
Efficient Query Answering Over Expressive
Inconsistent Description Logics∗

Eleni Tsalapati1 and Giorgos Stoilos2 and Giorgos Stamou1 and George Koletsos1

1School of Electrical and Computer Engineering, 2Department of Informatics,
National Technical University of Athens, Greece Athens University of Economics and Business

Abstract
Inconsistent-tolerant semantics, like the IAR and
ICAR semantics, have been proposed as means to
compute meaningful query answers over inconsis-
tent Description Logic (DL) ontologies. In the
current paper we present a framework for scalable
query answering under both the IAR and ICAR se-
mantics, which is based on highly efficient data sat-
uration systems. Our approach is sound and com-
plete for ontologies expressed in the lightweight
DL DL-Lite, but for more expressive DLs the prob-
lem is known to be intractable, hence our algorithm
only computes upper approximations. Neverthe-
less, its structure motivates a new type of ICAR-
like semantics which can be computed in polyno-
mial time for a very large family of DLs. We
have implemented our techniques and conducted
an experimental evaluation obtaining encouraging
results as both our IAR- and ICAR-answering ap-
proaches are far more efficient than existing avail-
able IAR-based answering systems.

1 Introduction
Conjunctive query answering over data described using onto-
logical knowledge is a key reasoning service for many mod-
ern applications [Motik et al., 2012; Chaussecourte et al.,
2013]. Although query answering is normally defined over
consistent datasets, in real-world applications the data can
very often be inconsistent with respect to the axioms speci-
fied in the ontology. In this case the straightforward approach
would be to try and resolve the inconsistencies by “cleaning”
the dataset from the conflicting elements. However, in many
occasions this might not be practical due to, e.g., the large
volume of the data and the non-deterministic nature of the
cleaning procedures. A second approach that has been pro-
posed in the literature, called consistent query answering, is
to devise semantics which describe which answers are “mean-
ingful” to be returned even in the presence of the inconsisten-

∗At the time of acceptance Giorgos Stoilos was a member of
NTUA supported by a Marie Curie Career Reintegration Grant
within European Union’s 7th Framework Programme (FP7/2007-
2013) under REA grant agreement 303914.

cies [Arenas et al., 1999; Bertossi, 2006]. For this reason
such semantics are referred to as inconsistent-tolerant.

Consistent query answering has recently been studied in
the field of Description Logics (DLs) [Lembo et al., 2010;
Rosati, 2011; Bienvenu and Rosati, 2013; Bienvenu et al.,
2014]. Two important approaches, mostly due to their nice
computational properties over the lightweight DL DL-Lite,
consist of the so-called IAR and ICAR semantics [Lembo et
al., 2010]. Despite important theoretical results and a few im-
plemented systems [Masotti et al., 2011; Rosati et al., 2012;
Bienvenu et al., 2014], designing practically efficient consis-
tent query answering systems that could scale up to billions
of data is still largely open. Especially for the ICAR seman-
tics, only a preliminary effort was reported by Masotti et al.
[2011] but the evaluation used very small proprietary datasets
(of the scale of a few thousands). Furthermore, over many
still lightweight DLs, like EL, ICAR-based query answering
is intractable [Rosati, 2011] and, to the best of our knowledge,
no approximate algorithms exist in the literature; Bienvenu
and Rosati [2013] provided approximations of a different type
of inconsistent-tolerant semantics called AR semantics.

In this work we present a framework for efficient query an-
swering under both the IAR and ICAR semantics. First, we
focus on the ICAR semantics and provide a query answering
framework that is based on highly efficient mature data satu-
ration (triple-store) systems. This is particularly interesting as
these systems have shown to be able to handle billions of data.
Moreover, their properties enable us to propose additional re-
finements and optimisations. Our algorithm is correct (sound
and complete) for ontologies expressed in languages of the
DL-Lite family. However, as mentioned, ICAR-based query
answering over DLs like EL is intractable [Rosati, 2011],
hence our algorithm only computes upper approximations of
them. Nevertheless, its structure motivates a new type of
ICAR-like semantics which we show that can be computed
in polynomial time for a very large number of highly expres-
sive DLs; none such semantics were previously known. Sub-
sequently, we show that our framework can also be used for
IAR-based query answering for ontologies expressed in the
DLs DL-Lite and EL⊥nr [Rosati, 2011]. Finally, we have
conducted an experimental evaluation obtaining encouraging
results as both our approaches (IAR and ICAR) are more ef-
ficient than existing IAR-answering systems [Rosati et al.,
2012; Bienvenu et al., 2014].

2 Preliminaries
We use standard notions of first-order constants, variables,
atoms, satisfiability, entailment (|=), model, substitutions (σ),
etc. We also assume familiarity with datalog. For a conjunc-
tion of atoms B = α1 ∧ . . .∧αn we often abuse notation and
write B ⊆ S to denote that {α1, . . . , αn} ⊆ S.

