
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

COMPUTER SCIENCE DIVISION

IMAGE, VIDEO AND MULTIMEDIA SYSTEMS LABORATORY

Automatic Detection of Opinion Polarity
from Twitter

DIPLOMA THESIS

of

ELENI MANDILARA

Supervisor: Stefanos Kollias
Professor NTUA

Athens, September 2015

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

COMPUTER SCIENCE DIVISION

IMAGE, VIDEO AND MULTIMEDIA SYSTEMS LABORATORY

Automatic Detection of Opinion Polarity
from Twitter

DIPLOMA THESIS

of

ELENI MANDILARA

Supervisor: Stefanos Kollias
Professor NTUA

Approved by the three-member committee on the 18th of September 2015.

...................................

Stefanos Kollias Kostas Karpouzis Giorgos Stamou

Professor NTUA Research Director of ICCS of

NTUA

Assistant Professor NTUA

Athens, September 2015

...................................

Eleni E. Mandilara
Graduate Electrical and Computer Engineer of NTUA

Copyright © Eleni E. Mandilara, 2015.
All rights reserved.

The present work may not be reproduced, stored nor distributed in whole or in part for
commercial purposes. Permission is hereby granted to reproduce, store and distribute
this work for non-profit, educational and research purposes, provided that the source
is acknowledged and the present copyright message is retained. Enquiries regarding
use for profit should be directed to the author.
The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or
implied, of the National Technical University of Athens.

Περίληψη

Αντικείμενο της παρούσας διπλωματικής εργασίας είναι η αυτόματη ανίχνευση της πολικότητας – ή,

αλλιώς, η συναισθηματική ανάλυση – της γνώμης που εκφράζεται από χρήστες σε διαδικτυακές πηγές.

Διαδικτυακή πηγή του ενδιαφέροντός μας αποτέλεσε το Twitter, το οποίο είναι μια online υπηρεσία

κοινωνικής δικτύωσης που προσφέρει τη δυνατότητα σε χρήστες να δημοσιεύουν και να διαβάζουν σύντομα

μηνύματα γνωστά ως tweets. Στόχος της συναισθηματικής ανάλυσης είναι η ταξινόμηση δειγμάτων κειμένου

με βάση τη συνολική πολικότητα της γνώμης που εκφράζουν (θετική, αρνητική, ουδέτερη).

Με στόχο, λοιπόν, τη συναισθηματική ανάλυση των tweets, υλοποιήθηκε ένα σύστημα

επιβλεπόμενης online μάθησης, βασισμένο στα τεχνητά νευρωνικά δίκτυα, το οποίο αποτελείται από δύο

κύρια μέρη: το πρώτο ασχολείται με την προ-επεξεργασία των tweets, ενώ το δεύτερο υλοποιεί τη

διαδικασία μάθησης μέσω του νευρωνικού δικτύου. Το πρώτο μέρος έχει ως στόχο τον εξωραϊσμό και

καθαρισμό των tweets από θόρυβο ή περιττή πληροφορία, καθώς και τη μεταφορά τους σε μια μορφή

κατανοητή από ένα υπολογιστικό σύστημα. Αυτό επιτυγχάνεται μέσω της εξαγωγής συγκεκριμένων

χαρακτηριστικών και της κατασκευής των αντίστοιχων διανυσμάτων. Το δεύτερο μέρος, αυτό του

νευρωνικού δικτύου, υλοποιείται από ένα πολυεπίπεδο perceptron, το οποίο εκπαιδεύεται μέσω του

αλγορίθμου οπίσθιας διάδοσης σφάλματος, και αποβλέπει στην ορθή ταξινόμηση των tweets σε δύο ή τρεις

διακριτές κλάσεις, οι οποίες αντιστοιχούν στην πολικότητα της γνώμης που εκφέρεται ανά tweet (θετική,

αρνητική ή θετική, αρνητική, ουδέτερη).

Λέξεις – κλειδιά: ανάλυση συναισθήματος, μηχανική μάθηση, Twitter,

τεχνητά νευρωνικά δίκτυα, αλγόριθμος οπίσθιας διάδοσης σφάλματος, εξόρυξη δεδομένων.

1

2

Εκτεταμένη Περίληψη

Η παρούσα διπλωματική εργασία έχει ως θέμα την αυτόματη ανίχνευση της πολικότητας της γνώμης

στο Twitter, ή αλλιώς τη συναισθηματική ανάλυση (sentiment analysis) στο Twitter. Στο πρώτο κεφάλαιο θα

δούμε μια εισαγωγή για την ανάλυση συναισθήματος στο Twitter· στη συνέχεια (δεύτερο κεφάλαιο) θα

μιλήσουμε για τα τεχνητά νευρωνικά δίκτυα πάνω στα οποία βασίστηκε το μοντέλο που υλοποιήθηκε.

Κατόπιν, στο τρίτο κεφάλαιο θα ασχοληθούμε αναλυτικά με το συγκεκριμένο μοντέλο, και στο τέταρτο

κεφάλαιο δούμε τα πειράματα που διεξάχθηκαν και τα αποτελέσματά τους. Θα μιλήσουμε επίσης για τα

συμπεράσματα που προκύπτουν από αυτά και θα δώσουμε κάποιες ιδέες για τη βελτίωση του μοντέλου.

Ένα σύστημα ανάλυσης συναισθήματος στο Twitter ουσιαστικά λαμβάνει εισόδους από το Twitter

και παράγει ως έξοδο την πολικότητα της κάθε εισόδου, που στην περίπτωσή μας μπορεί να ανήκει σε μία

από 3 κλάσεις: θετική, αρνητική, ουδέτερη.

Το Twitter είναι μια online υπηρεσία κοινωνικής δικτύωσης που δίνει τη δυνατότητα σε χρήστες να

στέλνουν και να διαβάζουν σύντομα μηνύματα γνωστά ως tweets. Η ανάλυση συναισθήματος στο Twitter

έχει ως αντικείμενο την ανίχνευση της διάθεσης που είναι παρούσα σε ένα tweet που έχει δημοσιευθεί από

κάποιον χρήστη του Twitter. Η διάθεση αυτή μπορεί να είναι μία γνώμη ή κριτική, η συναισθηματική

κατάσταση του συγγραφέα ή η συναισθηματική επίδραση που στοχεύει ο συγγραφέας του να έχει στον

αναγνώστη.

Τα κίνητρα για τη συγκεκριμένη εργασία είχαν να κάνουν αρχικά με το γεγονός ότι ο τομέας της

ανάλυσης συναισθήματος έχει πολλές ιδιαίτερα ενδιαφέρουσες και χρήσιμες εφαρμογές όπως την

ταξινόμηση συναισθήματος, την ανάκτηση και σύνοψη γνώμης, την αναγνώριση του κατόχου μιας γνώμης,

την παρακολούθηση του θέματος/συναισθήματος, την ανίχνευση spam γνώμης, την πρόβλεψη ανθρωπίνων

συμπεριφορών, αγοραστικών τάσεων, αποτελεσμάτων εκλογών κλπ. Επιπλέον, το Twitter συγκεντρώνει

ορισμένα χαρακτηριστικά που το καθιστούν εξαιρετική πηγή για ανάλυση συναισθήματος από μικρά

κείμενα (microtexts): έχει ανώτατο όριο 140 χαρακτήρων, συνηθίζεται η χρήση hashtags που συχνά

ομαδοποιούν τα tweets ανά θέμα/συναίσθημα, η πρόσβαση στο Twitter είναι ιδιαίτερα εύκολη και μέσω

πολλών μέσων (της ιστοσελίδας, της εφαρμογής για κινητές συσκευές, ή SMS), και εκατομμύρια tweets

μοιράζονται καθημερινά σε πραγματικό χρόνο. Το Twitter μπορεί να αποτελεί μια αφετηρία, αλλά η

αναγνώριση του συναισθήματος από γραπτή πληροφορία γενικότερα από μία μηχανή είναι ένα βήμα προς

την ανάπτυξη της τεχνητής νοημοσύνης.

Παρά τα παραπάνω χαρακτηριστικά που καθιστούν το Twitter πολύ καλή πηγή για την εφαρμογή

της συναισθηματικής ανάλυσης, ορισμένα χαρακτηριστικά των tweets κάνουν τη συγκεκριμένη εργασία μια

πολύ πολύπλοκη και δύσκολη πρόκληση. Αυτά είναι τα εξής: (α) το μικρό μήκος δεν επιτρέπει

γλωσσολογική ανάλυση, (β) συχνά χρησιμοποιούνται μη κανονικές λέξεις ή λέξεις σε μη συνεπή γραπτή

μορφή, (γ) γίνεται χρήση ιδιωματισμών καθημερινής γλώσσας (slang), (δ) συχνά γίνονται ορθογραφικά

3

λάθη, (ε) χρησιμοποιούνται τοπικές λέξεις ή εκφράσεις, (στ) χρησιμοποιούνται emoticons, ακρωνύμια και

hashtags.

Υπάρχουν διάφορες τεχνικές για τη συναισθηματική ανάλυση, όπως ο αλγόριθμος Naive Bayes, ο

ταξινομητής Maximum Entropy, οι μηχανές διανυσμάτων υποστήριξης, τα τεχνητά νευρωνικά δίκτυα κ.ά.

Στην παρούσα εργασία το μοντέλο που υλοποιήθηκε βασίζεται στα τεχνητά νευρωνικά δίκτυα.

Ένα νευρωνικό δίκτυο είναι ένας τεράστιος, παράλληλος επεξεργαστής, κατανεμημένης

αρχιτεκτονικής που αποτελείται από απλές μονάδες επεξεργασίας (νευρώνες), που έχουν τη δυνατότητα να

αποθηκεύουν εμπειρική γνώση και να την καθιστούν διαθέσιμη για χρήση. Η γνώση αυτή λαμβάνεται από

το περιβάλλον του δικτύου και αποθηκεύεται μέσω των συναπτικών βαρών των συνδέσεων μεταξύ των

νευρώνων.

Το perceptron του Rosenblatt αποτελεί το πρώτο νευρωνικό δίκτυο. Βασίζεται σε έναν μη γραμμικό

νευρώνα στη βάση ενός μη γραμμικού συνδυαστή ακολουθούμενου από έναν απότομο περιοριστή

(συνάρτηση προσήμου). Το perceptron έχει τη δυνατότητα να ταξινομεί δείγματα σε γραμμικά διαχωρίσιμες

κλάσεις. Η εξέλιξή του, το πολυεπίπεδο perceptron διαθέτει 1 ή περισσότερα κρυφά επίπεδα νευρώνων

μεταξύ εισόδου και εξόδου, πλήρως συνδεδεμένα μεταξύ τους, και έχει τη δυνατότητα να ταξινομεί

δείγματα σε μη γραμμικά διαχωρίσιμες κλάσεις. Κάθε νευρώνας του πολυεπίπεδου perceptron υπολογίζει 2

σήματα: ένα λειτουργικό σήμα, και μια εκτίμηση του διανύσματος κλίσης (των κλίσεων της επιφάνειας

σφάλματος σε σχέση με τα βάρη που είναι συνδεδεμένα στις εισόδους ενός νευρώνα).

Για την εκπαίδευση του πολυεπίπεδου perceptron χρησιμοποιείται ο αλγόριθμος οπίσθιας διάδοσης

σφάλματος (error back propagation algorithm), ο οποίος χωρίζεται σε δύο φάσεις. Στην πρώτη φάση γίνεται

το πέρασμα προς τα εμπρός, κατά το οποίο τα συναπτικά βάρη παραμένουν αμετάβλητα σε όλο το δίκτυο

και υπολογίζονται τα λειτουργικά σήματα από νευρώνα σε νευρώνα, ως

y j(n)=φ(υ j(n))

όπου φ η συνάρτηση ενεργοποίησης, yj το λειτουργικό σήματα στην έξοδο του νευρώνα j και υj το τοπικό

πεδίο του νευρώνα j:

υ j(n)=∑
i=0

m

w ji(n) y i(n)

Μόλις τερματίσει η πρώτη φάση, δηλαδή μόλις υπολογιστούν τα λειτουργικά σήματα ως και το επίπεδο

εξόδου, εκκινεί η δεύτερη φάση, το πέρασμα προς τα πίσω. Σε αυτή τη φάση, στέλνονται σήματα σφάλματος

από δεξιά προς τα αριστερά σε όλα τα επίπεδα του δικτύου, επίπεδο προς επίπεδο, υπολογίζοντας

αναδρομικά την τοπική κλίση δ για κάθε νευρώνα, και μεταβάλλοντας τα συναπτικά βάρη όλων των

4

συνδέσεων σύμφωνα με τον κανόνα Δέλτα:

(διόρθωση βάρους
Δw ji (n))=(παράμετρος ρυθμού μάθησης

η)×(τοπική κλίση
δ j(n))×(σήμα εισόδου τουνευρώνα j

y j(n))

Η μέθοδος cross-validation χρησιμοποιείται για τον έλεγχο του μοντέλου με βάση ένα υποσύνολο

δεδομένων διαφορετικό από αυτό που χρησιμοποιήθηκε για την εκτίμηση των παραμέτρων του δικτύου. Για

το λόγο αυτό, το δείγμα εκπαίδευσης χωρίζεται σε δύο ξένα μεταξύ τους υποσύνολα: ένα υποσύνολο

εκτίμησης για την επιλογή του μοντέλου και ένα υποσύνολο επικύρωσης για τον έλεγχο του μοντέλου. Η K-

fold cross-validation είναι μια παραλλαγή αυτής της μεθόδου, κατά την οποία το διαθέσιμο δείγμα μεγέθους

Ν διαιρείται σε Κ υποσύνολα, με 1<Κ<Ν. Για Κ δοκιμές, το μοντέλο εκπαιδεύεται με όλα τα υποσύνολα

εκτός από ένα, διαφορετικό κάθε φορά.

Το μοντέλο της παρούσας εργασίας υλοποιείται από ένα σύστημα επιβλεπόμενης online μάθησης,

που αποτελείται από 4 μέρη: (1) απόκτηση δεδομένων, (2) προ-επεξεργασία δεδομένων, (3) εξαγωγή

χαρακτηριστικών και κατασκευή των αντίστοιχων διανυσμάτων χαρακτηριστικών, (4) νευρωνικό δίκτυο.

