the
automatic analysis results with the participants’ ratings for each
expressivity parameter (Table 1). Initially, all 16 sets of ratings for each
participant were taken into account. We also calculated correlation
coefficients when only taking into account ratings for the last 12
videos that each user viewed to control for a novelty effect with the
rating scheme. In both cases, we correlated the average of users’ scores
for each expressivity parameter of each video (rows marked as ‘Avg’ in
Table 1 for 16 and 12 videos respectively), as well as their median
scores (rows marked as ‘Median’ in Table 1 for 16 and 12 videos
respectively) against machine extracted values.

There was no significant variance between the different data views
investigated. We measured significant correlation only in the case of
the spatial extent feature. Power and speed also correlated relatively
well. The low values for overall activation and the negative correlation
for the case of fluidity support the view from the qualitative findings
that users did not conceive these parameters correctly. These values
might also be attributed to the videos’ particularly short duration.

The chosen subset of 16 videos included only four out of seven
volunteer-actors that participated in the video filming. For each of the
four actors (featuring in four videos each) we analysed the correlation
of their scores separately. From this approach it is worth mentioning
Please cite this article as: Malatesta, L., et al., Associating gesture e
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that one student was perceived by raters with less power than the
corresponding instruction although the automatic analysis did
recognise the expected values. This was expected since the subjects
were not professional actors and individual differences are bound to
change the way expressivity is perceived.

We also investigated the correlation of human rated power with
human rated speed which returned a very high value (0,95) which
indicates what the users already reported, that they had difficulty in
discerning the differences between these two expressivity features.

5.3. Phase II: rating of expressivity perception using dimensions

In work by Caridakis et al. on the same corpora (Caridakis et al.,
2007), the authors identified an association between overall activation
and the dimension of activation while using the instructed behaviour
quadrants as their ground truth. A core research challenge of the
current study was to investigate if conclusions on the evaluation
dimension can be drawn from bodily expressivity alone without any
cues from facial expressions and vocal features. Thus, this second
phase of the experiment was a forced choice design during which
participants rated their perceived expressivity of stimuli on two
affective dimensions.

We asked 103 participants (56 male and 47 female from 25 to
45 years of age) to use a web interface similar to that of study
1 where a random selection of 40 out of the total 67 videos was
displayed in random order to each user. Sliding bars were used to
collect user expressivity ratings on the dimensions of activation
and evaluation. Similarly to the first phase, an explanation of the
affective dimensions was provided in the introductory page, were
the participants consent was requested. Each video was presented
on a separate page along with two sliders corresponding to each
dimension. Again, participants were asked to view each video as
many times as they desired in order to use provided sliders and
rate the perceived behaviour. For each participant, we started
taking into account their ratings after the fourth video sequence,
ignoring the first three to control for novelty effects.

Feedback from the participants was recorded through a short
interview after completing the online experiment. The rating
process using dimensions was easy to grasp and intuitive. Users
were satisfied with their ratings and seemed to get familiar with
the task at hand early on in the process.
xpressivity with affective representations. Eng. Appl. Artif. Intel.
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Fig. 3. Web interface snapshot of expressivity perception test using dimensions.
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Prior to investigating whether the system-generated expres-
sivity parameters could be associated with the evaluation and
activation dimension values collected by the experiment, we had
to establish that the mean ratings reported by participants for
these dimensions are reliable.

In order to estimate inter-rater consistency, we calculated the
Intraclass Correlation Coefficient (ICC) (Shrout and Fleiss, 1979). As
ICC approaches the value of 1, less variance will be explained by
the effect of the participant, as a given video will tend to yield a
similar set of ratings. Using the statistical analysis toolbox SPSS,
participants were considered as items and the 67 videos were the
cases. There was no way to know which videos each participant
rated. For this reason, a one-way random model was chosen that
treated the participant as a random factor.