2.1 Description Logics
Description Logics (DLs) [Baader et al., 2003] constitute of a
family of (mostly) decidable fragments of FOL. We use L to
denote an arbitrary DL language and next we recapitulate the
syntax of the DLs EL⊥ [Baader et al., 2005], DL-Lite [Cal-
vanese et al., 2007], andRL [Motik et al., 2009].

The set of EL⊥-concepts is inductively defined by the
grammar: C := ⊥ | A | C1 u C2 | ∃R.C, where A (R)
is called atomic concept (role) and C(i) are EL⊥-concepts.
An EL⊥-TBox T is a finite set of inclusions of the form
C1 v C2 with C1, C2 EL⊥-concepts. Inclusions of the form
C1 uC2 v ⊥ (also written as C1 v ¬C2) are called negative
and the rest positive. We will also refer to EL⊥nr, a syntactic
restriction of EL⊥ defined by Rosati [2011].

DL-Lite restricts EL⊥ by allowing only for concepts of the
form A or ∃R.>; however, R in DL-Lite can also be the in-
verse of a role of the form S− and we can also have inclusions
of the form S v R or S v ¬R for S,R roles. Finally, roughly
speaking,RL is defined as those DL axioms that can be trans-
lated (by simple syntactic transformations) into datalog. For
example, ∃R.A v B is an RL axiom since it corresponds to
the datalog rule R(x, y) ∧ A(y) → B(x), while A v ∃R.>
is not, as it corresponds to A(x)→ R(x, f(x)).

An ABoxA is a finite set of assertions of the form A(a) or
R(a, b) where a, b are constants called individuals. A is con-
sistent w.r.t. some TBox T if there exists a model for T ∪ A;
otherwise it is inconsistent. Finally, we will use T + to denote
all the positive inclusions of a TBox T .

2.2 Queries and Query Answering
A conjunctive query (CQ) is an expression of the form
∃~y.φ(~x, ~y), where φ is a conjunction of function-free atoms
containing only variables from ~x (called answer variables) or
from ~y (called existential variables). A union of conjunctive
queries (UCQ) is a set of CQs all having the same number of
answer variables. A tuple of constants ~a is a certain answer
of a query Q over T ∪ A if T ∪ A |= ∃~y.φ(~a, ~y). We denote
with cert(Q, T ∪ A) all the certain answers ofQ over T ∪A.

Query answering can be realised via a technique known as
query rewriting [Calvanese et al., 2007] which we recall next.
Definition 1. Let Q be a CQ and let T be a TBox. A dat-
alog rewriting (or simply rewriting) R for Q, T is a pair
〈RQ,RD〉, where RQ is a UCQ, RD is a datalog program,
and for each ABox A consistent w.r.t. T we have:

cert(Q, T ∪ A) = cert(RQ,RD ∪ A)

If RD = ∅ then R is called UCQ rewriting and instead of
〈RQ, ∅〉 we simply useRQ to identify the rewriting.

A DL L is called datalog rewritable if for every L-TBox
T a datalog program RD exists such that for every query Q
without existential variables R = 〈{Q},RD〉 is a datalog
rewriting for Q, T .

All DLs mentioned above are datalog rewritable.

2.3 RL query answering systems
Since RL-axioms correspond to datalog rules, to perform
query answering systems that support this DL follow a
datalog-like saturation approach based on the RL fragment
of some TBox T , which in the following we denote by T |rl.
Definition 2. An RL ABox-saturation system ans is a pro-
cedure that takes as input a TBox T , an ABox A, and a CQ
Q and returns a set of tuples ans(Q, T ∪ A) = cert(Q,As),
where As ⊇ A, called saturation, contains all assertions α
such that T |rl ∪ A |= α.

Most systems known to us, like GraphDB, Oracle’s Seman-
tic Graph, and RDFox areRL ABox-saturation systems.

2.4 Inconsistency-tolerant Query Answering
In order to return meaningful answers even from inconsistent
datasets, consistent query answering has been introduced in
the areas of databases and ontologies. Next, we recapitulate
the so-called IAR and ICAR semantics [Lembo et al., 2011].
Definition 3. For a TBox T and an ABox A let clc(T ,A) =
{α | some consistent subset S ⊆ A exists s.t. T ∪ S |= α}.
The Intersection Closed ABox Repair (ICAR) of T ∪ A is
defined to be the intersection of all subsets A′ ⊆ clc(T ,A)
that are consistent w.r.t. T and no other A′′ consistent w.r.t.
T exists s.t. A′ ⊂ A′′ ⊆ clc(T ,A).

Let Q be a CQ and let Aic be the ICAR of T ∪ A.
A tuple ~a is an ICAR-answer of Q w.r.t. T ∪ A if ~a ∈
cert(Q, T ∪ Aic). We denote by certic(Q, T ∪ A) all ICAR-
answers of Q w.r.t. T ∪ A. The IAR semantics and answers
(denoted by certia(Q, T ∪ A)) are defined similarly by re-
placing clc(T ,A) with A.