Τα δεδομένα είναι απαραίτητα για την εκπαίδευση και τη δοκιμή του μοντέλου μας. Για το λόγο

αυτό, αποκτήθηκαν δεδομένα από το Twitter, στα οποία προστέθηκαν ετικέτες (“θετικό”, “αρνητικό”,

“ουδέτερο”) ανά tweet και τελικά δημιουργήθηκαν τα σύνολα δεδομένων. Για την απόκτηση αυτών των

δεδομένων, δημιουργήθηκε μια εφαρμογή στο Twitter API και έγινε χρήση του OAuth ώστε να δοθεί

έγκριση σε αυτή να επικοινωνεί με το Twitter μέσω του λογαριασμού μας.

Τα tweets που αναζητήθηκαν και αποθηκεύθηκαν είχαν κοινό θέμα το Δημοψήφισμα που έλαβε

χώρα στην Ελλάδα την 5η Ιουλίου 2015. Ένα δημοψήφισμα από τη φύση του έχει την τάση να πολώνει τις

γνώμες και θεωρήθηκε εξαιρετική ευκαιρία για εύρεση tweets με έντονη πολικότητα γνώμης. Αρχικά

συλλέχθηκαν κατά μέσο όρο 2,191 tweets ανά ημέρα, από την 1η Ιουλίου έως και την 7η Ιουλίου 2015.

Λόγω του μεγάλου όγκου δεδομένων, πριν από το στάδιο της προσθήκης ετικετών, τα tweets υποβλήθηκαν

σε κάποια βήματα προ-επεξεργασίας, ώστε να εξαλειφθούν τα διπλότυπα και η περιττή πληροφορία. Μετά

από το παραπάνω στάδιο, έμειναν 1,095 tweets ανά ημέρα, δηλαδή επιτεύχθηκε μία μείωση του όγκου (χάρη

στην εξάλειψη της περιττής πληροφορίας) κατά 50%.

Η προσθήκη των ετικετών στα παραπάνω δεδομένα έγινε “χειροκίνητα”. Υπάρχουν τεχνικές

αυτόματης προσθήκης ετικετών με βάση hashtags ή emoticons, ωστόσο θεωρήθηκαν ακατάλληλες σε αυτή

την περίπτωση καθώς το θέμα των tweets είναι πολιτικό, και αφενός δε συνηθίζεται η έντονη χρήση

emoticons, αφετέρου συχνά μπορεί να συνδέεται με ειρωνική διάθεση. Λόγω πολύ μεγάλου όγκου

δεδομένων, η προσθήκη ετικετών έγινε μόνο σε ένα μέρος των δεδομένων· σε 500 tweets ανά ημέρα,

δηλαδή 500·7 = 3,500 tweets συνολικά. Συχνά παρατηρήθηκε μεγάλη δυσκολία στην εξαγωγή

συμπερασμάτων σχετικά με την ακριβή γνώμη ενός χρήστη, καθώς η αλληλουχία των λέξεων εξέφραζε

συχνά ασαφή ή διφορούμενη διάθεση και ο αριθμός των κλάσεων της πολικότητας ήταν πολύ μικρός (3:

5

θετική, αρνητική, ουδέτερη) ώστε να γίνει μια ακριβής ταξινόμηση της γνώμης. Η προσθήκη των ετικετών

έγινε από τον ίδιο εκπαιδευτή για κάθε σύνολο συλλεγμένων δεδομένων ανά ημέρα, επομένως τυχούσες

παρεκκλίσεις κατά την ταξινόμησή τους θεωρούνται ομοιογενείς και αμελητέες. Γίνεται απόλυτα σαφές από

τα παραπάνω ότι αποτελεί πολύ μεγάλη και πολύπλοκη πρόκληση για ένα αυτόματο σύστημα η ανίχνευση

της πολικότητας της γνώμης, όταν ακόμα και ένας άνθρωπος δεν μπορεί να εξάγει βέβαια και ακριβή

συμπεράσματα πάντα.

Για την εκπαίδευση και τη δοκιμή του μοντέλου χρησιμοποιήθηκαν 2 σύνολα δεδομένων:

• balanced_referendum_ds: αποτελείται από 2,100 tweets με κοινό θέμα το Δημοψήφισμα της 5ης

Ιουλίου 2015, που αποθηκεύθηκαν και σχολιάστηκαν ως θετικά, αρνητικά ή ουδέτερα: 700 θετικά,

700 αρνητικά και 700 ουδέτερα tweets.

• various_contents_ds: αποτελείται από 2,000 ήδη σχολιασμένα tweets, διαφόρων περιεχομένων και

θεμάτων: 1,000 θετικά και 1,000 αρνητικά tweets.

Λόγω διαφόρων χαρακτηριστικών που αναφέρθηκαν παραπάνω, είναι φανερό ότι η γλώσσα του

Twitter χρίζει ιδιαίτερης μεταχείρισης. Συνεπώς, αναπτύχθηκαν βήματα προ-επεξεργασίας των tweets με

σκοπό τον καθαρισμό τους από θόρυβο και περιττή πληροφορία και τη μεταφορά τους σε μια μορφή

κατανοητή από ένα αυτόματο σύστημα. Αυτά τα βήματα είναι τα εξής:

1) Μετατροπή τους σε πεζούς χαρακτήρες

2) Μετατροπή των υπερσυνδέσμων (συμβολοσειρών που ξεκινούν από “www.”, “http://” και “https://”)

στη γενική συμβολοσειρά “url”

3) Μετατροπή των αναφορών σε ονόματα (“@username”) στη γενική συμβολοσειρά “at_user”

4) Απαλοιφή περισσοτέρων του ενός κενών

5) Αντικατάσταση των hashtags (“#hashtag”) με τη λέξη που περιέχουν χωρίς το σύμβολο της δίεσης

“#” (“hashtag”)

6) Απαλοιφή σημείων στίξης

7) Απαλοιφή συμβολοσειρών “url”, “at_user”, “rt”

8) Απαλοιφή διπλότυπων

9) Αντικατάσταση emoticons με το συναίσθημα που εκφράζουν

10) Αντικατάσταση ακρωνυμίων με την πλήρη φράση

11) Απαλοιφή stop words (συνήθεις λέξεις της γλώσσας που δεν προσφέρουν ουσιώδη γνώση στο

σύστημα)

12) Απαλοιφή εναπομεινάντων ASCII χαρακτήρων (π.χ 香)

6

Το επόμενο στάδιο του μοντέλου που υλοποιήθηκε έχει να κάνει με την εξαγωγή των

χαρακτηριστικών που κρίθηκαν σημαντικά, και την κατασκευή των αντίστοιχων διανυσμάτων

χαρακτηριστικών. Τα χαρακτηριστικά της κάθε λέξης που ενδιέφεραν την παρούσα υλοποίησή είναι: το

λήμμα (lemma), το στέλεχος (stem) και το μέρος του λόγου της (part-of-speech, POS) της κάθε λέξης. Η

διαδικασία της εξαγωγής των χαρακτηριστικών των λέξεων εξάγει τα παραπάνω χαρακτηριστικά για κάθε

λέξη ανά tweet, και, στη συνέχεια, με τον κατάλληλο συνδυασμό τους κατασκευάζει τα διανύσματα

χαρακτηριστικών, τα οποία στην ουσία είναι πλειάδες (tuples) που έχουν συντεθεί από έναν συνδυασμό της

αρχικής λέξης και των χαρακτηριστικών της.

Πριν από το στάδιο του νευρωνικού δικτύου, έγιναν κάποια βήματα για την προετοιμασία των

εισόδων του έτσι ώστε να είναι σε μορφή κατανοητή από αυτό. Χρησιμοποιήθηκε μια συνάρτηση hashing

για την κωδικοποίηση του κάθε διανύσματος χαρακτηριστικών σε έναν μοναδικό ακέραιο αριθμό. Κάθε

tweet αντιπροσωπεύεται από μια λίστα ακεραίων και έτσι δίνεται ως είσοδος στο δίκτυο. Επίσης, έγινε

“γέμισμα” (padding) της κάθε λίστας ακεραίων με μηδενικά (τόσα όση η διαφορά της καθεμίας με τη λίστα

του μεγίστου μήκους), έτσι ώστε να έχουν όλες κοινό μήκος.

Έγινε δοκιμή της τεχνικής των n-grams, για n=1 (μονογράμματα, unigrams) και n=2 (διγράμματα,

bigrams). Τα n-grams είναι μία συνεχής ακολουθία από n λέξεις ενός tweet. Μια λίστα διανυσμάτων που

έχει προκύψει από ένα tweet, με την τεχνική των μονογραμμάτων, αναπαρίσταται από μια όμοια λίστα, ενώ

με την τεχνική των διγραμμάτων, αναπαρίσταται από μια λίστα αποτελούμενη από πλειάδες 2 διανυσμάτων:

από το κάθε διάνυσμα συνδυασμένο με το επόμενό του. Χρησιμοποιήθηκε ξανά η παραπάνω συνάρτηση

hashing για την κωδικοποίηση των διγραμμάτων ως ακεραίους.

Το νευρωνικό δίκτυο υλοποιείται από ένα πολυεπίπεδο perceptron 3 επιπέδων και εκπαιδεύεται από

τον αλγόριθμο BK. Το επίπεδο εισόδου υλοποιείται από ένα γραμμικό επίπεδο, που εφαρμόζει έναν απλό

πολλαπλασιασμό μεταξύ εισόδων και συναπτικών βαρών και προσθέτει την πόλωση. Στη συνέχεια, το

κρυφό επίπεδο εφαρμόζει τη συνάρτηση υπερβολικής εφαπτομένης (tanh) στις εξόδους του προηγούμενου

επιπέδου. Τέλος, το επίπεδο εξόδου είναι ένα γραμμικό επίπεδο. Παρακάτω φαίνεται ο συμβολισμός που

χρησιμοποιήθηκε:

dinput = διάσταση επιπέδου εισόδου

dhidden = διάσταση κρυφού επιπέδου

doutput = διάσταση επιπέδου εξόδου

w12 = διάνυσμα βαρών από το επίπεδο εισόδου στο κρυφό επίπεδο

w23 = διάνυσμα βαρών από το κρυφό επίπεδο στο επίπεδο εξόδου

Οι διάφορες αρχιτεκτονικές που εξετάσθηκαν κρατούν σταθερές τις διαστάσεις των επιπέδων

εισόδου και εξόδου και δοκιμάζουν διαφορετικές διαστάσεις στο κρυφό επίπεδο, όπως φαίνεται στον

παρακάτω πίνακα:

7

Αρχιτεκτονική

Διαστάσεις Επιπέδων

Επίπεδο Εισόδου Κρυφό Επίπεδο Επίπεδο Εξόδου

1 dinput dinput doutput

2 dinput dinput div 2 doutput

3 dinput dinput div 4 doutput

4 dinput dinput · 2 doutput

5 dinput dinput · 2 div 3 doutput

6 dinput dinput · 4 doutput

7 dinput (dinput + doutput) · 3 div 2 doutput

8 dinput (dinput + doutput) · 2 div 3 doutput

Οι αρχιτεκτονικές εξετάστηκαν σε δύο πειράματα: στο 1ο τα διανύσματα χαρακτηριστικών

συντίθεται από την αρχική λέξη, το λήμμα λέξης και το μέρος του λόγου, ενώ στο 2ο συντίθενται από την

αρχική λέξη, το στέλεχός της και το μέρος του λόγου. Ακόμα εξετάστηκαν 2 τεχνικές, αυτή των

μονογραμμάτων και αυτή των διγραμμάτων. Μέτρο σύγκλισης του δικτύου αποτέλεσε το μέσο τετραγωνικό

σφάλμα (ΜΤΣ).

Για το 1ο σύνολο δεδομένων, εξετάστηκαν όλα τα αρχιτεκτονικά σχήματα, για καθένα από τα 2

πειράματα με την τεχνική των μονογραμμάτων. Η διάσταση του επιπέδου εισόδου είναι 26 ενώ η διάσταση

του επιπέδου εξόδου 3 (για την ταξινόμηση των tweets σε 3 κλάσεις). Το 75% των tweets του συνόλου

χρησιμοποιήθηκε για την εκπαίδευση του δικτύου, ενώ το 25% για τη δοκιμή του. Χρησιμοποιήθηκε η

μέθοδος K-fold cross-validation, για K=5. Παρατηρήθηκε ότι κάθε αρχιτεκτονική συνέκλινε σε ένα περίπου

ίδιο ΜΤΣ, κατά μέσο όρο ίσο με 0.147. Μετά τη σύγκλιση του δικτύου, ξεκίνησε η φάση της δοκιμής του. Η

καλύτερη απόδοση επιτεύχθηκε και για τα 2 πειράματα για την 3η αρχιτεκτονική, με ποσοστό επιτυχίας στις

προβλέψεις ίσο με 70%.

Για το δεύτερο σύνολο δεδομένων εξετάστηκαν ξανά όλες οι αρχιτεκτονικές, για το 1ο πείραμα, με

τις δύο τεχνικές (μονογράμματα και διγράμματα). Η διάσταση του επιπέδου εισόδου είναι 27 ενώ η

διάσταση του επιπέδου εξόδου 2 (για την ταξινόμηση των tweets σε 2 κλάσεις πολικότητας). Και εδώ, το

75% των tweets του συνόλου χρησιμοποιήθηκε για την εκπαίδευση του δικτύου, ενώ το 25% για τη δοκιμή

του. Επίσης, χρησιμοποιήθηκε η 5-fold cross-validation. Κάθε αρχιτεκτονική παρατηρήθηκε ότι συνέκλινε

για το 1ο πείραμα σε ένα μέσο ΜΤΣ ίσο με 0.166, ενώ για το 2ο πείραμα σε ένα μέσο ΜΤΣ ίσο με 0.176.

Μετά τη σύγκλιση του δικτύου, ξεκίνησε η φάση της δοκιμής του. Το συγκεκριμένο σύνολο δεδομένων δεν

έδωσε τόσο ικανοποιητικά αποτελέσματα όσο το προηγούμενο: Η καλύτερη απόδοση επιτεύχθηκε για την

1η τεχνική με την 1η αρχιτεκτονική, με ποσοστό επιτυχίας στις προβλέψεις ίσο με 63.84%. Για τη 2η

τεχνική, η 5η αρχιτεκτονική έδωσε την καλύτερη απόδοση με ποσοστό επιτυχίας 58.35%.

