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ABSTRACT
This paper presents an overview on how an ecosystem, con-
sisted of users, appliances and environmental context inter-
acts. The ecosystem is modeled by using Semantic Web
technologies from the Internet of Things (IoT) perspective.
The IoT is made of users, appliances, sensors and houses.
Users are modeled as fuzzy personas and these models are
semantically related. Semantic Web technologies enhance
the system with adaptability and assist the incorporation of
environmental context, user and usage information. Context
information consists of temperature, humidity and luminos-
ity and information about infrastructure reconfiguration and
user location. This information is collected from various IoT
sensors, in the pervasive and urban environment and stored
into a repository for rule triggering and system adaptation.
Experiments were conducted in order to validate the effec-
tiveness of the proposed system both in the restricted scale
of a smart home as well as in a larger scale using input from
the SmartSantander Smart City project, collected using the
FIWARE framework.
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1. INTRODUCTION
Emerging ubiquitous or pervasive computing technologies

offer “anytime, anywhere, anyone” computing by decoupling
users from devices [7].To provide adequate complex service
for the users, applications and services should be aware of
their contexts and automatically adapt to their changing
contexts known as context-awareness [7] .Context is very
important, since it provides information about the present
status of people, places, things and devices in the environ-
ment. Context is any information that can characterize the
situation of an entity. An entity could be a person, place or
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object that is considered relevant to the interaction between
a user and an application, including location, time, activities
and the entity’s preferences [7]. Context-awareness refers to
the ability of using context information. Thus, a system is
context-aware if it can extract, interpret and use context in-
formation to adapt its functionality to the current context
of use [3]. In the same view, the term context computing
is commonly understood by those working in context-aware
area, where it is felt that context is a key in their efforts to
disperse and transparently weave computer technology into
our lives.

Currently, there is a period of beginning activity on context-
aware pervasive computing practices that rely on the use of
Internet, where objects are identified as Internet resources
and can be accessed and utilized as such (Internet of Things
approach). The Internet of Things (IoT) is made of sensors
and other components that connect our world made of i.e.,
humans, our devices, etc., with other objects and appliances.
This enables homes and cities respectively to be self-aware
and dynamically reconfigurable in real- or near-real-time,
based on changes that are continuously monitored and cap-
tured by sensors. Data collected by various IoT sensors and
processed via appropriate analytics can also help predict the
immediate future with reasonable accuracy, which enables
better planned responses and actions. Homes and cities can
thus become more adaptable to the humans’ needs resulting
in the formation of“smart(er) communities”that are socially
connected in new ways.Thus, using a complete ecosystem of
users, context sensors and smart home appliances that in-
teract following a ubiquitous computing paradigm, would
help to adapt and enhance the everyday user-appliance in-
teraction. As a result, for Smart Home environments to fur-
ther fulfill the users’ needs, they have to contextualize their
large-scale data. Contextualization is crucial in transform-
ing senseless data into real information, information that
can be used as actionable insights that enable intelligent
corporate decision-making.

What context comprises is a widely debated and contro-
versial issue. An extended body of literature exists about the
nature of “context in interaction” [8]. In addition, attempts
to create a standardized definition of use context have been
made [9]. However, some researchers consider the present
definitions of context too vague and general to be adapted
to any specific design processes. The following objection



is common [8]: because context is tightly intertwined with
users’ internal and continuously changing interpretations, it
seems difficult to capture context in any general sense that
would support design. Thus, the demand for a new, empiri-
cal approach has been noted. For example, Dourish [8] dis-
tinguishes between two strands of empirical context-aware
computing research: the physical based interaction and the
development of interactive systems around understandings
of the generally operative everyday social interaction. The
majority of empirical research falling under the first category
has mainly been concerned with fixed indoor contexts (e.g.
offices, meeting rooms, and lecture halls), due to the fact
that such settings appear to be static. However, the present
study falls under the second line of empirical research, in
which we try to understand particular user and home ap-
pliances pervasive interactional processes in a sensor driven
smart home environment.