For the activation dimension, the average measure ICC was .
941. For the evaluation dimension, the average measure ICC was .
958. These results suggest that the mean ratings for each video are
reliable and can be used in our subsequent analyses.
6. Associating expressivity parameters onto activation –

evaluation dimensions

Having established a satisfactory inter-rater agreement, we moved
on to investigate the association of calculated expressivity parameter
values for the 67 videos, with values -obtained through annotation-
for the dimensions of activation and evaluation.

Looking into ways of associating the two different representations
of expressivity on this set of data we first needed to investigate which
expressivity parameters seemed to affect the corresponding dimen-
sion values. In other words we needed a robust way to evaluate the
appropriateness of each of the parameters in estimating the dimen-
sions of activation and evaluation.
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6.1. Fisher's test

In order to evaluate the appropriateness of each of the expressivity
parameters for estimating dimensions, we used Fisher's exact test
(Fisher, 1954), as was done in (Asteriadis et al., 2012), where the focus
was to infer relations between expressivity features (2D, 3D body
analysis, gestures and face expressivity) and affective cues. To this aim,
we quantized the values of Activation and Evaluation to the closest
integers (0 and 1), thus splitting the dataset in two groups for each
dimension. A 3-bin histogram of low, medium and high values for
each of the expressivity parameters was calculated for each of the two
groups, one for low-high activation and one for low-high evaluation.
The resulting histograms for the low and high values of each
dimension separately, were compared against each other.

Fisher's exact test for histograms comparison was preferred over
other methods (such as the chi-square method), because it is suitable
for small scale data. Indeed, in the current dataset, it is often the case
that there are only a few instances with low or high values at the
corresponding histogram bins (for example, the temporal parameter
did not have a lot of instances in the third bin in the case of high
activation judgments). Fisher's exact test is ideal in depicting such
differentiations in cases of small samples.

The statistical test indicates the rejection of an expressivity para-
meter if its histogram values, for each dimension, are not significantly
different (p40.05). In our case, we were led to rejecting the Overall
Activation parameter, as a non-useful parameter at estimating the
Activation dimension. This is qualitatively explained if one takes into
account the fact that, by definition, overall activation is especially
sensitive during the whole video process. Thus, while raters intuitively
focused on the depicted gesture itself, the automatic parameter
extraction takes into account the total number of the frames in a
gesture, considering information not related to the gesture under
consideration (apex and offset phases of the gesture) (Fig. 3).
pressivity with affective representations. Eng. Appl. Artif. Intel.
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Fig. 4. Histogram bins of maximum spatial extent parameter values (low¼1,
medium¼2, high¼3). Axis x corresponds to the parameter values (quantized in
low, medium, high values) and axis y counts the number of the corresponding
instances for low/high evaluation.

Fig. 5. Histogram bins of power parameter values (low¼1, medium¼2, high¼3).
Axis x corresponds to the parameter values (quantized in low, medium, high
values) and axis y counts the number of the corresponding instances for low/high
evaluation.

Fig. 6. Histogram bins of overall activation parameter values (low¼1, medium¼2,
high¼3). Axis x corresponds to the parameter values (quantized in low, medium,
high values) and axis y counts the number of the corresponding instances for low/
high activation.

Fig. 7. Histogram bins of fluidity parameter values (low¼1, medium¼2, high¼3).
Axis x corresponds to the parameter values (quantized in low, medium, high
values) and axis y counts the number of the corresponding instances for low/high
activation.
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Similarly, in the case of the Evaluation dimension, the Power
parameter was discarded. The qualitative explanation for this is the
fact that the same "amount" of Power may express either pleasure or
displeasure in a gesture. Figs. 4–7 show representative examples of
expressivity parameters' distributions for both dimensions, where, for
each expressivity parameter and dimension, two histograms are
compared against each other: one corresponding to the distribution of
the expressivity parameter across low activation/evaluation values and
one across high activation/evaluation values