8

Είναι φανερό από τα παραπάνω αποτελέσματα ότι το κοινό λεξιλόγιο λόγω του κοινού θέματος των

tweets που είναι παρόν στο πρώτο σύνολο δεδομένων είναι το χαρακτηριστικό εκείνο που οδήγησε στην

καλύτερη απόδοσή του. Το δεύτερο σύνολο δεδομένων είναι σχετικά μικρό σε μέγεθος, το οποίο σε

συνδυασμό με την ποικιλία των θεμάτων και περιεχομένων των tweets που το συνιστούν, οδηγεί σε απουσία

επανάληψης κοινών λέξεων ανά tweet και συνεπώς σε αδυναμία του νευρωνικού δικτύου να κάνει τους

κατάλληλους συσχετισμούς. Αυτό επιδεινώνεται ακόμα περισσότερο με την τεχνική των διγραμμάτων. Η

τεχνική αυτή συνήθως δίνει καλύτερες αποδόσεις από αυτή των μονογραμμάτων, ωστόσο στην περίπτωσή

μας συμβαίνει το αντίθετο, εξαιτίας του μικρού μεγέθους και της απουσίας κοινού θέματος στο δεύτερο

σύνολο, το οποίο όχι μόνο δε βοηθάει στη συσχέτιση των διγραμμάτων (εκ των οποίων κοινά διγράμματα

σπάνια επαναλαμβάνονται) αλλά χάνει και πληροφορία που θα μπορούσε να έχει αποκτήσει το δίκτυο από

το συσχετισμό των μεμονωμένων λέξεων.

Μια ιδέα για βελτίωση είναι, κατ' αρχάς, η χρήση μεγαλύτερων συνόλων δεδομένων ή συνόλων με

tweets κοινού θέματος. Στη συνέχεια, μπορεί να δοκιμαστούν τροποποιήσεις στη δομή του δικτύου: ένα

συνελικτικό δίκτυο είναι ιδιαίτερα κατάλληλο για την ταξινόμηση προτύπων. Ακόμα μπορεί να γίνει

θεώρηση άλλων χαρακτηριστικών που ενδεχομένως να οδηγήσουν σε καλύτερη απόδοση, όπως η συχνότητα

εμφάνισης των λέξεων ή η θέση τους που ενδεχομένως να ακολουθεί κάποια δομή μέσα στο tweet (π.χ.

κύριο σώμα tweet – hashtag που εκφράζει συναίσθημα). Τέλος, η υλοποίηση της μεθόδου του user profiling

δηλαδή η δημιουργία ενός προφίλ ανά χρήστη ενδεχομένως να βοηθήσει στη βελτίωση της απόδοσης καθώς

έτσι θα λαμβάνονται επιπλέον υπόψιν στατιστικά του χρήστη και η πιθανότητα να εκφραστεί

θετικά/αρνητικά/ουδέτερα ως προς ένα θέμα.

9

10

Abstract

The subject of this diploma thesis is the automatic detection of the polarity – also known as

sentiment analysis – of the opinion which is expressed by users on web. Twitter consisted the web source of

our interest. Twitter is an online social networking service that enables users to publish and read short

messages known as tweets. Sentiment analysis aims to classify correctly text samples according the overall

polarity of the opinion they express (positive, negative, neutral).

In order to achieve the sentiment analysis of tweets, we implemented a supervised online learning

system, based on artificial neural networks. This system consists of two main parts: the first one pre-

processes the tweets, while the second one implements the learning procedure based on the neural network.

The first part aims to the refinement and cleaning of the tweets from noise and useless information, as well

as to their transmutation into a form which is comprehensible by a machine. This is achieved through the

extraction of specific features and the construction of the corresponding vectors. The second part, the part of

the neural network, is implemented by a multi-layer perceptron, which is trained by the error back

propagation algorithm, and aims to the correct classification of the tweets into two or three discrete classes,

each one of them corresponds to the opinion polarity expressed in each tweet (positive, negative or positive,

negative, neutral).

Keywords: sentiment analysis, user opinion mining, machine learning,

artificial neural networks, back propagation algorithm, Twitter, data mining.

11

12

Acknowledgements

This diploma thesis was conducted in the Image, Video and Multimedia Systems Laboratory under

the supervision of Professor Stefanos Kollias, whom I would like to thank for the opportunity he offered me

to get involved with a very inspiring topic of computer science, that combines areas of my great interest -

machine learning and linguistics - and that motivated me to explore them in depth.

Furthermore, I would specially like to express my appreciation and gratitude to the Research

Director of ICCS of NTUA, Kostas Karpouzis, for his guidance and precious support during the whole

process of this thesis, his inspiring ideas and valuable feedback.

I would also like to thank deeply my family, my parents Sofia and Manolis, my brothers Thodoris

and Giorgos, and my grandmothers Kaiti and Eleni, who have been on my side on the bad and the good

times, and have always supported my choices.

Finally, a big thank you goes out to all the friends who have accompanied me so far, and especially

Marina, Efigianna, Ioanna, Anna, Antonis, Giannis, Giorgos and Kostas.

13

14

Instead of a Preface

The sixth member of the crew cared for none of these things, for it was not human. It was the highly

advanced HAL 9000 computer, the brain and nervous system of the ship.

Hal (for Heuristically programmed ALgorithmic computer, no less) was a masterwork of the third

computer breakthrough. These seemed to occur at intervals of twenty years, and the thought that another one

was now imminent already worried a great many people.

The first had been in the 1940s, when the long-obsolete vacuum tube had made possible such

clumsy, high-speed morons as ENIAC and its successors. Then, in the 1960s, solid-state microelectronics

had been perfected. With its advent, it was clear that artificial intelligences at least as powerful as Man's

need be no larger than office desks - if one only knew how to construct them.

Probably no one would ever know this; it did not matter. In the 1980s, Minsky and Good had shown

how neural networks could be generated automatically – self replicated – in accordance with any arbitrary

learning program. Artificial brains could be grown by a process strikingly analogous to the development of a

human brain. In any given case, the precise details would never be known, and even if they were, they would

be millions of times too complex for human understanding. Whatever way it worked, the final result was a

machine intelligence that could reproduce - some philosophers still preferred to use the word “mimic” -

most of the activities of the human brain - and with far greater speed and reliability. It was extremely

expensive, and only a few units of the HAL9000 series had yet been built; but the old jest that it would

always be easier to make organic brains by unskilled labor was beginning to sound a little hollow.

Hal had been trained for this mission as thoroughly as his human colleagues - and at many times

their rate of input, for in addition to his intrinsic speed, he never slept. His prime task was to monitor the

life-support systems, continually checking oxygen pressure, temperature, hull leakage, radiation, and all the

other interlocking factors upon which the lives of the fragile human cargo depended. He could carry out the

intricate navigational corrections, and execute the necessary flight maneuvers when it was time to change

course. And he could watch over the hibernators, making any necessary adjustments to their environment

and doling out the minute quantities of intravenous fluids that kept them alive. The first generations of

computers had received their inputs through glorified typewriter keyboards, and had replied through high-

speed printers and visual displays. Hal could do this when necessary, but most of his communication with his

shipmates was by means of the spoken word. Poole and Bowman could talk to Hal as if he were a human

being and he would reply in the perfect idiomatic English he had learned during the fleeting weeks of his

electronic childhood.

Whether Hal could actually think was a question which had been settled by the British

mathematician Alan Turing back in the 1940s. Turing had pointed out that, if one could carry out a

prolonged conversation with a machine - whether by typewriter or microphone was immaterial - without

15

being able to distinguish between its replies and those that a man might give, then the machine was thinking,

by any sensible definition of the word. Hal could pass the Turing test with ease.

The time might even come when Hal would take command of the ship. In an emergency, if no one

answered his signals, he would attempt to wake the sleeping members of the crew, by electrical and chemical

stimulation. If they did not respond, he would radio Earth for further orders.

And then, if there was no reply from Earth, he would take what measures he deemed necessary to

safeguard the ship and to continue the mission - whose real purpose he alone knew, and which his human

colleagues could never have guessed.

Poole and Bowman had often humorously referred to themselves as caretakers or janitors aboard a

ship that could really run itself. They would have been astonished, and more than a little indignant, to

discover how much truth that jest contained.

Excerpt from the book “2001: A Space Odyssey”

Arthur C. Clarke, 1968 [33]

16

Contents

Περίληψη ... 1

Εκτεταμένη Περίληψη ... 3

Abstract ... 11

Acknowledgements ... 13

Instead of a Preface .. 15

Contents ... 17

List of Figures ... 21

List of Tables ... 25

1 Sentiment Analysis and Twitter .. 29

1.1 Machine Learning .. 29

1.1.1 Definition ... 29

1.1.2 Theory ... 30

1.1.3 Approaches .. 30

1.2 Sentiment Analysis .. 33

1.2.1 Definition ... 33

1.2.2 Historical Background and Learning Approaches .. 34

1.2.2.1 Supervised Learning .. 34

1.2.2.2 Semi-Supervised Learning ... 35

1.2.2.3 Unsupervised or Weakly Supervised Learning .. 35

1.3 Twitter Sentiment Analysis .. 36

1.3.1 Microblogging ... 36

1.3.2 Twitter Sentiment Analysis .. 37

2 Artificial Neural Networks .. 39

2.1 Human Nervous System .. 40

2.1.1 Basic Structure ... 40

2.1.2 Anatomy and Physiology ... 42

2.2 Neurons ... 43

2.2.1 Neuron Models .. 43

17

2.2.2 Activation Function ... 47

2.2.3 Stochastic Neuron Model ... 50

2.2.4 Definition of Neural Network .. 51

2.3 Neural Networks as Directed Graphs ... 51

2.4 Feedback .. 54

2.5 Neural Networks Architectures .. 55

2.5.1 Single-layer Feedforward Network .. 55

2.5.2 Multi-layer Feedforward Network ... 56

2.5.3 Recurrent Neural Network ... 57

2.6 Knowledge Representation .. 58

2.7 Learning Procedures .. 60

2.7.1 Learning with a Trainer or Supervised Learning .. 60

2.7.2 Learning without Trainer ... 62

2.7.2.1 Reinforcement Learning .. 62

2.7.2.2 Unsupervised Learning .. 63

2.8 Rosenblatt's Perceptron .. 64

2.8.1 The Perceptron ... 64

2.8.2 Perceptron's Convergence Theorem ... 66

2.8.3 Summary of Perceptron's Convergence Algorithm .. 70

2.9 Multi-layer Perceptron ... 72

2.9.1 Definition ... 72

2.9.2 Batch and Online Learning .. 74

2.9.2.1 Batch Learning .. 75

2.9.2.2 Online Learning ... 76

2.9.3 Back Propagation ... 77

2.9.3.1 The Algorithm .. 77

2.9.3.2 Phases of BK Algorithm .. 83

2.9.3.3 Activation Function ... 84

2.9.3.4 Learning Rate .. 86

2.9.3.5 Termination Criteria ... 88

2.9.3.6 Summary ... 89

2.9.4 Cross-Validation .. 92

18

2.9.4.1 Basic Method ... 92

2.9.4.2 Early Stopping Method .. 94

3 Model's Implementation .. 99

3.1 Data Acquisition .. 101

3.2 Pre-processing and Feature Extraction ... 105

3.2.1 Features of our Model .. 105

3.2.2 Pre-processing .. 110

3.2.3 Feature Extraction .. 116

3.3 Architecture ... 119

3.3.1 Input Preparation .. 119

3.3.2 Multi-layer Perceptron ... 123

3.4 Computational Complexity .. 126

3.5 Performance Evaluation ... 129

3.6 Implementation .. 130

4 Experiments and Results ... 131

4.1 Computer System Characteristics .. 131

4.2 Training and Testing Corpus .. 132

4.3 Training and Testing parameters .. 133

4.4 Experiments and Techniques .. 134

4.5 Examined Architectures ... 134

4.6 Results ... 135

4.6.1 Results for the Dataset balanced_referendum_ds ... 135

4.6.1.1 Examined Architectures ... 135

4.6.1.2 Summarized Results .. 136

4.6.2 Results for the Dataset various_contents_ds .. 139

4.6.2.1 Examined Architectures ... 139

4.6.2.2 Summarized Results .. 139

4.7 Discussion .. 141

4.8 Ideas for Improvement and Future Directions .. 144

4.9 Conclusion ... 146

Bibliography .. 149

Appendix ... 153

19

A. Table of the 100 Most Common Emoticons in Twitter Considered by our Model 153

B. Table of 50 out of the 664 Acronyms Considered by our Model ... 154

C. Table of the 320 English Stop Words Considered by our Model ... 155

20

List of Figures

Figure 1: Schematic representation of human nervous system..40

Figure 2: Structure of a typical neuron [34]..41

Figure 3: Architecture of the cerebral cortex. Some of the main sensory areas are the following:

Motor cortex: areas 4, 6 and 8; Somatosensory cortex: areas 1, 2 and 3; Visual cortex: areas 17, 18

and 19; Auditory cortex: areas 41 and 42 [35]...42

Figure 4: Non-linear neuron model...44

Figure 5: Affine transformation due to the presence of bias. It is υk = bk at uk = 0.........................46

Figure 6: Non linear neuron model: the weight wk0 corresponds to the bias bk..............................47

Figure 7: Plot of the threshold function...48

Figure 8: Plot of the sigmoid function...49

Figure 9: Basic rules for the design of signal flowcharts..52

Figure 10: Signal flowchart of a neuron..53

Figure 11: Architectural graph of a neuron...53

Figure 12: Signal flowchart of a system with single-loop feedback..54

Figure 13: Feedforward network with a single layer of neurons...55

Figure 14: Fully connected feedforward network with a hidden layer and an output layer.............56

Figure 15: Recurrent network without auto-feedback loops and hidden neurons.............................57

Figure 16: Recurrent network with hidden neurons..58

Figure 17: Schematic diagram of supervised learning; the gray part of the diagram consists a

feedback loop...61

Figure 18: Schematic diagram of reinforcement learning; both the learning system and the

21

environment are in the feedback loop..63

Figure 19: Schematic diagram of unsupervised learning..64

Figure 20: Signal flowchart of perceptron...65

Figure 21: Hyperplane as decision boundary for a binary classification task..................................66

Figure 22: Equivalent signal flowchart of perceptron...67

Figure 23: (a) Pair of linearly separable patterns. (b) Pair of non-linearly separable patterns......68

Figure 24: Architectural graph of a multi-layer perceptron with two hidden layers.........................73

Figure 25: The flow directions of the two basic signals in a multi-layer perceptron: forward

propagation of operating signals and backwards propagation of error signals................................74