Particularly, the novelty of our proposed approach is to
provide a common context-aware architecture system in which
the user (“eahouker” in SandS) is able to control his house-
hold appliances in a collective way via the SNS (Social Net-
work Service) and in an intelligent way via the adaptive so-
cial network intelligence. As our system is human-centered
the UM (User Modeling) is related to the user’s activity in-
side the ESN (Eahoukers Social Network), while the context
aware environment refers to the contextual information that
characterize the situation and conditions of the system’s en-
tities. The modeling of the contextual information is com-
pleted through the capture of the semantics of the relation-
ships between the user and the various entities of the ecosys-
tem (other users, appliances, recipes) to further improve the
overall user experience. The semantic description framework
of our proposed approach, is based on a number of home
rules that are defined for a specific household and eahouker.
Since the SandS architecture consists of two layers, high and
low respectively, we have on the one hand recipes for com-
mon household tasks produced and exchanged in the SandS
Social Network that are described in near natural language.
Additionally, on the other hand we have every user’s con-
text which consists of the actual appliances that the user has
in house with their particular characteristics (type, model,
brand, etc.). Finally, to ensure with the executability and
compatibility of a recipe and to deal as well with any un-
certainly and vagueness in modeling the contextual infor-
mation, a number of some axioms, to enforce constraints to
all objects (things in IoT paradigm) of the ecosystem have
been introduced in the proposed Web Ontology Language
(OWL) that was adopted. To conclude with, the experi-
mental results for the above framework are presented that
have been conducted inside the “Social & Smart”(SandS)1

FP7 European Project which aims to highlight the poten-
tial of IoT technologies in a concrete user-centric domestic
pervasive environment.

The remainder of this paper is structured as follows: we
discuss context in ubiquitous interaction in section 2 and
we further introduce context extraction along with context
semantic representation in section 3. The experimental vali-
dation and the results are analysed in section 4, with related
conclusions derived and future work presented within section
5.

1http://www.sands-project.eu/, Accessed: 2015-02-19

2. CONTEXT IN UBIQUITOUS INTERAC-
TION

2.1 Users’ Context Awareness
As the interaction between the humans and the systems

becomes increasingly important for the systems, the user
modeling becomes very crucial.User modeling (UM) is the
progress through which systems gather information and knowl-
edge about the users and their personal characteristics [11].One
of the areas of significant growth for UM is ubiquitous com-
puting.The community’s modeling, until recently focused
mostly on context: the user’s location, physical environ-
ment, and social environment. The emphasis was stronger
on modeling context than on modeling the user. In the UM
community, on the other hand, because of the influence of
ubiquitous computing, there has been an increasing concern
for the inclusion of context in UMs.

More specifically, the field of pervasive computing has
been benefited with the use of ontologies [4].Particularly, us-
ing ontologies to include context in UMs assists in overcom-
ing some major issues such as the discovery of the new enti-
ties, their current availability, the interoperability between
the different entities as well as their adaptability to rapidly
changing situations (context-awareness) [14]. W.r.t. these
requirements Stavropoulos et al.[17] proposed the BonSAI
(Smart Building Ontology for Ambient Intelligence) which
benefits from existing ontologies and also adds more classes
to model concepts (i.e, services, resources, users, context, ac-
tuators, etc.). Other context driven composition approaches
suggest the implementation of customized services using com-
ponents such as building blocks by using context information
to deal with the variability of pervasive computing devices
and user personalization [13]. In a similar way, an agent-
based framework that is more adaptable to context changes
has been proposed to better fulfill more complex services
[15].

2.2 Pervasive Context
Another important issue that should be pointed out is the

interplay between user’s preferences and situational context
within a pervasive contextual interaction.The view here is
that “user models” may have certain main effects, but it is
often the contextualized behavioral interaction we are inter-
ested in.

So far, most users write rules by hand to interpret sensor
data and to control devices. For example, home owners in-
stall home automation equipment must write their own rules
for when their lights turn on and off. Artificial intelligence
(AI) plays a pivotal role in automating this process.AI tech-
nologies seek useful information on the contextualized resi-
dents’ behavior and the state of the home.Computer algo-
rithms have been designed to predict and identify activities
performed in the home and to recognize emotions and ges-
tures. These capabilities, as well as the abilities to recognize
activities, identify trends, are becoming more available and
robust, but are not commonly found in actual homes.

As a result, the goal is to enable devices to interact with
their peers and the networking infrastructure without ex-
plicit human control. The smart home must also be im-
bued with an awareness of the resident context (location,
preferences, activities), physical context (lighting, temper-
ature) and time context (hour of day, day of week, sea-



son, year). Providing this type of context-aware technology
makes it possible to design environments that provide, for
example customized lighting and temperature settings based
on learned users’ preferences.