An algorithm to compute IAR-/ICAR-answers over DL-
Lite-TBoxes was presented by Lembo et al. [2011]: LetR be
a UCQ rewriting for some query Q and TBox T . Evaluating
R over A would return spurious IAR-/ICAR-answers; hence
eachQ ∈ R needs to be extended with proper negative atoms
which will guarantee that only answers that are supported by
the intersection of all repairs are returned. Roughly speak-
ing, for each atom A(x) that appears in Q if T |= A v ¬B
then ¬B(x) is added to Q. We denote this procedure by
ref(R, T) and illustrate it with an example; for details please
see [Lembo et al., 2011, Section 7.2.2].
Example 4. Consider the following TBox and ABox:

T = {∃P v B, P v ¬P ′, B v ¬B′},
A = {P (a, b), P ′(a, b), P (c, d), B(e), B′(e)}

as well as query Q = B(x). Clearly, A is inconsistent
w.r.t. T (e.g., due to {B(e), B′(e), B v ¬B′}), however, we
have certia(Q, T ∪ A) = {c} and certic(Q, T ∪ A) = {a, c}
(“a” is an ICAR-answer since B(a) ∈ clc(T ,A)). Now,
RQ = {B(x),∃y.P (x, y)} is a UCQ rewriting for Q, T .
Then, ref(RQ, T) returns the following set:

{B(x) ∧ ¬B′(x),∃y.(P (x, y) ∧ ¬P ′(x, y)) ∧ ¬B′(x)}

It is easy to see that if we evaluate ref(RQ, T) on A we ob-
tain {c}, i.e., the IAR-answers; notice how the negative atom

¬B′(x) prevents “e” from being returned as an answer. Fi-
nally, to obtain the ICAR-answers, a rewriting algorithm is
applied a second time over ref(RQ, T) returning the set:

ref(RQ, T) ∪ {∃y.P (x, y) ∧ ¬B′(x)}

Evaluating the above over A will indeed return {a, c}. ♦

3 Efficient ICAR-Answering Over DL-Lite
Interestingly, the saturation computed by ABox-saturation
systems given T andAmost likely consists of an approxima-
tion of clc(T ,A). Hence, these systems could (potentially)
be used for efficiently computing ICAR-answers.

Example 5. Consider T ,A, andQ from Example 4 as well as
some RL ABox-saturation system ans. Since T + is an RL-
TBox, over T +∪A ans will compute the saturationAs = A∪
{B(a), B(c)}. Moreover, ref({Q}, T) = {B(x) ∧ ¬B′(x)}
which evaluated over As returns the set {a, c}, i.e., precisely
the ICAR-answers. Note that since we want to compute an-
swers in the presence of inconsistencies rather than allow ans
to report them, we discarded the negative inclusions and con-
sidered how ans behaves over T + ∪ A.1 ♦

However, in TBoxes that contain non-RL-axioms such
systems will miss certain (ICAR-)answers. To overcome
this issue we consider the TBox completion framework in-
troduced by Stoilos et al. [2011; 2014]. Intuitively, in many
cases “materialising” certain entailed axioms of the TBox
“helps” theRL system compute all certain answers even over
non-RL-TBoxes. We recall this notion next.

Definition 6 ([Stoilos et al., 2011; Stoilos, 2014]). Let T be
a TBox and let ans be an RL ABox-saturation system. A
completion of T for ans is a set of axioms C such that T |= C
and for every ABox A consistent w.r.t. T and for every CQ
Q without existential variables we have: cert(Q, T ∪ A) ⊆
ans(Q, T ∪ C ∪ A).

Moreover, let Q be some arbitrary CQ. If a rewriting
〈RQ,RD〉 for Q, T exists then we have: cert(Q, T ∪ A) ⊆
ans(RQ, T ∪ C ∪ A).

Example 7. Consider again T ,A, and Q from Example 4
extended to T ′ and A′ as follows:

T ′ = {C v ∃P} ∪ T A′ = {C(f)} ∪ A

Clearly, certic(Q, T ′ ∪ A′) = certic(Q, T ∪ A) ∪ {f}. Con-
sider also an RL ABox-saturation system ans. Since
T |rl = {∃P v B} there are clearly ABoxes for which
ans will miss answers of Q. For example, we have f ∈
cert(Q, T ′ ∪ {C(f)}) but f 6∈ ans(Q, T ′ ∪ {C(f)}) since
T |rl∪{C(f)} 6|= B(f). Hence, the ICAR-answer “f” cannot
be computed by the procedure we illustrated in Example 5.

However, consider the completion C = {C v B} of T for
ans. Then, over T |rl ∪ C ∪ A system ans will compute the
saturation As = A ∪ {B(f)} since T |rl ∪ C ∪ A |= B(f).
Finally, evaluatingB(x)∧¬B′(x) overAs returns the desired
ICAR-answers, i.e., the set {a, c, f}. ♦

1For this reason, in the following, when we write T |rl we mean
T +|rl.

Consequently, completion and RL ABox-saturation sys-
tems can be used to efficiently compute the ICAR-answers
over DL-Lite TBoxes. A minor technical issue is that we first
need to remove all inconsistent singleton assertions.
Definition 8. Let T be a L-TBox and A and ABox, then
we denote by cr(A, T) the subset of A that is obtained by
removing from A all assertions α ∈ A such that the set T ∪
{α} is inconsistent.