Figure 26: Signal flowchart describing the details of output neuron j..78

Figure 27: Signal flowchart describing the details of output neuron k, which is connected to hidden

neuron j ...80

Figure 28: Signal flowchart of part of the conjugate system that executes the back propagation of

error signals...82

Figure 29: Signal flowchart presenting the effect of momentum constant α (in the feedback loop)..87

Figure 30: Summary plot of the learning procedure with error back propagation. Top: the

feedforward phase. Bottom: the error back propagation phase..90

Figure 31: Plot of the early stopping rule based on cross-validation...95

Figure 32: Plot of multiple cross-validation method. For a given test, the colored data subset is

used for the model's validation. The model is trained by the rest of the data....................................96

Figure 33: Schematic representation of the implemented model...100

Figure 34: Schematic representation of the sequence of actions taking place for the acquisition of

data from Twitter..101

Figure 35: “Twitter bird in real life”. Humorous portrayal of the language used in Twitter by Scott

22

Hampson [36]...110

Figure 36: Flowchart of the pre-processing procedure. The output of this procedure (the pre-

processed tweet) is a cleaned version of the original tweet, in the sense that noise has tried to be

eliminated while the meaningful information has tried to be maintained..111

Figure 37: Schematic representation of the pre-processing procedure (as a black box) of a random

raw tweet from our dataset. The output of this procedure is a cleaned tweet containing the

meaningful information of the original tweet...115

Figure 38: Schematic representation of the feature extraction process (as a black box). After

extracting the features of each word consisting a tweet, the latter is transformed into a feature

vector...117

Figure 39: Procedure of feature extraction. The stems, lemmas and POS tags of a word are

extracted and combined in order to construct the feature vector of a tweet....................................119

Figure 40: Transformation of the feature vectors' data type through a hash function....................120

Figure 41: Summary of the sequence of stages of tweets' processing procedure before feeding the

input of the neural network..122

Figure 42: Architecture of the network. In this example, the inputs of the network are fed by

bigrams of the feature vector..124

Figure 43: Example of network with the architecture 5. The input vector is consisted of bigrams of

the feature vector [f1, f2, …, f9]. The dimension of the input layer is 8; the dimension of the hidden

layer is (8·2 div 3) = 5; and the dimension of the output layer is 3, as the network is able to classify

the input vector into one out of three classes (positive, negative or neutral)..................................126

Figure 44: Distribution of success rates of experiments 1 and 2, for the technique of unigrams and

the dataset balanced_referendum_ds...143

Figure 45: Distribution of success rates of experiment 1, for the techniques of unigrams and

bigrams, and the dataset various_contents_ds..144

23

24

List of Tables

Table 1: Overview of the datasets..104

Table 2: The part-of-speech (POS) tags considered by our model..109

Table 3: Overview of the examined architectures..125

Table 4: Summary of computational complexity of all individual tasks of the model......................129

Table 5: Computer system characteristics...131

Table 6: Overview of the training and testing corpus..132

Table 7: Overview of the training parameters...134

Table 8: Overview of the examined architectures..135

Table 9: Overview of the examined architectures of the multi-layer perceptron for the dataset

balanced_referendum_ds...136

Table 10: Summarized results of dataset balanced_referendum_ds, for experiments 1 and 2, with the

technique of unigrams..138

Table 11: Summarized results of the predictions of the neural network for the dataset

balanced_referendum_ds...138

Table 12: Overview of the examined architectures of the multi-layer perceptron for the dataset

various_contents_ds...139

Table 13: Summarized results of the dataset various_contents_ds, for experiment 1, with the

techniques of unigrams and bigrams...140

Table 14: Summarized results of the predictions of the neural network for the dataset

various_contents_ds...141

Table 15: Table of the 100 most common emoticons in Twitter that were considered by our model.

..153

25

Table 16: Table of 50 out of the 664 acronyms that were considered by our model........................154

Table 17: Table of the 320 english stop words that were considered by our model.........................155

26

27

28

1 Sentiment Analysis and Twitter

Sentiment analysis is a subfield of text mining which aims to the identification of the user's

sentiment with respect to a specific subject. The subjective information is extracted from texts by using a

combination of machine learning and natural language processing techniques [1].

In this chapter, we are going to speak about machine learning and describe its approaches.

Afterwards, we will speak about sentiment analysis, the historical background as well as the learning

approaches that have been used for this task. Finally, we will speak about microblogs and, especially, Twitter.

We are going to describe the special characteristics that Twitter gathers and make it an ideal source for the

task of user opinion mining, which motivated us for this work.

1.1 Machine Learning

1.1.1 Definition

Machine learning is an approach to the development of algorithms of artificial intelligence that

produce predictions by exploiting known properties learned from a certain dataset [2]. It is a subfield of

computer science that explores the construction and study of algorithms that can learn from and make

predictions on data. Such algorithms operate by building a model from example inputs in order to make data-

driven predictions or decisions, rather than following strictly static program instructions [3].

29

Machine learning evolved from the study of pattern recognition and computational learning theory in

Artificial Intelligence.

1.1.2 Theory

A core objective of a learner is to generalize from its experience. Generalization in this context is the

ability of a learning machine to perform accurately on new, unseen examples or tasks after having

experienced a learning dataset. The training examples come from some generally unknown probability

distribution (considered representative of the space of occurrences) and the learner has to build a general

model about this space that enables it to produce sufficiently accurate predictions in new cases.

Computational learning theory is the computational analysis of machine learning algorithms and

their performance. Training sets are finite and the future is uncertain, hence learning theory usually does not

guarantee the performance of algorithms. Instead, probabilistic bounds on the performance are quite

common. The bias–variance decomposition is one way to quantify generalization error.

In computational learning theory, a computation is considered feasible if it can be done in

polynomial time. There are two kinds of time complexity results. Positive results show that a certain class of

functions can be learned in polynomial time. Negative results show that certain classes cannot be learned in

polynomial time [4].

1.1.3 Approaches

Below we describe the approaches of machine learning [3].

• Decision tree learning

A decision tree is used as a predictive model, mapping observations corresponding to an item to

conclusions about the item's target value.

• Association rule learning

Association rule learning is a method for discovering interesting relations between variables in large

databases.

• Artificial neural networks

An artificial neural network (ANN) learning algorithm, usually called “neural network” (NN), is a

30

learning algorithm that is inspired by the structure and functional aspects of biological neural networks

(nervous systems). Computations are structured in terms of an interconnected group of artificial neurons,

processing information using a connectionist approach to computation. Modern neural networks are non-

linear statistical data modeling tools. They are usually used to model complex relationships between inputs

and outputs, to find patterns in data, or to capture the statistical structure in an unknown joint probability

distribution between observed variables. ANN is the technique that we are going to use in our application

and they are further described in chapter 2.

• Inductive logic programming

Inductive logic programming (ILP) is an approach to rule learning using logic programming as a

uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of

the known background knowledge and a set of examples represented as a logical database of facts, an ILP

system will derive a hypothesized logic program that entails all positive and no negative examples. Inductive

programming is a related field that considers any kind of programming languages for representing

hypotheses (and not only logic programming), such as functional programs.

• Support vector machines

Support vector machines (SVMs) are a set of related supervised learning methods used for

classification and regression. Given a set of training examples, each marked as belonging to one of two

categories, an SVM training algorithm builds a model that predicts whether a new example falls into one

category or the other.

• Clustering

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that

observations within the same cluster are similar according to some predesignated criterion or criteria, while

observations drawn from different clusters are dissimilar. Different clustering techniques make different

assumptions on the structure of the data, often defined by some similarity metric and evaluated for example

by internal compactness (similarity between members of the same cluster) and separation between different

clusters. Other methods are based on estimated density and graph connectivity. Clustering is a method of

unsupervised learning, and a common technique for statistical data analysis.

• Bayesian networks

A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical

model that represents a set of random variables and their conditional independences via a directed acyclic

graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between

31

diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the

presence of various diseases. Efficient algorithms exist that perform inference and learning.

• Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an environment so

as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt to find a policy

that maps states of the world to the actions the agent ought to take in those states. Reinforcement learning

differs from the supervised learning problem in that correct input/output pairs are never presented, nor sub-

optimal actions explicitly corrected.

• Representation learning

Several learning algorithms, mostly unsupervised learning algorithms, aim to discovering better

representations of the inputs provided during training. Classical examples include principal components

analysis and cluster analysis. Representation learning algorithms often attempt to preserve the information in

their input but transform it in a way that makes it useful, often as a pre-processing step before performing

classification or predictions, allowing to reconstruct the inputs coming from the unknown data generating

distribution, while not being necessarily faithful for configurations that are implausible under that

distribution.

Manifold learning algorithms attempt to do so under the constraint that the learned representation is

low-dimensional. Sparse coding algorithms attempt to do so under the constraint that the learned

representation is sparse (has many zeros). Multi-linear subspace learning algorithms aim to learn low-

dimensional representations directly from tensor representations for multidimensional data, without

reshaping them into (high-dimensional) vectors. Deep learning algorithms discover multiple levels of

representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or

generating) lower-level features. It has been argued that an intelligent machine is one that learns a

representation that disentangles the underlying factors of variation that explain the observed data.

• Similarity and metric learning

In this problem, the learning machine is given pairs of examples that are considered similar and pairs

of less similar objects. It then needs to learn a similarity function (or a distance metric function) that can

predict if new objects are similar. It is sometimes used in Recommendation systems.

• Sparse dictionary learning

In this method, a datum is represented as a linear combination of basis functions, and the coefficients

are assumed to be sparse. Let x be a d-dimensional datum, D be a d by n matrix, where each column of D

32

represents a basis function. r is the coefficient to represent x using D. Mathematically, sparse dictionary

learning means the following x ≈ Dr where r is sparse. Generally speaking, n is assumed to be larger than d

to allow the freedom for a sparse representation.

Learning a dictionary along with sparse representations is strongly NP-hard and also difficult to

solve approximately. A popular heuristic method for sparse dictionary learning is K-SVD.

Sparse dictionary learning has been applied in several contexts. In classification, the problem is to

determine which classes a previously unseen datum belongs to. Suppose a dictionary for each class has

already been built. Then a new datum is associated with the class such that it's best sparsely represented by

the corresponding dictionary. Sparse dictionary learning has also been applied in image de-noising. The key

idea is that a clean image patch can be sparsely represented by an image dictionary, but the noise cannot.

• Genetic algorithms

A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection, and uses

methods such as mutation and crossover to generate new genotype in the hope of finding good solutions to a

given problem. In machine learning, genetic algorithms found some uses in the 1980s and 1990s. Vice versa,

machine learning techniques have been used to improve the performance of genetic and evolutionary

algorithms.

1.2 Sentiment Analysis

1.2.1 Definition

Sentiment analysis (also known as user sentiment and opinion analysis, opinion mining) is a

subfield of text mining which aims to the identification of the user's sentiment with respect to a specific

subject. The subjective information is extracted from texts by using a combination of machine learning and

natural language processing techniques [1]. Subjective information expressed in texts vary from opinion

attitudes to feelings expressed. The tasks of sentiment analysis include, though they are not limited to, the

following [5]:

• Sentiment classification, which classifies a given piece of text as positive, negative or neutral.

• Opinion retrieval, which retrieves opinions in relevance to a specific topic or query.

• Opinion summarization, which summarizes opinions over multiple text sources towards a certain

33

topic.

• Opinion holder identification, which identifies who express a specific opinion.

• Topic/sentiment dynamics tracking, which aims to track sentiment and topic changes over time.

• Opinion spam detection, which identifies fake/untruthful opinions.

• Prediction, which predicts people's behaviors, market trends, political election outcomes etc., based

on opinions or sentiments expressed in online contents.

1.2.2 Historical Background and Learning Approaches

In the past, text information processing focused mainly on mining and retrieving factual information,

such as classifying documents according to their subject matter. Later, in recent years, there has been a rapid

growth of research interests in natural language processing that seeks to better understand sentiment and

opinion expressed in text. There are several reasons that explain this growth. One of them is that with the rise

of various types of social media, communicating on the web has become increasingly popular, and millions

of people are able to broadcast their thoughts and opinions on a wide variety of topics, such as feedbacks on

products and services, opinions on political development and events etc. For that reason, new computational

tools are needed for the organization, summarization and comprehension of this huge amount of information.

In addition, a big number of ideas for useful applications is triggered by the discovery of opinions reflecting

people's attitudes towards various topics, and this is an additional motivation for sentiment analysis. We are

going to describe here some learning approaches and their historical background [5].

1.2.2.1 Supervised Learning

Sentiment analysis can be considered as computational treatments of subjective information such as

opinions and emotions expressed in text. In a primitive manner, sentiment analysis aims to the automatic

identification of the positive or negative opinion expressed in a given piece of text. The first approaches of

Pang et al. (2002) and Matsumoto et al. (2005) view sentiment classification as a text classification problem,

where a corpus with sentiment orientation annotated is required for the classifiers training. This is the basic

idea of supervised sentiment classification approaches. These approaches usually perform well when there is

a large enough training set. The state-of-art approach (Matsumoto et al. 2005) can achieve an accuracy

greater than 90% on the movie review data. [5] Nevertheless, this approach has several not negligible issues:

the supervised classifier trained on a specific domain, it is very possible to fail to produce satisfactory

performance when tested on other domains, while online content varies widely in domains and evolves

34

rapidly over time, making corpora annotation for each domain unrealistic (domain transfer and labeling cost

problems).

1.2.2.2 Semi-Supervised Learning

In response to the above problems, there has been a rising interest in exploring hybrid or semi-

supervised approaches, leveraging a large amount of unlabeled data and a small amount of labeled data for

classifier training. Aue and Gamon (2005) explored various strategies for training SVM classifiers for the

target domain lacking sufficient labeled data. Blitzer et al. (2007) proposed structural correspondence

learning (SCL), addressing to the domain transfer problem with [5].

1.2.2.3 Unsupervised or Weakly Supervised Learning

Unsupervised or weakly supervised approaches are mostly lexicon based, which do not require

labeled document for training. Their main idea is that the sentiment orientation of a document is an averaged

sum of the sentiment orientation of its words and phrases. Supervised or weakly supervised methods for

sentiment classification are very challenging, having taken into account the difficulties of supervised and

semi-supervised sentiment analysis. However, solutions to unsupervised or weakly supervised sentiment

classification are of practical significance owing to its domain-independent nature.