3. CONTEXT EXTRACTION AND SEMAN-
TIC REPRESENTATION

Besides cross-referencing internal data with a plethora of
other sources, we need algorithms to extract real human
meaning, from the data. To accomplish this, the context-
awareness of the changes in the users’ context and between
the user and the application should be expressed in an intel-
ligent way through a number of executing rules. A recent at-
tempt has been described in [6]. The authors developed the
architectural pattern Event-Control-Action (ECA) to col-
lect context information (i.e. facts) and to formulate rules
through the use of the ECA-DL expressive domain language.
Stavropoulos et al. [16] have also adopted the ECA-DL lan-
guage to build their systems, with a focus on energy sav-
ings. Finally, other works’ suggestions range from the use
of context-aware rule-based notification services to provide
notification depending on the users’ context, to the adoption
of Multi-Context Systems [2] to collect, process, change and
share the available context information hosted by ambient
agents.

On the contrary, our approach uses Semantic Technolo-
gies to represent the knowledge of the ecosystem. The lat-
ter, consists of cities and is converted to its corresponding
semantic representation. The cities are comprised of the
houses, which are located in them, the appliances and their
parts which exist in the houses, as well as the people and
the sensors. The sensors are located both in each house and
the cities, providing the environmental context of each house
and each city respectively.The environmental context poten-
tially could be: (i) the temperature, (ii) the humidity, (iii)
the luminosity, (iv) the power consumption, (v) the noise
levels and (vi) the human presence. All the data received
from the sensors, are stored in a database and are updated
every time a new value is received from the sensors.

To define the conditions under which the appliances should
be switched on or off, a number of rules are introduced,
known as “home rules”. Some examples of such rules might
be “do not operate the Air-conditioner when the outside
temperature is greater than 15◦C”, or, “do not operate the
washing machine when the power consumption of the house
in greater than 20kW”.

3.1 Ecosystem Modeling
To semantically model the ecosystem,we use the OWL 2

Web Ontology Language (OWL 2)[5], which is an ontology
language for the Semantic Web with formally defined mean-
ing. OWL 2 ontologies provide classes (or concepts), rela-
tions (or properties), individuals and data values (or literals)
which are stored as Semantic Web entities.

Ontology Hierarchy: To represent the ecosystem as an
ontology, we choose to model as classes the following parts
of the ecosystem: (i) the Users, (ii) the Locations, (iii) the
Appliances, (iv) their parts and (v) the Sensors.

Due to the fact that our ontology is hierarchically struc-
tured, the descriptive classes such as:“Refrigerator”, “Wash-
ing Machine” and “Air-conditioner”, should be subclasses of
the class “Appliance”. Figure 1 illustrates an example of the

hierarchical structure of the ontology used to semantically
model our ecosystem.

Individuals: Each ecosystem is comprised of a number of
appliances, sensors, people and locations. All these entities
of interest are modeled as individuals. In a more detailed
way, every single appliance, such as a sensor and a person
is represented in the ontology as an individual of the Ap-
pliance, Sensor or Person class respectively. Finally, every
unique individual, has a different ID.

Relations: To describe the way in which individuals in-
teract with each other, we use relations. Relations can nor-
mally be expressed directly between individuals or between
classes. These relations also can be called “object proper-
ties”, while the relation between an individual, or a class,
with a data value is called “data properties”.

The object properties of our ontology are mainly used to
relate the sensors with a specific location, (i.e., the inhabi-
tants with the house they live, the appliances with the house
in which they are, the appliance parts with the appliances
they are parts etc.). On the other hand, data properties
are similar to object properties with the sole difference that
their domains are typed words. In our ontology, they relate
the actual sensor values with a sensor, power on or off sta-
tus of the appliances, and the user properties with the data
values.

The relations are also used for the user modeling. Data
properties with names such as “age”, “gender” and “status”
are modeling the information of the users about their age,
gender and their social status, respectively. On the other
hand, object properties such as“marriedWith”, “livesIn”and
“belongsTo” provide additional information about the user
context and relate the users with other users and the objects
of the ecosystem.

The ontology of the ecosystem has been created using the
open source Protégé 4.2 platform. Figure 2 illustrates the
graph of the ontology produced based on the Protégé plat-
form. The edges between the nodes represent the relations
between the ontology concepts and individuals.