Our previous claims are formalised next.
Theorem 9. Let Q be a CQ, let T be a DL-Lite-TBox, let
A be an ABox and let 〈RQ,RD〉 be a rewriting for Q, T .
Let also ans be anRL ABox-saturation system and let T C =
T + ∪ C for C a completion of T for ans. Then,

certic(Q, T ∪ A) = ans(ref(RQ, T), T C ∪ cr(A, T))

Note that for DL-Lite TBoxes, completions for RL sys-
tems and rewritings for any conjunctive query always exist.
Hence, our result is of high practical relevance.

3.1 Additional Optimisations
Interestingly, as the following example shows, the use of
ABox-saturation systems allows us to further simplify the
structure of the query returned by the procedure ref.
Example 10. Consider the following TBox and ABox:

T = {B v A,B′ v A′, A v ¬A′}
A = {B(a), A′(a), B(b), B′(b)}

and consider also the query Q = B(x). Then, we have
ref(Q, T) = {Q′}, where Q′ = B(x) ∧ ¬A′(x) ∧ ¬B′(x),
which evaluated over A returns ∅. Note that both of the neg-
ative atoms are needed in the query; ¬A′(x) to exclude indi-
vidual “a” and ¬B′(x) to exclude “b”.

Consider now anRLABox-saturation system ans. For ans
we have C = ∅ and over A ∪ T + it will compute As = A ∪
{A(a), A(b), A′(b)}. As can be seen, due to A′(b) ∈ As and
¬A′(x) in Q′ we can drop atom ¬B′(x). Indeed, evaluating
Q′′ = B(x) ∧ ¬A′(x) over As computes ∅ as required. ♦

It follows that some negative atoms added by ref can be
discarded.
Definition 11. Let T be a L-TBox and let Q be a CQ. An
atom ¬A(x) in Q is called covered if there exists some other
atom ¬B(x) in Q such that T |= A v B. An atom ¬R(x, y)
inQ is called covered if there exists some other atom ¬A(x),
¬A(y), ¬S(x, y), or ¬S(y, x) in Q such that T |= ∃R v A,
∃R− v A, R v S, or R v S−, respectively. We de-
note with min(Q, T) the query derived from Q by removing
all the covered atoms. Moreover, for a UCQ R we define
refmin(R, T) =

⋃
Q′∈ref(R,T){min(Q′, T)}.

Theorem 12. Let Q be a CQ, let T be a DL-Lite-TBox, let
A be an ABox and let 〈RQ,RD〉 be a rewriting for Q, T .
Let also ans be anRL ABox-saturation system and let T C =
T + ∪ C for C a completion of T for ans. Then,

certic(Q, T ∪ A) = ans(refmin(RQ, T), T C ∪ cr(A, T))

As we will see in the evaluation section, the above minimi-
sation improves performance significantly.

Algorithm 1 ApproxAns(T ,A)

Input: TBox T , ABox A; Output: Saturation As
1: As := cr(A, T)
2: P := toRules(T +|rl)
3: while No new assertions are added to As do
4: At := ∅
5: for all B → H ∈ P s.t. Bσ ⊆ As for some σ do
6: if Bσ is consistent w.r.t. T do
7: At := At ∪ {Hσ}
8: As := As ∪ At
9: return As

4 ICAR-Answering Over Expressive DLs
Even for DLs with polynomial data complexity, like EL⊥,
query answering under the ICAR semantics has been shown
to be CONP-hard [Rosati, 2011] and tractability cannot be
recovered even after syntactic restrictions [Rosati, 2011].

Our approach can form the basis for approximate algo-
rithms for computing ICAR-based answers over more expres-
sive DLs. However, as the following example shows, directly
applying it can provide with counterintuitive results.

Example 13. Consider the following EL⊥-TBox T =
{A uB v C, A u B v ⊥}, ABox A = {A(a), B(a)}, and
queryQ = C(x). Clearly, we have clc(T ,A) = A and hence
certic(Q, T ∪ A) = ∅.

Now, since T |rl = {AuB v C} anyRL ABox-saturation
system ans would compute for T + ∪ A the saturation As =
A ∪ {C(a)}. Finally, since ref(Q, T) = {Q} then we will
have cert(ref(Q, T),As) = {a}. ♦

Consequently, in the case of more expressive languages,
ABox-saturation systems compute far too many assertions
and hence answers. To control them one has to either extend
the ref procedure to include additional negative atoms (e.g.,
¬A(x) ∧ ¬B(x) in the previous example) or prevent some
assertions from being derived in the first place (e.g., C(a)).

We follow the second approach and propose Algorithm 1
which saturates the input ABox over the RL fragment of the
given TBox by also taking into account the negative inclu-
sions. More precisely, the algorithm first translates the RL
fragment of T + into datalog rules P and then saturatesA us-
ing P . However, every time some rule of P “fires” (Line 5),
before adding the conclusion Hσ to the saturation, in Line 6,
it performs a consistency check in order to restrict the amount
of assertions that are derived by the saturation procedure.