The pioneer work is the point-wise mutual information (PMI) approach proposed by Turney (2002).

Turney calculated the sentiment orientations of phrases in documents as its PMI with a positive prototype

“excellent” minus the PMI with a negative prototype “poor”. This approach achieved 84% accuracy for

automobile reviews and 66% accuracy for movie reviews. The work of Read and Carroll (2009) is also a

good example of a lexical-based approach.

Weakly supervised sentiment classification approaches are similar to unsupervised approaches as

they do not require labeled documents for training. What they do is that they typically incorporate

supervision information either from sentiment lexicons containing a list of words marked as positive or

negative (usually much larger in size than the sentiment seed words used in unsupervised approaches) or

from users feedback. Lin and He (2009) proposed a joint sentiment-topic (JST) model to detect document-

level sentiment and extract sentiment bearing topics simultaneously from text. The JST model incorporated a

small set of domain-independent sentiment words as prior knowledge for model learning, and it achieved

comparable performance to semi-supervised approaches with a percentage of 40% of labeled data [5].

35

1.3 Twitter Sentiment Analysis

1.3.1 Microblogging

Microblogging is a web service that allows the subscriber to broadcast short messages to other

subscribers of the service. A subscriber can publish microblog posts on a website and/or distribute them to a

group of subscribers. Depending on the privacy settings of the microblog, unsubscribed users might be able

to read microblog posts but not post new ones or share/comment the posts of subscribers. Subscribers can

read microblog posts online. They can also request updates to be delivered in real time to their desktop as an

instant message or sent to a mobile device as an SMS text message [6].

Micropost is a term that is sometimes used to describe a microblog post. Microtext is another term,

that describes a type of written text document that has the following three characteristics [7]:

• it is very short (typically one or two sentences)

• it is written in an informal manner and unedited for quality, and thus it may use loose grammar, a

conversational tone, vocabulary errors, and uncommon abbreviations and acronyms

• it is semi-structured in the NLP sense, in that it includes some metadata such as a time stamp, an

author or the name of a field it was entered into.

Microtexts have become omnipresent in today's world: they are notably found in online chat

discussions, online forum posts, user comments posted on online material such as videos, pictures and news

stories, Facebook newsfeeds and Twitter updates, Internet search queries, and SMS.

The content of a microtext/micropost may vary from short sentences to individual images, video or

other links. This may be the main reason for the popularity of microblogs. The major difference between a

microblog and a traditional blog is that the content of a microblog is typically smaller in both actual and

aggregated file size. The first microblogs were known as tumblelogs. Jason Kottke described tumblelogs on

October 19, 2005: “A tumblelog is a quick and dirty stream of consciousness, a bit like a remaindered links

style linklog but with more than just links. They remind me of an older style of blogging, back when people

did sites by hand, before Movable Type made post titles all but mandatory, blog entries turned into short

magazine articles, and posts belonged to a conversation distributed throughout the entire blogosphere. Robot

Wisdom and Bifurcated Rivets are two older style weblogs that feel very much like these tumblelogs with

minimal commentary, little cross-blog chatter, the barest whiff of a finished published work, almost pure

editing...really just a way to quickly publish the "stuff" that you run across every day on the web.” [8].

Microblogging is both immediate and portable, and this is why it's massively attractive. Posts are

36

brief (typically 140 - 200 characters) and can be written or received with a variety of computing devices,

including cell phones. Although most microblog broadcasts are posted as text, some microblogging services

allow video or audio posts. Microblogging is slowly moving into the mainstream. For example, in USA,

presidential candidate Barack Obama microblogged from the campaign trail using Twitter. Traditional media

organizations, such as newspapers, television channels have started to share headlines and links in

microposts [9]. Furthermore, other potential applications of microblogging include traffic and sports updates

and emergency broadcast systems.

Microbloggers post about topics ranging from very simple everyday issues to the topical issues, as

they have the possibility to use hashtags and share their opinion on a certain topic. Commercial microblogs

also exist to promote websites, services and products, and to promote collaboration within an organization.

Microblogs often offer features such as privacy settings, which allow users to control who can read

their microblogs, or alternative ways of publishing entries besides the web-based interface. These may

include text messaging, instant messaging, e-mail, digital audio or digital video [8].

Several popular microblogging services are Google+, Tumblr, Facebook and Twitter. Besides,

Twitter and Facebook are the two most popular social networks today. We are going to focus on Twitter for

this thesis and we explain the reasons of this choice in the next chapter.

1.3.2 Twitter Sentiment Analysis

Twitter [10] is an online social networking service that enables users to send and read short 140-

character messages. These messages are called “tweets”. A tweet is an expression of a moment or idea. It can

contain text, photos and videos. Millions of tweets are shared in real time, every day. Registered users of

Twitter can read and post tweets but unregistered users can only read them. Users can access Twitter through

the website interface twitter.com, SMS or mobile device app.

Twitter Inc. is based in San Francisco and has more than 25 offices around the world. The service

was created in March 2006 by Jack Dorsey, Evan Williams, Biz Stone and Noah Glass and launched by July

2006. Twitter rapidly gained worldwide popularity with more than 100,000,000 users who in 2012 posted

340,000,000 tweets per day. It also handled 1.6 billion search queries per day. Twitter was one of the ten

most-visited websites in 2013, and due to its short size, it has been described as “the SMS of the Internet”.

As of May 2015, Twitter has more than 500,000,000 users, out of which 302,000,000 are active users [9].

It is obvious that Twitter can be seen as a large source of short texts (tweets), often consisted of user

opinions, most of which are appropriate for sentiment analysis tasks by identifying user attitudes and

opinions toward a particular topic or product. Besides, the fact that it is quite common to use hashtags in

order to indicate the topic about which a user expresses an opinion, as well as the fact that Twitter limits

tweet length to 140 characters makes tweets more possible to contain pure opinions on a topic without much

37

chatter (noise). From all the above, it is quite clear that Twitter can be considered as an excellent source of

short texts containing user opinions for the task of user opinion mining [7].

Twitter microblog sentiment analysis aims to identify and detect the sentiments or emotions that are

present in a microblog post (tweet). The techniques developed for microblog sentiment analysis can also be

applied to classify social media data in a real-time manner [7].

Twitter has become a quite attractive source of data for opinion analysis due to the large amount of

information contained in tweets. However, Twitter also consists a much harder challenge than sentiment

analysis on conventional text. The main reasons for this are some particular characteristics of Twitter: the

short length of tweets (tweets are too short to be linguistically analyzed), the frequent use of informal and

irregular words, slang, misspellings and colloquialisms as well as the rapid evolution of language [7]. In

addition, we have to deal with human subjectivity, while even humans often disagree on the categorization of

the positive or negative sentiment that is supposed to be expressed on a given text. All these special

characteristics make the task of Twitter sentiment analysis a hard challenge.

Annotated tweets data are impractical to obtain. There are several ideas for the task of annotation of

the tweets. The works of Go et al. (2009), Pak and Paroubek (2010), Barbosa and Feng (2010) proposed

noisy labels or distant supervision, for example by taking emoticons or hashtags as the indication of tweet

sentiment to train supervised classifiers [1]. Other works (Agarwal et al. 2011, Kouloumpis et al. 2011)

explore feature engineering in combination of machine learning methods to improve sentiment classification

accuracy on tweets.

There have been many approaches for Twitter sentiment analysis. The most prominent of them are

Naive Bayes algorithm, Maximum Entropy, Support Vector Machines and Artificial Neural Networks. For

the present work, we explore the approach that is based on Artificial Neural Networks.

38

2 Artificial Neural Networks

Artificial neural networks consist the machine learning technique that was used for the

implementation of the learning procedure of our model. A neural network is a huge parallel processor with

distributed architecture, comprised of simple processing units, called neurons, and natively having the ability

to store empirical knowledge and make it available for use. It resembles the human brain in two points:

• The network receives the knowledge from its environment through a learning procedure.

• The strength of the connections among neurons, which is called synaptic weight, is used for the

storing of the acquired knowledge.

The learning procedure through which a neural network achieves learning is called learning

algorithm and its operation is modify the synaptic weights of the network in an appropriate way for the

achievement of the desirable goal.

In this chapter, firstly we are going to describe the human nervous system, from which the artificial

neural networks were inspired. Afterwards, we will speak about the neurons as processing units and the

neural networks architectures. Furthermore, we will see the ways knowledge can be represented and the

learning procedures. We are also going to describe the Rosenblatt's perceptron and the multi-layer

perceptron, as well as the back propagation algorithm that aims to train a multi-layer perceptron. Finally, we

are going to see the method of cross-validation.

39

2.1 Human Nervous System

2.1.1 Basic Structure

The human nervous system is comprised of two major subdivisions: the central nervous system

(CNS) and the peripheral nervous system (PNS). The CNS includes the brain and spinal cord. It is consisted

of the nerve cells, known as neurons, and the supporting cells, known as glial cells. The brain is the body's

control center [11].

Human nervous system can be treated as a three stages system (figure 1), as Arbid proposed in 1987.

Brain can be represented by a neural network that always receives information, processes it and makes the

appropriate decisions based on it. In fig. 1, the arrows are of two directions; the ones that are directed from

left to right indicate the forward transmission of information signals, the ones that are directed from right to

left mark the presence of feedback in the system. The receptors convert the stimuli or stimulations coming in

from the human body or the external environment through the human sensors to electrical signals (known as

impulses) that transport information to the neural network (the brain). The effector cells convert these

electrical signals produced by the neural network into aesthetic responses, which are the system outputs.

Ramon y Cajal (1911) [12] firstly inducted the idea of the neuron as the structural component of the

brain. Typically, neurons are 5 or 6 orders of magnitude slower than silicon based logic gates; in an

integrated circuit, events take place in the scale of nanoseconds, while in human neural network they take

place in the scale of milliseconds. However, the human brain compensates this relatively slow operating

speed of a neuron with the presence of an immense crowd of neurons and a respectively huge crowd of

interconnections among them. It is estimated that there are 10 billions of neurons in the human cerebral

cortex and 60 trillions connections (Shepherd and Koch, 1990). All these make the brain an amazingly

efficient structure. The energy efficiency of the human brain is around 10 -16 Joule, while the corresponding

value for the best computers is greater by many orders of magnitude. There are three main types of neurons:

• The sensory neurons: These neurons are connected to receptors that are specialized to detect and

respond to various stimulations from the internal or external environment. The receptors that are

40

Figure 1: Schematic representation of human nervous system.

sensitive to changes of light, sound, mechanical or chemical stimulations serve the senses of sight,

hearing, touch, smell and taste. When thermal or chemical stimulations on the skin exceed a certain

intensity level, it is possible to cause tissue disaster, which will activate a specific category of

receptors, the nociceptors (receptors of stimulations of pain). These receptors activate the protective

reflexes as well as the pain sensation.

• The motor neurons (or motoneurons): These neurons control the muscles' activity and are involved

in all kinds of behavior, including speech.

• The interneurons: These neurons are interposed between the sensory and the motor neurons. These

nerve cells consist the majority of cells in human brain. The interneurons intermediate simply

reflexively, but they also participate in the brain's superior functions.

The glial cells were believed to contribute only in a supportive way; however today it is known that

they contribute in a very significant way to the development of the nervous system and to the operation of an

adult brain. Even though the glial cells are more in number than the neurons, they do not transmit the

information in the same way with them.

The architectural structure of neurons (fig. 2) is consisted of the cell body, which is known as the

soma, and two additional parts, called neurite. The neurite is consisted of the axons and the dendrites. Axons'

task is the information transmission from a neuron to the ones it is connected to. Dendrites' task is to receive

the transmitted information from the axons of other neurons. Both the axons and the dendrites participate in

the formation of special points of contact, which are called synapses. The neurons are organized in

complicated chains and networks, that consist the paths through which the information is transmitted in the

nervous system [11].

The connections or nerve endings (synapses) are the elementary structural and functional units that

41

Figure 2: Structure of a typical neuron [34].

Soma

Dendrite

Nucleus
Myelin sheath

Node of
Ranvier

Schwann cell

Axon terminal

Axon

intermediate during the interactions among the neurons. The most common type of a synapse is the chemical

synapse. Its operation is the following: a presynaptic procedure releases a chemical substance, known as

neurotransmitter, which is diffused in the synaptic junction between neurons and then acts on a postsynaptic

process. Thus, a synapse converts a presynaptic electrical signal to a chemical signal, and then it converts

again the chemical signal into a postsynaptic electrical signal (Shepherd and Koch, 1990).

In terms of electronics, such a component consists a double-door network. In traditional descriptions

of the nervous system organization, a synapse is considered a simple connection that can cause stimulation or

suspension, but not both of them to the neuron-receiver.

The brain and the spinal cord are connected with aesthetic receptors and muscles through a large

length of axons that consist the peripheral nerves. The spinal cord has two main operations: it consists the

setting of simple and more complicated reflexes, and it forms a path of quick information transmission from

the body to the brain and vice versa.

The above basic structures of the nervous system are the same in all the vertebrate. The attribute that

makes the human brain different is its big size compared with its body size. This is caused by the huge

growth of the number of interneurons during the evolution of the species, and this fact provides the human

with countless choices of reactions to stimulations received from the environment.

2.1.2 Anatomy and Physiology

The human brain is consisted of the brainstem and the cerebral hemispheres. The brainstem is

divided to the hindbrain, the midbrain and to an interbrain, called diencephalon. It contains neural networks

42

Figure 3: Architecture of the cerebral cortex. Some of the main sensory areas are the following: Motor cortex:

areas 4, 6 and 8; Somatosensory cortex: areas 1, 2 and 3; Visual cortex: areas 17, 18 and 19; Auditory cortex:

areas 41 and 42 [35].

1
23

4 5
6

7

8

9

10

11

43

38 37

18 18
17

19

20

45 44

40

47

41
42

22

21

19

that consist control centers for vital operations, such as breathing and the arterial pressure. From the top of

the hindbrain, the cerebellum arises, playing a quite significant role in the movements control and

coordination.

The midbrain contains the groups of neurons. Each one of them uses a specific type of a chemical

neurotransmitter, but all of them project to the cerebral hemispheres. It is believed that these neurons are able

to regulate the neurons' activity to the superior brain centers that control operations such as sleep, attention

and reward.