6.2. Neuro-fuzzy system

For mapping expressivity parameters to dimensions, a Sugeno-
type fuzzy1 (Takagi and Sugeno, 1985) inference system was built for
estimating Activation, while a different model was used for the
dimension of Evaluation. Such types of systems perform well in
1 Matlab fuzzy logic toolbox.
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approximation and generalization problems. They are used in various
applications ranging from simple neuro-fuzzy models (Jang, 1993), to
multilayer classifiers (Mitra and Pal, 2002; Nauck and Kruse,1997; Cho
and Kim, 2002). The underpinning rationale of fuzzy systems is that
behavioural states cannot belong to certain classes, but they take fuzzy
xpressivity with affective representations. Eng. Appl. Artif. Intel.
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Table 2
Neuro-Fuzzy System decision accuracy for two different sets of expressivity para-
meters for estimating Activation.

Absolute mean error7std

Spatial Extent, Temporal, Fluidity, Power 0.1270.10
Spatial Extent, Temporal, Fluidity, Power, Overall
Activation

0.12370.10

Table 3
Neuro-Fuzzy System decision accuracy for two different sets of expressivity para-
meters for estimating Evaluation.

Absolute Mean Error7std

Spatial Extent, Temporal, Fluidity, Overall
Activation

0.2170.17

Spatial Extent, Temporal, Fluidity, Power, Overall
Activation

0.2470.17

Fig. 8. Activation values: neuro-fuzzy network predictions (blue) and user ratings
(red). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 9. Evaluation values: neuro-fuzzy network predictions (blue) and user ratings
(red). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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values. Furthermore, given the exploratory nature of the research, we
were uncertain of the mapping between parameters and dimensions,
and, so we could not investigate any linear or nonlinear model
beforehand. Building neuro-fuzzy systems and letting a training
algorithm decide the weights and the whole structure of our model
was thus an appropriate approach. In particular, the feature vectors
used as inputs to the neuro-fuzzy systems consisted of expressivity
parameters (normalized from 0 to 1). In the case of estimating levels
of activation, different configurations of feature vectors were tested
and, based on the analysis provided above, the input parameter vector
that gave the best results were those of Spatial Extent, Temporal,
Fluidity, Power. In a similar manner, for estimating levels of Evaluation,
the most correlated parameters were those of Spatial Extent, Temporal,
Fluidity, Overall Activation (see next Section for a discussion on the
results).

Fuzzy systems consist of rules (e.g. high Overall Activation values,
combined with high Temporal, low Fluidity and low Power values
leads to low Activation) and map input parameters to semantic fuzzy
sets (modelled through membership functions that describe the
extent to which a parameter belongs to ‘high’ or ‘low’ values). An
inference mechanism estimates the extent to which a rule is triggered
at a specific instance and combines the outputs of each rule for pro-
viding an overall estimate of the output (here, Activation and Eva-
luation). In this work, since no prior knowledge of the data structure
Please cite this article as: Malatesta, L., et al., Associating gesture ex
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and their behaviour was known, we used data clustering for inferring
the optimal number of rules (Chiu, 1994), as well as least squares and
back-propagation gradient-descent for inferring membership function
centres and widths (Jang, 1993). In particular, prior to training, our
data were clustered using the sub-cluster algorithm described in Chiu
(1994). This algorithm, instead of using a grid partition of the data,
clusters them and, thus, leads to fuzzy systems deprived of the curse
of dimensionality. For clustering, many radius values for the cluster
centres were tried and the one that gave the best trade-off between
complexity and accuracy was 0.333 for all normalized inputs and
outputs both in the case of activation and evaluation experiments. The
number of clusters created by the algorithm determines the optimum
number of the fuzzy rules.
7. Results

Tables 2 and 3, as well as Figs. 8 and 9 summarize the results of the
overall accuracy of our system in estimating each dimension based on
the expressivity features extracted by the hands trajectories. We
conducted experiments using the features selected after Fisher's tests
but, also, we verified that (Tables 2 and 3), including the features
discarded by the test, would not improve the whole accuracy (or
possibly, it would deteriorate results due to noise). The absolute errors,
as well as the standard deviations, corresponding to the performance
of each fuzzy system in relation to the values given by the raters,
verify the validity of our choice for neuro-fuzzy inference logic, as well
as our prior intuition that hand gesture-dependent expressivity fea-
tures play a key role at estimating affective dimensions.