Clearly, over DL-Lite-TBoxes T Algorithm 1 computes
clc(T ,A) for any A.

Proposition 14. Let T be a DL-Lite-TBox, letA be an ABox,
and letQ be a CQ. Let also ans be someRL ABox-saturation
system and C a completion of T for ans. Then, clc(T ,A) =
ApproxAns(T ∪ C,A).

However, for more expressive DLs the algorithm approxi-
mates clc(T ,A) from above.

Theorem 15. Let T be a L-TBox, let ans be an RL ABox-
saturation system, and let C be a completion of T for ans.
Then, we have clc(T ,A) ⊆ ApproxAns(T ∪ C,A)

To make Algorithm 1 exact, i.e., compute clc(T ,A), for
every assertion Hσ inferred at Line 5 one should check if
some subset A′ of the original ABox A consistent w.r.t. T
exists such that T ∪A′ |= Bσ (and hence also T ∪A′ |= Hσ).
In contrast, our algorithm provides a kind of “local” check to
decide whether Hσ can be added to As, i.e., it checks if Bσ
is consistent w.r.t. the current set of assertions (saturation).
Example 16. Consider the following TBox and ABox:

T = {A uB v C, D v B, A v ¬D}
A = {A(a), D(a)}

Then we have clc(T ,A) = A ∪ {B(a)} but, in contrast, Al-
gorithm 1 would first compute and add B(a) to the satura-
tion As and also compute C(a) due to the consistent subset
{A(a), B(a)} ⊆ As. ♦

As can be seen, if we explicitly add B(a) to A then we
would also have C(a) ∈ clc(T ,A). In other words, mate-
rialising consistently entailed assertions can strictly increase
the set computed by clc (and hence also the ICAR-answers),
something that is not true under the standard first-order se-
mantics where for every Σ and φ such that Σ |= φ, Σ and
Σ ∪ {φ} are equivalent.

Based on the above, we feel that it is intuitive to introduce
an extension of function clc which is mostly characterised by
our approximate algorithm.
Definition 17. Let T be a L-TBox and let A be an ABox.
We define clc+(T ,A) to be the minimal set of assertions sat-
isfying the following conditions:
• cr(A, T) ⊆ clc+(T ,A)

• If someA′ ⊆ clc+(T ,A) consistent w.r.t. T exists such
that T ∪ A′ |= α, then clc+(T ,A) contains α.

Differently than clc, in clc+ any consistently entailed as-
sertion can be used to support the entailment of other asser-
tions. Hence, the following property follows easily.
Proposition 18. For a L-TBox T and ABox A we have
clc(T ,A) ⊆ clc+(T ,A).

Moreover, in contrast to clc, for many DLs clc+ can be
computed in polynomial time.
Theorem 19. Let L be some DL such that deciding consis-
tency of ABoxes can be done in polynomial time and L is also
datalog rewritable. Then, for every L-TBox T and ABox A
clc+(T ,A) can be computed in polynomial time with respect
to the size of the data.

The following is an immediate consequence of Theorem 19
and various results in datalog rewritability of tractable Horn-
DLs [Calvanese et al., 2007; Pérez-Urbina et al., 2010;
Hustadt et al., 2005] as well as highly expressive non-Horn
DLs [Kaminski et al., 2014].
Corollary 20. Let L be any of the following DLs:
• DL-Lite, ELHI⊥, or Horn-SHIQ; or
• markable-SHI or ALCHI that is simple w.r.t. disjunc-

tive predicates [Kaminski et al., 2014].
Then, for every L-TBox T and ABox A, clc+(T ,A) can be
computed in polynomial time with respect to the size of A.

Algorithm 2 ABoxIARRepair(T ,A)

Input: TBox T , ABox A; Output: IAR of T ∪ A
1: A := cr(A, T)
2: Φ := ∅
3: for all C v ¬D ∈ T do add query π(C) ∧ π(D) to Φ
4: for all R v ¬S ∈ T do add query π(S) ∧ π(R) to Φ
5: for all Qφ ∈ Φ do
6: Compute a UCQ rewritingRφ for Qφ, T
7: for all Q′φ ∈ Rφ and all σ s.t. Q′φσ ⊆ A do
8: Remove Q′φσ from A
9: return A

Concluding this section we note that the output of Algo-
rithm 1 can (possibly) be used to compute some upper ap-
proximation of the ICAR-answers. More precisely, for some
CQ Q we can compute a rewriting 〈RQ,RD〉 for Q, T (if
it exists) and then calculate cert(ref(RQ, T),As). However,
note that ref would also be an approximation as, to the best
of our knowledge, it has only been defined for DL-Lite.

5 Efficient QA under the IAR Semantics
Concluding our technical contributions we show that our
framework can also be used to compute IAR-answers. More
precisely, by the results of Section 3 and the results by
Rosati [2011] we have the following.
Proposition 21. Let T be a L-TBox, letA be an ABox, letQ
be a CQ, and let Aia be the IAR of T ∪ A. Let also ans be
an RL ABox-saturation system, let C be a completion of T
for ans and let 〈RQ,RD〉 be a rewriting for Q, T . Then, we
have certia(Q, T ∪ A) = ans(RQ, T ∪ C ∪ Aia).