The diencephalon is divided into two very different areas, which are the thalamus and the

hypothalamus. Thalamus transfers impulses from all the sensory systems to the cerebral cortex, which,

subsequently, sends messages back to thalamus. This forward-backward way of this assembly is quite

interesting; the information is not transferred only to one direction. Hypothalamus controls operations such

as eating and drinking. In addition, it controls the release of hormones regarding sexual functions.

The cerebral hemispheres are consisted of a nucleus, the basic ganglia and an extended but thin

casing of neurons, which consists the gray matter of cerebral cortex. The basic ganglia play a central role to

the inception and control of movements. The cerebral cortex, pressured in the limited space of cranium, is

shaped by aspects that are wrapped inwards and outwards, enlarging in this way the surface of the casing.

The cortex is the most developed structure of human brain; it is 4 times bigger than the one of gorillas. It is

divided into a big number of discrete areas. Each of these areas is distinguished depending on layers and

connections. The operations of many of these areas are known, for example the visual, auditory and olfactory

areas, the somatosensory areas receiving information from the skin and several motor areas. The paths of the

sensory receptors to the cortex and from the cortex to the muscles are intersected on the one side and the

other. Thus, the movements of the right side of body are controlled by the left side of the cortex, and vice

versa. Likewise, the left part of the body sends sensory signals to the right hemisphere. However, the two

parts of the brain don't work isolated; the left and right cerebral cortex are connected through a long bundle

of neural fibers, called corpus callosum. The cerebral [13] cortex is indispensable for the voluntary

movements of tongue and speech, as well as superior operations like thinking and memory. Many of these

operations take place in both sides of the brain, but some of them are located mainly in one of the two

hemispheres [11].

2.2 Neurons

2.2.1 Neuron Models

A neuron is a generic computational unit that takes a number of inputs and produces a single output

[13]. It processes information which is fundamental for the operation of a neural network, such as the human

43

nervous system or an artificial neural network (ANN). The model of a neuron on which is based the design

of big neural networks family is presented in the schematic diagram of figure 4 [14].

The basic components of this model are described here [14]:

• A set of synapses or interconnections. Each one of them is characterized by its own weight or

strength. Specifically, a signal xj in the input of a synapse j that is connected to the neuron k, is

multiplied by the synaptic weight wkj. It is important here to explain the manner of indicating the

symbol of the synaptic weight wkj: The first indicator corresponds to the certain neuron, k, and the

second indicator corresponds to the input edge of the synapse to which the weight refers. Unlike the

synaptic weights of human brain, a synaptic weight of an artificial neuron can take

both negative or positive values.

• An adder. This component adds the input signals, weighted by the respective synaptic weights of the

neuron; these operations consist a linear combiner.

• An activation function. The activation function is necessary for the amplitude limitation of the

neuron's output signal within a finite range. This is why it is also mentioned as squashing function.

Typically, the normalized range of a neuron is written as a unit closed interval, in the form of [0, 1]

44

Figure 4: Non-linear neuron model

or [-1, 1].

Furthermore, the neuron's model of fig. 4 includes a bias that is externally applied and is symbolized

by the symbol bk. This bias bk is used to increase or decrease the network stimulation of the activation

function, depending on whether the latter is, respectively, positive or negative.

Neuron k of fig. 4 can be described in mathematical terms with the following equations:

uk=∑
j=1

m

w kj x j (1)

and

yk=φ(uk+bk) (2)

where x1, x2, …, xm are the input signals, wk1, wk2, …, wkm are the corresponding synaptic weights of neuron k, uk

is the output of the linear combiner caused by the input signals, bk is the bias, φ(·) is the activation function,

and yk is the neuron's output signal. The use of bias bk causes the application of an affine transformation on

the output uk of the linear combiner in the model of fig. 4, as it is obvious in the equation:

υk=uk+bk (3)

Specifically, depending on the bias, if it is negative or positive, the relation between the local field or

activation potential υk of the neuron k and the uk is modified in the way that is presented in fig. 5. These two

terms are going to be used as synonymous. Because of this affine transformation, the curve υk-uk doesn't pass

through the origin (0, 0) [14].

45

Bias bk is an external parameter of neuron k and can be counted in through the equation (2).

Equivalently, we can combine the equations (1) and (2) into the following:

υk=∑
j=0

m

wkj x j (4)

And

yk=φ(υk) (5)

We added a new synapse in equation (4) and now its input and its weight are, respectively:

x0=+1 (6)

and

46

bk < 0

bias bk > 0

bk = 0

(0, 0)

local

field,

υk

Figure 5: Affine transformation due to the presence of bias. It is υk = bk at uk = 0.

local

field,

υk bias bk > 0

bk < 0

bk = 0

(0, 0)

output of the linear combiner, uk

w k0=bk (7)

The model of a neuron k can now be rephrased, as seen in fig. 6. Here, we count in the effect of the

bias in two steps: firstly we add a new constant input signal equal to +1, and afterwards we add a new

synaptic weight equal to the bias bk. Even though they look different, models of figures 4 and 6 are

mathematically equivalent.

2.2.2 Activation Function

The neuron's output is defined by the activation function, φ(υ), where υ is the symbol of the local

field [15]. The activation function can belong to one of two basic categories: the threshold function or the

sigmoid function.

The threshold function (fig. 7), which is known as Heaviside function in Mechanics, is described

by the following equation:

47

Figure 6: Non linear neuron model: the weight wk0 corresponds to the bias bk.

φ(υ)={1, for υ≥0
0, otherwise

 (8)

The output of neuron k is:

y (k)={1, for υk≥0
0, otherwise

 (9)

where υk is the local field of the neuron, which is expressed by

υk=∑
j=1

m

w kj x j+bk (10)

This is the McCulloh-Pitts model, within which the neuron's output is equal to 1 if the local field of

the particular neuron isn't negative, and 0 otherwise.

48

Figure 7: Plot of the threshold function.

 υ

 φ(υ)

The sigmoid function (fig. 8) is the most common activation function for the implementation of

neural networks. It is defined as a strictly increasing function, displaying elegant balance between linear and

non-linear behavior. Logistic function is an example of sigmoid function and is defined as:

φ(υ)=
1

1+exp(−αυ)
 (11)

where α is the gradient parameter of the sigmoid function. By varying the parameter α, we take sigmoid

functions of various gradients. Actually, the gradient on the origin is equal to α/4. While the gradient

parameter approaches infinity, the sigmoid function turns into a threshold function. A threshold function can

take only the discrete values of 1 and 0. A sigmoid function can take values of a constant range, from 0 to 1.

In addition, the sigmoid function is differentiable while the threshold function is not.

Both the activation functions (8) and (11) have a range from 0 to +1. Sometimes it is important to

have a range from -1 to +1; then the activation function is an odd function of local field. Specifically, the

49

Figure 8: Plot of the sigmoid function.

 υ

 φ(υ)

threshold function would be now defined as the widely known sign function:

φ(υ)={
1, for υ>0
0, for υ=0

−1, for υ<0
 (12)

For the sigmoid function, we could use in this case the hyperbolic tangent function, which can get

negative values and allows us have practical benefits instead of a logistic function. The sigmoid function

would be then defined as:

φ(υ)= tanh(υ) (13)

2.2.3 Stochastic Neuron Model

The neuron model of fig. 6 is deterministic, as its behavior is exactly predefined for every input. For

certain NN applications, the analysis is desired to be based on a stochastic neuron model. The activation

function of McCulloh-Pitts can have a probabilistic interpretation; a neuron can be only in one of two states,

e.g. +1 or -1. The decision of the neuron's activation is probabilistic. If x is the neuron's state and P(υ) is the

activation probability, where υ is the local field of the neuron, then we can write:

x={+1, with a possibility of P (υ)
−1, with a possibility of 1−P (υ)

 (14)

A typical choice for P(υ) is the sigmoid form function:

P (υ)=
1

1+exp(−υ /Τ)
 (15)

where is a pseudotemperature (borrowed by thermodynamics), which is used for the level control of the�

noise, thus the uncertainty regarding to the activation (Little, 1974). However, it is important to make clear

here that is not the natural temperature of a NN, even if it is a biological NN or an ANN. is just a� �

parameter that controls the thermal fluctuation that represents the affect of synaptic noise. When � → 0, the

stochastic neuron that is described by the equations (14) and (15), is transformed into a noise-free

(deterministic) form, and specifically into the McCulloh-Pitts model [14].

50

2.2.4 Definition of Neural Network

Let's now express the definition of a neural network [14]:

A neural network is a huge parallel processor with distributed architecture, comprised of simple

processing units, called neurons, and natively having the ability to store empirical knowledge and make it

available for use. It resembles the human brain in two points:

• The network receives the knowledge from its environment through a learning procedure.

• The strength of the connections among neurons, which is called synaptic weight, is used for the

storing of the acquired knowledge.

The learning procedure through which a neural network achieves learning is called learning

algorithm and its operation is modify the synaptic weights of the network in an appropriate way for the

achievement of the desirable goal.

2.3 Neural Networks as Directed Graphs

We are going to handle the neural networks that will be described here as directed graphs which will

be presented with signal flowcharts [14]. A signal flowchart is a network of directive connections (branches)

that are interconnected at certain points which are named nodes. Node j corresponds to the node signal xj.

There are three basic rules, which should be respected by the flow of the signals:

• First rule: A signal flows along a connection only towards the direction that is defined by the arrow

of the connection.

• Second rule: A node signal is equal to the algebraic sum of all the incoming to this node signals

through the incoming connections.

• Third rule: A node signal is transmitted to every outgoing connection starting from this node, and its

transmission is totally independent of the transfer functions of the outgoing connections.

51

Taking into account the above rules, a neural network can be mathematically defined as a directed

graph through the following definition:

A neural network is a directed graph, which is consisted of nodes with interconnected synaptic

connections and activation connections, and is characterized by the four following properties:

1. Each neuron is represented by a set of linear synaptic connections, an externally applied bias and one

possibly nonlinear activation function. The bias is represented by a synaptic connection that is

connected to an input of constant value equal to +1.

2. The synaptic connections of a neuron weighs the corresponding input signals.

3. The weighted sum of the input signals defines the local field of the particular neuron.

4. The activation connection limits the local field of the neuron in order to produce an output.

A directed graph which is defined respecting the above rules is considered full, on the sense that it

describes both the signal's flow neuron by neuron, and the signal's flow within each neuron. However, we

will use a simplified graph here, which will not take into account the signal flow within a neuron. Such a

graph is considered partially full. It is described by the source nodes, which provide the graph with input

signals, the computational nodes, each one of which represents a neuron, and the communication connections

that interconnect the source and the computational nodes of the network. The communication connections

are not weighted; they just show the direction of the signal flow in the graph. This type of graphs actually

describes the topology of the graph and because of this, it is named architectural graph.

52

Figure 9: Basic rules for the design of signal flowcharts.

To summarize, there are three representations of a neural network:

• the schematic diagram, that describes the operation of the network

• the architectural graph, that describes the topology of the network

• the signal flowchart, that describes the signal flow in the network

53

Figure 10: Signal flowchart of a neuron.

Figure 11: Architectural graph of a neuron.

2.4 Feedback

Feedback [14] exists in a dynamic system whenever the output of a component of the system affects

partially the input that is applied to the certain component, causing the appearance of one or more closed

paths for the signal transmission in the system.

As a matter of fact, feedback takes place in almost all the parts of the neural network (nervous

system) of animals. Feedback is an important factor in the study of a particular category of neural networks,

known as recurrent networks.

Figure 12 presents the signal flowchart of a system with single loop feedback. The input signal xj(n),

the internal signal x'j(n) and the output signal yk(n) are discrete time functions of the variable n.

The system is assumed to be linear, consisted of a feed-forward path and a feed-backwards path,

characterized by the operators A and B respectively. The relationship between input and output is defined by

the following equations:

yk (n)=A [x ' j(n)] (16)

x ' j(n)=x j(n)+B[yk (n)] (17)

yk (n)=
A

1−AB
[x j(n)] (18)

The factor A/(1-AB) is called closed-loop operator and AB is called open-loop operator. In general, AB≠BA.

The analysis of the dynamic behavior of neural networks containing feedback gets complicated by

the fact that the processing units that construct the network are usually non-linear.

54

Figure 12: Signal flowchart of a system with single-loop feedback

2.5 Neural Networks Architectures

The learning algorithm that is used for the training of the network is closely related to the way that

the neurons of the network are structured. Hence, the learning algorithms or rules that are used in neural

networks design should be treated as structured. There are three fundamental ways of structure or

architectures of neural networks and they are described below [14].

2.5.1 Single-layer Feedforward Network

The neurons are organized in layers in a neural network. The simplest neural network has an input

layer that is consisted of source nodes and is directly connected to an output neurons layer, which act as

computational nodes, but not vice versa. This is a feedforward network, as seen in fig. 13. It is a single layer

network; the input layer is not admeasured as there is no computation taking place there.

55

Figure 13: Feedforward network with a single layer of neurons

2.5.2 Multi-layer Feedforward Network

This architecture consists of one or more hidden layers. The computational nodes of each layer are

called hidden neurons or hidden units; the term “hidden” refers to the fact that this part of the neural network

is not directly seen from the input or the output of the network. The hidden neurons intervene between the

externally provided input and the output of the network in a useful manner. The source nodes at input layer

provide the first hidden layer nodes with the input vector. The output signals of the first hidden layer are

provided as inputs to the second hidden layer, which after some computation, provides them to the next

hidden layer. Typically, the neurons of each layer take as inputs the output signals of the previous layer. This

procedure continues for all the hidden layers and finishes when they reach the output layer. The set of the

output signals consist the total response of the network in the activation pattern that is provided by the source

nodes at the input layer.

Figure 14 presents the architecture of such a network. The network of this figure is fully connected,

as each node of each layer in the network is connected to all the nodes of the next layer. If some of the

synaptic connections were absent, the network would be partially connected.

56

Figure 14: Fully connected feedforward network with a hidden layer and an output layer

2.5.3 Recurrent Neural Network

A recurrent neural network has at least one feedback loop. Figure 15 presents a recurrent neural

network, which has a single-layer of neurons, with each neuron feeding its output signal back to the inputs of

all the other neurons. In the architecture of this figure, there is no auto-feedback in the network; there is auto-

feedback in a network when the output of a neuron feeds the input of the same neuron.

Figure 16 presents a different category of recurrent networks with hidden neurons. The feedback

connections of this figure come from both the hidden and the output neurons.