3.2 Rules and Consistency Check
In this section we present our novel semantic representa-

tion of the ecosystem’s home rules. In the Semantic Web,
the home rules are expressed using the Semantic Web Rule
Language (SWRL) [10]. SWRL has the full power of OWL
DL, only at the price of decidability and practical implemen-
tations. Despite that, the decidability can be regained by
restricting the form of admissible rules, typically by impos-
ing a suitable safety condition. Rules have the form of an
implication between an antecedent (body) and a consequent
(head). This meaning can be read as: ‘whenever the condi-
tions that are specified in the antecedent may hold, the con-
ditions that are specified in the consequent must also hold’.
The critical thing of the ontology is that the ontology should
always be consistent, after the reasoning. This condition is
verified by using of a Pellet reasoner [12]. Every time a home
rule is violated, an inconsistency is always detected.Taking
this into account and whenever the conditions that are spec-
ified in the antecedent’s hold, the conditions specified in the
consequent must also hold, hence the home rule’s violation
is transformed to the respective antecedent of the SWRL.

To prohibit the appliances from switching on, the cre-
ation of a data restriction is needed. A data property is
created with the name “restriction”, whose domain is an ap-
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Figure 1: Hierarchical structure of the semantically modeled ecosystem.

Figure 2: Ontology graph implemented in Protégé platform.

pliance and its value is a Boolean.This restriction is added to
the “Appliance” class stating that this data property should
never get the true value. Then, every home rule must be
created from a text in natural language to its correspond-
ing SWRL. Its form has two parts. If the left side of the
rule is satisfied, then after applying the Pellet reasoner, the
“restriction” property is created for the appliance with its
value being true. Each one of the appliances is switched
on until at least one of the home rules is triggered. When
a home rule is triggered a restriction is created, leading to
an inconsistency. Every time new data is gathered from a
sensor the database is queried to check if any of the new
sensor values are causing any inconsistency in the ontology.
Subsequently, using the Pellet reasoner the system checks
for any possible existence of inconsistency. Finally this in-
consistency is forcing the appliance to switch off or switch
on.

In Table 1 we present some home rules, expressed using
the SWRL with the help of the Protégé. The first home rule
expresses that the Washing Machine should not be operated
when the power consumption is too high and specifically,

greater than 1000W per hour. The value of the power con-
sumption is gathered through a sensor in the house and is
stored in the database.To check the consistency of this home
rule the database must be queried. Similarly, the three fol-
lowing home rules express that the Air-conditioner should
not be switched on, when the temperature is higher than
15◦C , the luminosity is lower than 100 lux and no hu-
man presence is detected in the house. It should be em-
phasized that the data gathered from the sensors are not
stored into the ontology but into the database.To further
check any home rule triggering, the database is queried to
check whether any of the home rules is triggered. Even
though the SWRL does not have negation, that should not
be considered as a problem due to the fact that, if any nega-
tion is needed, it can be represented to the left part of the
rule using a property that could be either true or false (e.g.
isOn, notEqual).

4. EXPERIMENTAL VALIDATION
For the large-scale tests of the unified user in the smart



(a) Luminosity value during a twenty four hour period. (b) Temperature value during a twenty four hour period.

Figure 3: Environmental values, collected by sensors, of in-house and city sensors during a twenty four hour period.

home in the smart city, the SandS approach uses the con-
text sensor data that has been gathered within the Euro-
pean Project SmartSantander2, which is turning into a living
experimental laboratory as part of the EU’s Future Inter-
net initiative. Major companies have been involved in the
project including Telefonica Digital, the company’s R&D
wing, along with other smaller suppliers as well as utility
and service companies.

4.1 Sensors
In the presented ecosystem, as it has been already men-

tioned, there are sensors both in every house and for the
whole city, which are called ‘in-house’ and ‘city’ sensors re-
spectively. The sensors send periodically information about
the temperature, the luminosity and other environmental
context information. Both the in-house and the city sensors
send the values of the sensors periodically to the ecosystem.
These values are stored to a specific table of a database over-
writting the previous record that was stored. The in-house
sensors send information about the environmental context
inside the house, such as the noise levels, the house tem-
perature, etc. At the same time, the city sensors gather
environmental information about the city, such as the tem-
perature, the humidity, the air pollution, etc. Every time a
new sensor value is stored into the database, its timestamp
is also stored. Once again, all the sensors send their values
periodically to the ecosystem.These values are stored to a
specific table of a database overwriting the previous record
that was stored. The collection of the city sensor values is
accomplished using the FIWARE Ops tools [1]. Adding all
this sensors’ information in a database, it is every time fea-
sible for the system to identify the exact condition inside
and outside the house, by just making a simple query in the
database. Then, due to the home rules’ structure it is pos-
sible in a very short time for the ecosystem to know if any
home rule is triggered and if any appliance in a house should
be switched on or off.