Since completions of DL-Lite and EL TBoxes for RL
ABox-saturation systems always exist [Stoilos et al., 2011]
and Rosati [2011] showed that for TBoxes expressed in DL-
Lite and EL⊥nr the IAR Aia of some ABox can be com-
puted in time polynomially w.r.t. the size of A, it follows
that our approach can compute the IAR-answers over these
languages effectively by exploiting practically scalable RL
systems. Unfortunately, even in these cases computing Aia

can still be difficult and time-consuming if A is very large.
For DL-Lite TBoxes, an algorithm to compute Aia was

proposed and implemented in [Rosati et al., 2012]. This al-
gorithm annotates all assertions in A and then updates their
annotation if they violate some negative inclusions of T . All
assertions whose annotation changed are finally removed.

Inspired by the techniques in [Lembo et al., 2015] we pro-
pose a different algorithm that is based on query rewriting and
not on ABox annotation; this is depicted in Algorithm 2. The
algorithm builds a special query for each negative inclusion
in T ; π maps a concept A to A(x), role R to R(x, y) and
a concept ∃R to ∃y.R(x, y). Then, a rewriting for Qφ, T is
computed and each member of the rewriting is evaluated over
A. If some of these queries match to assertions in A, then
these should be removed from A as they violate the negative
inclusion.
Proposition 22. For a given DL-Lite-TBox T and ABox A,
ABoxIARRepair(T ,A) returns an IAR of T ∪ A.

Algorithm 2 is amenable to an important optimisation. In-
stead of evaluatingQ′φ overA (Lines 7–8) we can proceed as
follows: at a pre-processing step we can evaluate all atomic
queries A(x) and R(x, y) separately and cache their answers
and the assertions of A that these atoms have a match. Then,
to compute the answers of Q′φ over A we can use the pre-
computed partial answers of each atom.

6 Evaluation
We implemented our ICAR- (both the standard and the opti-
mised one) and IAR-answering approaches into the prototype
system SaQAI2 (Saturation based Query Answering under In-
consistencies); in the following the various versions of SaQAI
(standard/optimised ICAR and IAR) are called SaQic,SaQic

op,
and SaQia, respectively. Unfortunately, implementing Algo-
rithm 1 would either require modifying the internals of an
ABox-saturation system or implementing one from scratch.
Our system uses GraphDB [Kiryakov et al., 2010] as an
ABox-saturation system, Hydrowl [Stoilos, 2014] to compute
completions, and Rapid [Trivela et al., 2015] for rewriting.

For the evaluation we used the experimental setting pro-
posed in [Bienvenu et al., 2014] which consists of a DL-Lite
version of the LUBM∃20 ontology [Lutz et al., 2013] extended
with additional negative inclusions, a set of test queries, and
several inconsistent ABoxes. We use the same ABox and
query names as in [Bienvenu et al., 2014]. For example, Amn
indicates an ABox containing data for n universities and in-
consistencies added with probability m. Due to space limita-
tions we will present results only for some of the test queries
and for the larger datasets. To the best of our knowledge no
available ICAR-answering system exists (we could not ob-
tain the preliminary system reported in [Masotti et al., 2011]),
hence we compared against CQApri [Bienvenu et al., 2014]
and QuID [Rosati et al., 2012], two IAR-answering systems.

Computing a completion of LUBM∃20 for GraphDB was
done only once and required less than 5 seconds. Moreover,
no unsatisfiable concepts were detected, hence cr(Amn , T)
also completed in less than a second.

Table 1 presents the results for all considered approaches
and tools. In the table we have grouped together number
of answers, pre-processing times (note that different systems
can perform different pre-processing tasks) and query evalu-
ation. Column Sat denotes loading time of T ∪ C ∪ Amn into
GraphDB and computation of the saturationAs ⊇ Amn . First,
we can note that, as expected, in many queries our ICAR-
answering approach returned far more answers than CQApri
(SaQia returned the same IAR-answers as CQApri, however,
QuID returned different answers indicating some kind of bug
but we did not investigate further). There are actually cases
where CQApri returns 0 answers whereas our approach re-
turns some answers to the input query. Second, we can ob-
serve that our optimisations in Section 3.1 are indeed quite
relevant and improved performance of our ICAR-answering
approach significantly. This is because, in most cases refmin

(which SaQic
op uses) computes queries containing much fewer

negative atoms than ref; e.g., in query q1 it computes 32

2http://image.ece.ntua.gr/∼etsalap/SaQAI

Table 1: Results for SaQic, SaQic
op, and CQApri (CQA).