Feedback loops are very essential and have a great effect on the learning ability of the network, in

both forms of figures 15 and 16. Furthermore, the feedback loops require the use of certain branches,

57

Figure 15: Recurrent network without auto-feedback loops and hidden neurons.

consisted of elements of unit time delay (symbolized as z-1), which result to the non-linear behavior of the

network, having supposed that it includes non-linear units.

2.6 Knowledge Representation

Fischler and Firschein, in 1987, expressed the following definition of knowledge:

Knowledge is the stored information or the models that are used by an individual or a machine in

order to interpret, predict and respond appropriately to the external world [16].

Intelligence and problem solving depend upon the use of stored knowledge and information about

objects, processes, goals, causality, time and action. The study of knowledge, memory, symbols and mental

representations are areas of high interest for cognitive scientists and psychologists as well as Artificial

Intelligence (AI) researchers. Cognitive science researchers have studied the representations used by people

in the process of solving different types of problems.

58

Figure 16: Recurrent network with hidden neurons.

A problem in AI is translated into a system for representing the types of knowledge and reasoning.

Knowledge representation may consist of hierarchical, sequential and spatial relationships with names, facts,

procedures and constraints. Models are language representations for describing the world. Logic and

mathematical systems are also representations of formal languages for representing the world. For example,

a natural language is a representational system which obviously has a language and a structure or syntax for

both verbal and written communication [17].

The main characteristics of knowledge representation are the following ones: what information is

really represented in explicit form and how the information is encoded for future use. The possible forms of

knowledge representation, from the inputs to the internal parameters of a network, may vary significantly,

and this makes the development of a satisfactory solution through a neural network a great challenge.

An essential task for a neural network is to learn a model of the world (its environment), to which it

belongs, and maintain this model sufficiently consistent to the real world in order to be able to achieve the

goals for which it was initially designed. The knowledge of the world is consisted of two kinds of

information:

• The known state of the world, which is represented by facts and hints of what has already

been known; this kind of information is mentioned as past information.

• The observations (and measurements) on the world, which are received by sensors that were

designed in order to monitor the environment in which the neural network operates. Usually,

these observations contain noise, due to the noise collected by the sensors and the system's

imperfections. In all cases, the observations that are received in this way consist an

information pool; the examples that are used for the neural network's training are pulled

from it.

The examples can be labeled (annotated) or unlabeled (unannotated). In the labeled examples, every

example representing an input signal corresponds to a desirable response. On the other hand, the unlabeled

examples are consisted of various implementations of the input signal only. In any case, a set of examples

represents the knowledge about the environment, which a neural network can learn through the training. We

should note here that the labeled examples may be expensive to acquire as they require the availability of a

trainer who will provide a desirable and accurate response for every input example. In opposition, unlabeled

examples are in abundance and do not require such a supervision from a trainer.

The fundamental difference between the design of a neural network and the design of traditional

information processing network is in the mechanism that executes the pattern classification. In a traditional

network implementation, usually we move on based on a mathematical model of environmental

observations, verifying its correctness with real data, and then basing the network's design on this model. In

opposition, the design of a neural network is based directly on the real world's data; the dataset can “speak”

59

and reveal information on its behalf. Hence, the neural network not only provides the implied model of the

environment, but it also executes the desirable information processing.

The examples set that is used for the training of a neural network can contain positive and negative

examples. In a neural network of a certain architecture, the representation of the knowledge of the

environment is defined by the values of the free parameters (which are the synaptic weights and the bias) of

the network. The form of this knowledge representation consists the design of the network and, consequently,

is the key for its performance [14].

2.7 Learning Procedures

There are various ways in which a neural network is able to learn [14]. The ways that were described

in section 1.2.2, for learning approaches of sentiment analysis tasks, are inspired by the approaches we are

going to describe here. These approaches were inspired by human learning and try to simulate it. In a broad

sense, the categories of learning procedures are the following: learning with a trainer (or supervised learning)

and learning without trainer. Learning without trainer can be divided into the subcategories of unsupervised

learning and reinforcement learning.

2.7.1 Learning with a Trainer or Supervised Learning

The trainer knows the environment and this knowledge is represented by a set of input-output

examples. However, the environment is unknown to the neural network. Let's assume that the trainer and the

neural network are exhibited to a training vector, which is an example alleged from the environment. Due to

its native knowledge, the trainer is able to provide the neural network with a desired response for the certain

training vector. The desired response represents the optimal action that the neural network should perform.

The network parameters are fitted by the combination of the training vector and the error signal. The error

signal is defined as the difference between the desired response and the real response of the network. The

network parameters are fitted in a repetitive way, step by step, and its goal is to bring the neural network in a

state where it can simulate the trainer's behavior. This simulation is considered optimal under a statistical

sense.

60

The above consist the base of learning through error correction. In fig. 17 the gray part of the

diagram consists a closed loop feedback system. The unknown environment is out of this loop. The mean

squared error (MSE) or the error sum of squares (SSE) on the training sample, defined as function of the free

parameters (which are the synaptic weights), can be used as a performance metric of the system. This

operation can be seen as a multidimensional surface of error-performance, or simply an error surface, with

the free parameters acting as coordinates. The real error surface is calculated by the average of all possible

input-output examples. Every specific operation of the system, under the supervision of the trainer, is

represented by a point on the error surface. This point must be moved successively downwards, towards a

minimum point of the error surface, in order to improve the system's performance over time and make the

system learn by the trainer. The minimum point can be a local or a global minimum. A supervised learning

system is able to achieve this by using the available useful information regarding the gradient of the error

surface corresponding to the current system's behavior. The gradient of the error surface at a point is

represented by a vector towards the direction of the steepest descent. In fact, in the case of supervised

learning through examples, the system can use an instantaneous evaluation of the gradient vector, with time

indicators for the examples. The use of such an evaluation has as a result the movement of the operating

point on the error surface, which typically has the form of a random path. However, given an algorithm that

is specialized to minimize the cost function, a sufficient example of inputs-outputs and sufficient time for the

training, a supervised learning system is usually able to approach an unknown, reasonably fine, pairing of

inputs-outputs.

61

Figure 17: Schematic diagram of supervised learning; the gray part of the diagram consists a feedback loop.

2.7.2 Learning without Trainer

The learning procedure takes place without the guidance of a trainer. This actually means that there

are no labeled examples of the operation that the network aims to learn. There are two subcategories of this

procedure, that are described below.

2.7.2.1 Reinforcement Learning

In reinforcement learning, an input-output mapping is learned through the constant interaction

between the network and its environment in order to minimize a scalar performance indicator.

Fig. 18 presents the schematic diagram of the procedure of reinforcement learning. The base of this

procedure is a mechanism that functions as a “judge”. The judge converts the main reinforcement signal, that

is received from the environment, into a higher-quality reinforcement signal, which is named heuristic

reinforcement signal. Both these signals are scalar inputs (Barto et al. 1983). The system is designed in such

a way that it is able to learn through delayed reinforcement, which actually means that the system observes a

time sequence of stimuli, received from the environment, which end up to the production of the heuristic

reinforcement signal.

Reinforcement learning aims to minimize a current error function, which is defined as the prediction

of the summed cost of actions that are executed in a step sequence. Several of the executed procedures of this

step sequence are possibly the best determinants of the total system behavior. The learning system function is

to discover these actions and to feed them back, to the environment.

Delayed Reinforcement learning is difficult to be executed due to the following factors: There is no

trainer to provide a desired response at every step of the learning procedure, and the delay with which every

reinforcement signal is produced suggests that learning machine has to solve a time problem of trust

assignment. This means that the learning machine must be able to determine individually the success degree

individually for each action of the time step sequence that drove to the final result, while the main

reinforcement mechanism may evaluate only the final result.

62

2.7.2.2 Unsupervised Learning

In unsupervised or self organized learning there is no external trainer or judge supervising the

learning procedure. Instead, an independent of the task metric of the quality of the representation is used, and

this is assigned to train the network. The network's free parameters are optimized compared to this metric.

When the network is coordinated with the statistic regularities of the input data, it develops the ability to

form internal representations for the encoding of the input features, and, through them, to automatically

create new classes (Becker, 1991).

For the execution of unsupervised learning, we can use a rule of competitive learning. A very simple

63

Figure 18: Schematic diagram of reinforcement learning; both the learning system and the environment are in the

feedback loop.

example of this would be a neural network consisted of two layers: an input layer and a competitive layer.

The input layer receives the available data. The competitive layer is consisted of neurons, of which each one

competes the others, according a learning rule, for the chance to respond to features that are contained in the

input data. In its simplest possible form, the network functions under the strategy “the winner takes

everything”. Based on such a strategy, the neuron with the highest total input “wins” in the competition and

is activated; all the other network neurons are deactivated.

2.8 Rosenblatt's Perceptron

2.8.1 The Perceptron

Perceptron (“sensor”) was the first neural network that was able to be described with an algorithm. It

was invented by Rosenblatt in 1958 and is based on a non-linear neuron (the neuron model of McCulloch-

Pitts) [14]. This model is consisted of a linear combiner followed by a hard limiter. The latter executes the

sign function, as presented in figure 20. The summing node of the neural model calculates a linear

combination of the inputs that are applied to its synapses, and, additionally, it incorporates an externally

applied bias (or predisposition). The resulting sum or induced local field is applied to a hard limiter. In

response, the neuron produces an output equal to +1 if the input of the hard limiter is positive, and -1 if the

input is negative.

64

Figure 19: Schematic diagram of unsupervised learning.

In the flowchart of fig. 20, the perceptron's synaptic weights are symbolized by w1, w2, ..., wm. The

perceptron's inputs are respectively symbolized by x1, x2, ..., xm, and the externally applied bias is symbolized

by b. The input of the hard limiter (or the neuron's local field) is equal to:

υ=∑
i=1

m

wi x i+b (19)

Perceptron's goal is the correct classification of a set of externally applied stimulations x1, x2, ..., xm

into one of two classes, C1 or C2. The decision rule for the classification dictates the mapping of an item

represented by the inputs x1, x2, ..., xm to the class C1 if the perceptron's output y equals to +1, or to the class

C2 if y equals -1.

It is common to represent a map of the decision areas in the m-dimensional space of signals, due to

the m input variables. In the simplest possible form of a perceptron, there are two decision areas, separated

by a hyperplane, defined by the following equation:

∑
i=1

m

wi x i+b=0 (20)

Fig. 21 presents the case of two input variables, x1 and x2. In this case, the decision bound is a straight

line. An item (x1, x2) that is above the boundary line is classified to the class C1, while an item (x1, x2) that is

below the boundary line is classified to the class C2. Bias b affects on the displacement of the decision limit

65

Figure 20: Signal flowchart of perceptron.

from the origin.

The synaptic weights w1, w2, ..., wm can be fitted through a repetitive procedure and an error-

correction rule, which is known as perceptron's convergence algorithm.

2.8.2 Perceptron's Convergence Theorem

In order to express perceptron's error-correction learning algorithm, it is more convenient to use a

modified model, which is presented in the flowchart of fig. 22, and is equivalent to the model presented in

the flowchart of fig. 20. In this model, the bias b(n) is treated as a synaptic weight driven from a stable input

which is equal to +1. Hence, the inputs vector (m+1)x1 is defined as

x (n)=[+1, x1(n) , x2(n) , ... , xm(n)]
T

where n symbolizes the time step of the application of the algorithm. The weights vector is defined as:

w (n)=[b ,w1(n) ,w2(n) , ... ,wm(n)]
T

Consequently, the output of the linear combiner can be written as

66

Figure 21: Hyperplane as decision boundary for a binary classification task.

υ(n)=∑
i=0

m

wi (n) x i(n)=wT (n) x (n) (21)

w0(n) is the synaptic weight for i = 0 and actually represents the bias b.

If n is constant and b preset, if we map the equation wTx = 0 in a m-dimensional space with

coordinates x1, x2, ..., xm, a hyperplane is defined, as the boundary decision surface between two separate

classes of inputs.

Classes C1 and C2 must be linearly separable so that the perceptron can work properly. This means

that the patterns for classification should be sufficiently separable so that the decision surface is consisted of

one hyperplane. This requirement is presented in fig. 23(a), for the case of a perceptron of 2 dimensions. In

this figure, C1 and C2 are sufficiently separable and we can draw a hyperplane (a line) as the decision

boundary. However in fig. 23(b), the classes C1 and C2 are very close, and hence they are non-linearly

separable; this is a state out of the perceptron's computational ability.

67

Figure 22: Equivalent signal flowchart of perceptron

Assuming that the perceptron's input variables come from two linearly separable classes, let H1 and

H2 be the subspaces of the following training vectors, respectively,

x1(1) ,x1(2) , ...∈C1
x2(1) ,x2(2) , ...∈C2

H=H 1∪H 2

68

Figure 23: (a) Pair of linearly separable patterns. (b) Pair of non-linearly

separable patterns.

H symbolizes the full space. Given the vectors H1 and H2 for the classifier's training, the training

procedure requires the weights vector's fitting, so that C1 and C2 are linearly separable. This means that there

is a weights vector w such that we can denote that:

wT x>0 for every inputs x vector∈C1

wT x≤0 for every inputs x vector∈C1

 (22)

For (22) we have arbitrarily decided that the inputs x vector belongs to C2 if wTx = 0 . Given the

training vectors subsets, H1 and H2, the perceptron's training problem consists on finding a weights vector w,

such that the inequalities of formula (22) are satisfied.

The algorithm for the perceptron's weights vector fitting can be formulated as following:

1. If the n-th member of a training subset, x(n), is correctly classified from the weights vector w(n)

calculated in the n-th iteration of the algorithm, no correction takes place for the perceptron's weights

vector, according the following rule:

wT x>0 for every inputs x vector∈C1

wT x≤0 for every inputs x vector∈C1

 (23)

2. Otherwise, the perceptron's weights vector w(n) is updated according the following rule:

w (n+1)=w (n)−η(n) x(n)if wT
(n) x (n)>0∧x (n)∈C2

w(n+1)=w(n)−η (n) x (n)if wT
(n) x (n)≤0∧x (n)∈C1

 (24)

where the learning rate parameter η(n) controls the fitting applied to the weights vector in the n-th

iteration.

If η(n) = η > 0, where η is a constant independent of the iteration number n, then we get a fitting rule

through constant increment for the perceptron, which can be formulated in the following theorem:

Perceptron's Convergence Theorem with constant increment:

If two subsets of the training vectors H1 and H2 are linearly separable, and the inputs that are applied

69

to the perceptron belong to one of these subsets, then the perceptron converges after n0 iterations, in the sense

that

w (n0)=w(n0+1)=w(n0+2)=... (25)

is a solutions vector for n0=nmax.