4.2 Experimental Results
2http://www.smartsantander.eu/

For our experiments we simulated an ecosystem in which
the home rules, presented in Table 1 hold. Figure 3 presents
the environmental values, collected through the “in-house’
and “out-house’ sensors during a twenty four hour period.
More specifically, we suppose that the human presence sen-
sor detects a human in the house for the whole day. In the
same house there exist an Air-conditioner. Furthermore,
Figures 3b and 3a present the temperature and the lumi-
nosity values during 24 hours, gathered from the city sensor.
During the 24 hours the Air-conditioner is switched of when-
ever any of the home rules, related with the Air-conditioner,
is inconsistent. At 17:10 the Air-conditioner of the house
is switched off because an inconsistency was appeared since
the luminosity of the city was measured lower than 100 lux.
At 6:00 the Air-conditioner is switched on as the ontology
inconsistency disappears, but at 8:55 the Air-conditioner is
switched off once again, due to a different home rule which
triggers the ontology inconsistency whenever the city tem-
perature is greater than 15◦C.

5. CONCLUSIONS AND FUTURE WORK
It is observed that applications out there can gather and

analyze large scale-data, detect human-based meaning from
it, and visualize it all, but any application is limiting itself
if it is only useful once you open the application and en-
ter a query. Attempting to go beyond this, we decided to
formalize and build a complete ecosystem of users, context
sensors and smart home appliances that interact based on
the ubiquitous computing paradigm to adapt and enhance
the everyday user-appliance interaction. Our preliminary
experimental results that have been carried in a small scale
Smart Home setting and in a larger one using the FIWARE3

framework, confirm that such contextual computing technol-
ogy could form a new generation of personalized technology
that knows us better than our closest friends. Armed with
that knowledge our personal devices can anticipate what
we will need next and serve us even better. Although the
system has been tested only with six appliances and the
SmartSantander sensors it can also work well for large scale

3http://www.fiware.org



Table 1: Home rules transformed to the respective SWRLs

Rules
House(?house)∧Sensor(?sens)∧hasSensor(?house, ?sens)∧hasPowerConsumption(?sens, ?power)∧WashingMachine(?wm)∧isLocatedIn(?wm, ?house)

∧isOn(?wm, true)∧greaterThan(?power, 1000)→restriction(?wm, true)
City(?city)∧House(?house)∧builtIn(?house, ?city)∧Sensor(?sens)∧hasSensor(?city, ?sens)∧Air-conditioner(?air)∧isLocatedIn(?air, ?house)

∧hasTemperature(?sens, ?temp)∧isOn(?air, true)∧greaterThan(?temp, 15)→restriction(?air, true)
City(?city)∧House(?house)∧builtIn(?house, ?city)∧Sensor(?sens)∧hasSensor(?city, ?sens)∧Air-conditioner(?air)∧isLocatedIn(?air, ?house)

∧hasLuminosity(?sens, ?lum)∧isOn(?air, true)∧lessThan(?lum, 100)→restriction(?air, true)
House(?house)∧Sensor(?sens)∧hasSensor(?house, ?sens)∧Air-conditioner(?air)∧isLocatedIn(?air, ?house)

∧humanPresence(?sens, ?hum)∧isOn(?air, true)∧notEqual(?hum, 1)→restriction(?air, true)

experiments. Any complexity can be solved by splitting the
ontology to smaller with less complexity.

Future work consists of the exploration of other rule based
paradigms or the combination of the OWL 2 RL ontology
with the SPIN rule based reasoner to enhance the adaptabil-
ity to rapidly changing situations. Additionally, it would be
interesting to incorporate in the future the user, usage and
the context information through a unified semantic represen-
tation, driving an adaptation mechanism aiming to provide
a personalised service and optimizing the user experience.
Among the aspects of the architecture that will be stressed
through experimental validation is the computational cost
and the scaling of SandS to a wider user group. Based on
the SandS architecture the cloud infrastructure ensures the
optimal handling of the computational load since the inter-
mediate processes are not computationally demanding. On
the other hand, issues that may arise from the scaling of the
platform application are part of the experimental validation
since the load is directly correlated with the user activity.
The large scale validation at SmartSantander will provide
us with useful insights about the latter.
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