Number of Answers Loading, Pre-processing, and Evaluation (in seconds)

ICAR Answering IAR Answering
Repairing/Pre-proc. Evaluation Time

A Q SaQic CQA Sat SaQic SaQic
op SaQia QuID CQA SaQia QuID CQA

A15e-4
10

q1 255,839 251,991

19.6

47.5 4.6

52.9 1,437.4 58.1

0.2 17.6 11.4
q2 88,994 88,816 22.3 1.6 <0.1 12.2 6.9
q4 966,856 769,786 1,060.3 99.3 1.0 14.1 17.9
req3 2,242 2,228 2.4 0.3 0.1 31.2 2.1
lutz1 189,519 189,519 227.6 21.1 0.9 190.9 61.3
lutz5 38,244 38,244 33.5 2.2 0.1 84.0 48.6

A5e-2
10

q1 250,320 145,488

20.1

51.9 5.0

53.8 2,072.3 65.5

0.1 31.0 13.9
q2 80,803 73,453 20.2 1.5 <0.1 8.9 7.8
q4 540,237 1,001 683.1 65.3 0.1 1.0 26.4
req3 1,221 1,012 1.7 0.3 <0.1 9.6 4.1
lutz1 5,249 5,249 118.4 11.6 0.3 128.7 83.0
lutz5 25,168 25,163 29.3 2.1 0.1 77.0 49.6

A2e-1
10

q1 233,153 35,086

21.2

62.5 10.3

55.2 3,205.0 84.6

<0.1 8.9 17.1
q2 61,171 35,762 16.9 1.3 <0.1 6.5 13.6
q4 88,323 0 161.2 15.5 <0.1 0.7 29.1
req3 197 98 1.5 0.2 <0.1 2.3 4.1
lutz1 0 0 70.6 6.9 0.1 78.7 132.3
lutz5 6,927 6,797 24.1 1.6 0.1 60.7 61.9

A15e-4
20

q1 544,725 535,341

59.7

120.1 13.8

114.2 3,184.3 124.6

0.4 89.9 31.1
q2 189,527 189,209 54.9 4.6 0.1 46.7 17.2
q4 2,033,569 1,355,978 2,701.8 286.6 1.7 43.4 49.8
req3 4,851 4,823 4.8 0.8 0.4 94.9 4.5
lutz1 414,600 414,600 514.0 60.2 2.4 892.5 136.1
lutz5 81,996 81,996 84.0 6.6 0.5 267.2 118.4

A5e-2
20

q1 532,587 309,625

61.2

146.8 15.0

113.9 5,246.0 136.8

0.2 72.4 44.0
q2 172,121 156,361 56.6 4.4 <0.1 34.9 25.5
q4 1,126,433 0 1,921 178.3 0.2 1.3 146.8
req3 2,569 2,125 4.8 0.8 0.2 44.4 9.1
lutz1 15,539 15,539 336.8 33.3 0.9 202.9 238.7
lutz5 53,430 53,420 82.9 6.0 0.3 149.7 123.5

A2e-1
20

q1 497,164 73,611

66.3

149.0 16.7

122.1 t/o 205.7

0.2 - 42.9
q2 131,228 77,475 42.1 3.6 <0.1 - 23.9
q4 174,226 0 418.5 38.8 <0.1 - oom
req3 407 184 3.2 0.6 <0.1 - 22.0
lutz1 0 0 175.4 19.7 0.3 - 266.2
lutz5 14,671 14,355 58.7 4.5 0.2 - 134.0

whereas ref computes 353 negative atoms. Third, although
SaQic

op computes more answers (the ICAR-answers) than the
other systems, it is significantly faster in nearly all queries
compared to QuID and CQApri with only noticeable excep-
tion query q4. Nevertheless, besides the fact that our system
computes more involved semantics, for the same query over
ABox A2e-1

20 CQApri run out of memory and QuID failed to
load the dataset within 90 minutes.

Finally, our method for computing the IAR-answers is also
significantly more efficient than QuID and CQApri. First,
our ABox repairing method is several orders of magnitude
faster than QuID which is based on the ABox annotation al-
gorithm in [Rosati et al., 2012] (recall that QuID actually did
not manage to load the largest ABox A2e-1

20) and is also much
faster than the pre-processing step of CQApri. Second, af-
ter the repairing step and due to Proposition 21 our system
computes the IAR-answers by standard query evaluation us-
ing GraphDB (since the ABox is repaired the ref procedure

is not required) and this takes in all cases just a few millisec-
onds in contrast to QuID and CQApri that still require several
seconds to evaluate the queries they have computed and con-
struct the IAR-answers. All in all both our approaches are
much more efficient and robust.

7 Conclusions
We proposed a framework for efficient and scalable IAR- and
ICAR-answering over inconsistent Description Logic knowl-
edge bases which is based on mature data saturation technolo-
gies. The approach is exact for both semantics over DL-Lite
and for the IAR semantics over EL⊥nr ontologies. For more
expressive DLs we proposed an algorithm that computes an
approximation of ICAR-answers but which characterises a
new family of semantics that can be computed in polynomial
time for a very large family of DLs. Our experiments pro-
vided with encouraging results as both of our approaches are
more efficient and robust compared to the state-of-the-art.