Training was done using a leave-one-video-out protocol (input
(expressivity) parameters were all normalized with the maximum
values of the parameters of the training data), while Gaussian mem-
bership functions for the fuzzy rule sets were considered. For training,
the remaining video-sequences were used and the process was
repeated until all videos were used as validation data. Furthermore,
for each validation video sequence, we used the average of all ratings
per dimension, as target dimension level, excluding those whose
distance from the average was three times the standard deviation.
This helped avoid completely unexpected ratings that could be due to
rater's tiredness or other exterior factors.
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Fig. 10. Correlation between temporal/spatial extent and the dimension of
Activation.

Fig. 11. Correlation between power/fluidity and the dimension of Activation.

Fig. 12. Correlation between spatial extent/overall activation and the dimension of
Evaluation.

Fig. 13. Correlation between Temporal extent/fluidity and the dimension of
Evaluation.
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7.1. Association methodology-association rules

A visual inspection of the fuzzy system rules can be seen in
Figs. 10–13. From these figures, we can conclude the following:

(1) Association with the Activation dimension
Small temporal and spatial extent, are related to high values in
activation (see Fig. 10). Also, in Fig. 11, we can see that, for low
values of power, no matter how high the values of fluidity are,
the estimates of activation are low. On the contrary, when power
and fluidity take higher values, there is an increase in activation.
This can be intuitively explained since, fluidity, due to the way it
is defined, takes high values for sudden movements.

(2) Association with Evaluation dimension
From Fig. 12, the correlation between the dimension of eva-

luation with spatial extent and overall activation can be seen.
Small spatial extent is related to low levels of evaluation (plea-
sure), while the same is valid also for low values of the overall
activation parameter. Fig. 13 shows the correspondence of eva-
luation with fluidity and temporal extent. It can be seen that, as
temporal extent increases, gesture interpretation tends to cor-
respond to lower values of pleasure. It is also observed that, for a
particular "medium" level of fluidity, evaluation takes high
values.
Please cite this article as: Malatesta, L., et al., Associating gesture e
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8. Conclusions

The purpose of this paper is to associate expressivity parameters
with dimensional representations of affect. The approach presented
was based on acted gestures and their expressiveness. Especially in
terms of the dimension of evaluation, such an associationwith gesture
expressivity had yet to been shown.

The presented results are promising since the activation/evaluation
values predicted by the neuro-fuzzy network showed little deviation
from the ground truth collected in the user perception study.

The introduced methodology provided an interim representation
mechanism with a set of association rules between expressivity para-
meters and affective dimensions. These rules can be used for the
analysis of other corpus data. They can also function as a stepping
stone towards the analysis of naturalistic and spontaneous non-verbal
expressions. The application of these rules in novel contexts is chal-
lenging and can lead to further improvement of the methodology and
its applicability. Future work will thus focus on applying these rules,
along with the automatic analysis of expressivity parameters to novel,
either acted or non-acted corpora where ground truth is harder to
come by.

The proposed association methodology between expressi-
vity parameters and activation/evaluation dimensions is a valuable
xpressivity with affective representations. Eng. Appl. Artif. Intel.
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tool that will allow for the inclusion of expressivity parameters in the
fusion process of multiple modalities coded in dimensional repre-
sentations and is sought to be a big step towards bridging diffe-
rent representations schemes. With the advent of new, non-intru
sive motion capture devices (e.g. depth sensors), three-dimensi-
onal motion information, new human-machine interfaces emerge.
Endowing machines with the ability to easily interpret humans’
emotional state, can give a significant boost to today's classical inter-
faces, while it can open new fields of human-centric research.
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