References
[Arenas et al., 1999] Marcelo Arenas, Leopoldo E. Bertossi,

and Jan Chomicki. Consistent query answers in inconsis-
tent databases. In Proceedings of the 18th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), pages 68–79, 1999.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter Patel-
Schneider. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University
Press, 2003.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the EL envelope. In Proceedings of
the 19th International Joint Conference on Artificial Intel-
ligence (IJCAI-05), 2005.

[Bertossi, 2006] Leopoldo E. Bertossi. Consistent query an-
swering in databases. SIGMOD Record, 35(2):68–76,
2006.

[Bienvenu and Rosati, 2013] Meghyn Bienvenu and Ric-
cardo Rosati. New inconsistency-tolerant semantics for
robust ontology-based data access. In Proceedings of the
26th International Workshop on Description Logics, 2013.

[Bienvenu et al., 2014] Meghyn Bienvenu, Camille Bour-
gaux, and François Goasdoué. Querying inconsistent de-
scription logic knowledge bases under preferred repair se-
mantics. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence, pages 996–1002, 2014.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. Journal
of Automated Reasoning, 39(3):385–429, 2007.

[Chaussecourte et al., 2013] Pierre Chaussecourte, Birte
Glimm, Ian Horrocks, Boris Motik, and Laurent Pierre.
The energy management adviser at EDF. In Proceedings
of the 12th International Semantic Web Conference
(ISWC), 2013.

[Hustadt et al., 2005] Ullrich Hustadt, Boris Motik, and Ul-
rike Sattler. Data Complexity of Reasoning in Very Ex-
pressive Description Logics. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence
(IJCAI 2005), pages 466–471, 2005.

[Kaminski et al., 2014] Mark Kaminski, Yavor Nenov, and
Bernardo Cuenca Grau. Computing datalog rewritings for
disjunctive datalog programs and description logic ontolo-
gies. In Proceedings of the 8th International Conference
on Web Reasoning and Rule Systems (RR), 2014.

[Kiryakov et al., 2010] Atanas Kiryakov, Barry Bishop,
Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev, and
Ruslan Velkov. The features of BigOWLIM that enabled
the BBC’s World Cup website. In Workshop on Semantic
Data Management (SemData), 2010.

[Lembo et al., 2010] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant semantics for description logics. In

Proceedings of the 4th International Conference on Web
Reasoning and Rule Systems (RR), pages 103–117, 2010.

[Lembo et al., 2011] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Query rewriting for inconsistent DL-Lite ontologies. In
Proceedings of the 5th International Conference Web Rea-
soning and Rule Systems (RR), pages 155–169, 2011.

[Lembo et al., 2015] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant query answering in ontology-based
data access. Journal of Web Semantics, 33:3–29, 2015.

[Lutz et al., 2013] Carsten Lutz, Inanç Seylan, David
Toman, and Frank Wolter. The combined approach to
OBDA: taming role hierarchies using filters. In Proceed-
ings of the 12th International Semantic Web Conference
(ISWC 2013), pages 314–330, 2013.

[Masotti et al., 2011] Giulia Masotti, Riccardo Rosati, and
Marco Ruzzi. Practical abox cleaning in dl-lite (progress
report). In Proceedings of the 24th International Workshop
on Description Logics (DL), 2011.

[Motik et al., 2009] Boris Motik, Bernardo Cuenca Grau,
Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz
(Editors). OWL 2 Web Ontology Language Profiles, 2009.

[Motik et al., 2012] Boris Motik, Ian Horrocks, and
Su Myeon Kim. Delta-reasoner: A semantic web reasoner
for an intelligent mobile platform. In Proceedings of the
21st International Conference Companion on World Wide
Web (WWW 12). ACM, 2012.

[Pérez-Urbina et al., 2010] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. Tractable query answering and
rewriting under description logic constraints. Journal of
Applied Logic, 8(2):186–209, 2010.

[Rosati et al., 2012] Riccardo Rosati, Marco Ruzzi, Mirko
Graziosi, and Giulia Masotti. Evaluation of techniques
for inconsistency handling in OWL 2 QL ontologies. In
Proceedings of the 11th International Semantic Web Con-
ference (ISWC), pages 337–349, 2012.

[Rosati, 2011] Riccardo Rosati. On the complexity of deal-
ing with inconsistency in description logic ontologies.
In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI), pages 1057–
1062, 2011.

[Stoilos et al., 2011] Giorgos Stoilos, Bernardo Cuenca
Grau, Boris Motik, and Ian Horrocks. Repairing ontolo-
gies for incomplete reasoners. In Proceedings of the 10th
International Semantic Web Conference (ISWC-11), Bonn,
Germany, pages 681–696, 2011.

[Stoilos, 2014] Giorgos Stoilos. Ontology-based data access
using rewriting, OWL 2 RL systems and repairing. In Pro-
ceedings of the 11th European Semantic Web Conference
(ESWC), pages 317–332, 2014.

[Trivela et al., 2015] Despoina Trivela, Giorgos Stoilos,
Alexandros Chortaras, and Giorgos Stamou. Optimising
resolution-based rewriting algorithms for owl ontologies.
Journal of Web Semantics, 33:30–49, 2015.