Let's now examine the absolute error correction procedure for the single-layer perceptron's fitting,

for which η(n) is variable. Specifically, we assume that η(n) is the minimum integer for which it is

η(n) xT
(n) x (n)>∣wT

(n) x (n)∣

With this procedure, we find that if the dot product wT(n)x(n) in the n-th iteration has a wrong sign,

then wT(n+1)x(n) in (n+1)-th iteration will have the correct sign. This shows that if wT(n)x(n) has a wrong

sign in iteration n, then we can notify the training procedure for the (n+1) iteration by setting x(n+1) = x(n).

In other words, every pattern is presented repeatedly in the perceptron until it is classified correctly.

The following algorithm is the perceptron's convergence algorithm. The symbol sgn(·) represents the

sign function:

sgn (υ)={+1, for υ>0
−1, for υ<0

 (26)

The perceptron's quantized response y(n) can be expressed in the following compact form:

y (n)=sgn [wT
(n) x (n)] (27)

2.8.3 Summary of Perceptron's Convergence Algorithm

The summary of the steps of perceptron's convergence algorithm is described below [14].

Variables and Parameters:

70

x(n) = inputs vector (m+1)-by-1 = [+1, x1(n), x2(n), ..., xm(n)]T

w(n) = weights vector (m+1)-by-1 = [b, w1(n), w2(n), ..., wm(n)]T

b = bias

y(n) = real response (quantized)

d(n) = desirable response

η = learning rate parameter, positive constant less than 1

1. Initialization: Set w(0) = 0. Then execute the following computations for a time step n = 1, 2, … .

2. Activation: In time step n, activate the perceptron applying the (constant values) inputs vector x(n)

and the desirable response d(n).

3. Computation of real response: Compute the real response of the perceptron y(n) = sgn[wT(n)x(n)],

where sgn(·) is the sign function.

4. Fi tting the weights vector: Update the perceptron's weights vector in order to end up to:

w(n+1)=w(n)+η[d (n)− y (n)]x (n)

whered (n)={+1, if x(n)∈C1−1, if x (n)∈C2

5. Continuation: Increase the time step n by 1 and go to step 2.

The weights vector w(n) is a vector (m+1)-by-1, the first element of which equals to the bias b.

Another important note for the perceptron's convergence algorithm is that we have introduced a quantized

desirable response d(n), which is defined as:

d (n)={+1, if x (n)∈C1
−1, if x (n)∈C2

 (28)

Thus, the fitting of the weights vector w(n) is summed up in the form of the learning rule with error

correction:

71

w (n+1)=w (n)+η[d (n)− y (n)] x (n) (29)

where η is the learning rate parameter. and the difference d(n)-y(n) acts as an error signal. The learning rate

parameter is a positive constant that is limited within the range 0<η≤1. When it is assigned to a value from

this range, we have to have in mind two conflicting requirements (Lippman, 1987):

• The computation of the average past inputs for the provision of constant evaluations for the weights,

requires a small η.

• The quick fitting regarding the real changes in the underlying distributions of the procedure that is

responsible for the production of the inputs vector x requires a large η.

2.9 Multi-layer Perceptron

2.9.1 Definition

A multi-layer perceptron (MLP) [14] is a feedforward artificial neural network model that maps sets

of input data to a set of appropriate outputs. A multi-layer perceptron consists of multiple layers of nodes in a

directed graph, with each layer fully connected to the next one (which means that each neuron on any layer is

connected to all the neurons of the previous layer). Except for the input nodes, each node is a neuron with a

non-linear activation function.

Figure 24 presents the architectural graph of a multi-layer perceptron with two hidden layers and an

output layer. The signal flows forward, from left to right and from a layer to its next layer. There are

operating signals and error signals, as seen in fig. 25. An operating signal is a stimulation (an input signal)

that arrives at the input of the network, is transmitted forward (neuron by neuron) in the whole network and,

eventually, arrives at the output of the network as an output signal. An error signal comes from an output

neuron and is transmitted backwards (layer by layer) through the network.

72

The neurons of the output consist the output layer of the network. The rest of the neurons consist the

hidden layers of the network. It is clear that the hidden layers are neither part of the input nor of the output of

the network. The first hidden layer is fed by the input layer, which is consisted of sensor units (source

nodes). The outputs of the first hidden layer feeds as inputs the second hidden layer, and so on for the rest of

the network.

Every hidden neuron and every output neuron of a multi-layer perceptron is designed to perform two

kinds of computations. The first one is the computation of the operating signal showing up at the output of

each neuron, and which is expressed as a constant non-linear function of the input signal and the synaptic

weights that are related to the neuron. The second computational task of the neuron is the computation of an

estimation of the gradient vector, which is necessary for the phase of the backwards development of the

network. The gradient vector is actually the gradients of the error surface compared with the weights that are

connected to the inputs of a neuron.

73

Figure 24: Architectural graph of a multi-layer perceptron with two hidden layers.

The hidden neurons act as features detectors and their contribution is critical for the operation of a

multi-layer perceptron. While the learning procedure develops, the hidden neurons start gradually to discover

the outgoing features. These features are the ones that describe the training data. In order to do this, the

hidden neurons perform a non-linear transformation on the input data, in the feature space. In the feature

space, the classes of the features, that a classification task is interested in, are able to be separated from

everything else existing in the initial input data space. The formation of this features space is the difference

between the multi-layer perceptron and Rosenblatt's perceptron.

2.9.2 Batch and Online Learning

Let's consider a multi-layer perceptron, with an input layer, one or more hidden layers, and an output

layer consisted of one or more neurons as the one of fig. 24. The training sample. which is used for the

training of the network in a supervised way, is symbolized by

T={x (n) ,d (n)}n=1
N (30)

The operating signal that is produced at the output of neuron j by the stimulation x(n) is symbolized by yj(n).

74

Figure 25: The flow directions of the two basic signals in a multi-layer perceptron:

forward propagation of operating signals and backwards propagation of error

signals

The error signal is symbolized by

e j(n)=d j(n)−y j(n) (31)

where dj(n) is the i-th item of the desirable responses vector d(n). The instantaneous error energy (cost

function) of neuron j is defined as:

ℰ(n)=
1
2

e j
2
(n) (32)

If we sum the energy-error distributions of all neurons of the output layer, we can express the total

instantaneous error energy of the total network as:

ℰ(n)=∑
j∈C

ℰ(n)=
1
2 ∑

j∈C

e j
2
(n) (33)

where C contains all the output layer neurons. The training sample is consisted of N examples. The average

error energy for all the training sample, which is also known as experienced risk, is defined as:

ℰav (N)=
1
N
∑
n=1

N

ℰ(n)=
1

2N
∑
n=1

N

∑
j∈C

e j
2
(n) (34)

Apparently, the instantaneous error energy as well as the average error energy are both functions of

all the adaptable synaptic weights (which are the free parameters) of the multi-layer perceptron. This

functional dependency has not been included in formulas (33) and (34) in order to have a simpler

terminology.

Depending on the way of the supervised learning of a multi-layer perceptron, we can recognize two

different methods: the batch learning and the on-line learning [14].

2.9.2.1 Batch Learning

In this learning method, the fitting of the multi-layer perceptron's synaptic weights takes place after

75

the presentation of the set of N examples of the training set , � which consist a training epoch. In other words,

the cost function for batch learning is defined by an average error energy, ℰav. The fitting of the multi-layer

perceptron's synaptic weights takes place epoch by epoch. As a consequence, we can produce a learning

curve implementation, presenting ℰav by the number of epochs, where, for each epoch, the examples of the

training sample are presented in a random order. The learning curve is � produced by computing statistical

medians for a set of a sufficiently great number of such implementations, where each implementation is

executed for a different set of initial, randomly chosen, conditions.

With the method of gradient descent, that is used for the training, batch learning shows the following

advantages:

• precise estimation of the gradient vector (which is the derivative of the cost function ℰav to the

weights vector w, which guarantees, under simple conditions, the convergence of the steepest

descent method to a local minimum.

• parallel implementation of the learning procedure.

However, the significant drawback of batch learning is its large storing requirements.

In a statistical framework, batch learning can be treated as a form of statistical implication. For this

reason, it is appropriate for solving problems of non-linear regression.

2.9.2.2 Online Learning

In this learning method, the fitting of the multi-layer perceptron's synaptic weights is taking place

example by example. The cost function that has to be minimized is the total instantaneous error energy ℰ(n) .

Let's consider a given epoch that contains N training examples, organized in the following order:

{x(1), d(1)}, {x(2), d(2)}, …, {x(N), d(N)}. The first example pair {x(1), d(1)} of this epoch is presented to the

network and the weights' fitting takes place using the gradient descent method. Afterwards, the second

example {x(2), d(2)} is presented to the network and leads to further fitting on the synaptic weights. This

procedure continues until the last example, {x(N), d(N)}. Unfortunately, this kind of procedure doesn't allow

a parallel implementation.

For a given set of initial conditions, we can take a single implementation of the learning curve,

presenting the final value ℰ(N) by the number of epochs that were used during the training session, where the

examples arrive in a random order at the network's input after every epoch. The learning curve for on-line

learning is made by computing statistical medians for a set of such implementations for a sufficiently great

number of initial, randomly chosen, conditions. It's obvious the fact that, for a given network structure, the

76

learning curve achieved by on-line learning is much different from the one achieved by batch learning.

Given the fact that the training examples are presented to the network in a random way, the use of

on-line learning makes the search in multidimensional weights space natively stochastic; this is why

sometimes on-line learning is also mentioned as a stochastic method. This helps to decrease the possibility of

the learning procedure being trapped in a local minimum, which consists a certain advantage of on-line

learning in comparison to batch learning. Another advantage is that on-line learning requires much less

storing space than batch learning does. On-line learning has the additional useful property of observing small

changes of the training data, especially when the environment that is responsible for the production of these

data is non-static.

To sum up, on-line learning is extremely popular for the solution of pattern classification tasks, as it

can be implemented very easily and can provide efficient solutions to classification problems of large scale

and increased difficulty.

2.9.3 Back Propagation

2.9.3.1 The Algorithm

The Back Propagation (BK) algorithm was first proposed by Paul Werbos in the 1970's. However, it

became widely used when it was rediscovered in 1986 by Rumelhart and McClelland. BK algorithm has

helped to improve even more the performance of on-line learning for the supervised training of a multi-layer

perceptron [14].

Figure 26 presents an output neuron j, being fed by a set of operating signals produced at a neurons'

layer on the left. The local field of υj(n), produced at the input of the activation function regarding neuron j,

is described by the equation:

υ j(n)=∑
i=0

m

w ji (n) yi (n) (35)

where m is the total number of inputs (apart from the bias) applied to neuron j. The synaptic weight wj0

(corresponding to the constant input y0=+1) equals to the bias bj applied to neuron j. Hence, the operating

signal yj(n), appearing in the output of neuron j in the n-th iteration is:

y j(n)=φ j(υ j(n)) (36)

77

BK algorithm applies a correction Δwji(n) to the synaptic weight wji(n), which depends on the partial

derivative ∂ℰ(n)/∂wji(n). According the chain rule of calculus, this gradient can be expressed as:

∂ℰ(n)

∂w ji(n)
=

∂ℰ(n)

∂e j(n)

∂e j(n)

∂ y j(n)

∂ y j(n)

∂ υ j(n)

∂υ j(n)

∂w ji(n)
 (37)

The partial derivative ∂ℰ(n)/∂wji(n) represents a sensitivity factor, which determines the search

direction in the weights space for the synaptic weight wji.

By differentiating the equations (31) and (33) we receive:

∂ℰ(n)

∂e j(n)
=e j(n) (38)

∂ e j(n)

∂ y j(n)
=−1 (39)

And then, after differentiating the (35) and (36),

78

Figure 26: Signal flowchart describing the details of output neuron j.

∂ y j(n)
∂υ j(n)

=φ ' j(υ j(n)) (40)

∂ υ j(n)

∂w ji(n)
= y j(n) (41)

Combining the equations (38) and (40), we get:

∂ℰ(n)

∂w ji (n)
=e j(n)φ ' j(υ j(n)) y i(n) (42)

The correction Δwji(n) applied to wji(n) is defined by the delta rule. The delta rule is a gradient

descent learning rule for updating the weights of the inputs to neurons in single-layer neural network. For

neuron j, the delta rule is given by:

Δw ji (n)=−η
∂ℰ(n)

∂w ji (n)
 (43)

where η is the learning rate parameter of BK algorithm. The negative sign refers to the gradient descent in

the weights space. It is:

Δw ji (n)=ηδ j (n) yi (n) (44)

where the local gradient δj(n) is defined by

δ j(n)=
∂ℰ(n)

∂ υ j(n)
=

∂ℰ(n)

∂ e j (n)

∂ e j (n)

∂ y j(n)

∂ y j(n)

∂υ j(n)
=e j(n)φ ' j(υ j(n)) (45)

As seen in the above equations, the error signal ej(n) at the output of neuron j is an important factor for the

calculation of the weight fitting Δwji(n). We can recognize two separate cases, depending on the place where

neuron j is located in the network:

1. Neuron j is an output node: In this case, neuron j is fed by its own desirable response. The equation

(31) can be used for the calculation of the error signal ej(n) corresponding to this neuron (fig. 26).

79

Then, it is a simple assumption to calculate the local gradient δj(n), using the equation (45).

2. Neuron j is a hidden node: In this case, there is no predefined desirable response for j. Consequently,

the error signal for a hidden neuron should be defined recursively, working backwards, based on the

error signals of all the neurons j is directly connected. In fig. 27, neuron j is a node of a hidden layer

of the network. According to the equation (45) the local gradient of neuron j, δj(n), can now be

written as:

δ j(n)=−
∂ℰ(n)

∂ y j(n)

∂ y j(n)

∂ υ j(n)
=−

∂ℰ(n)

∂ y j(n)
φ' j(υ j(n)) (46)

In fig. 27, it is also obvious that

ℰ(n)=
1
2 ∑

k∈C

ek
2
(n) (47)

where neuron k is an output node.

By differentiating to the operating signal yj(n), it is:

∂ℰ(n)

∂ y j(n)
=∑

k

ek

∂ ek (n)

∂ y j(n)
 (48)

80

Figure 27: Signal flowchart describing the details of output neuron k, which is connected to hidden neuron j .

Using the chain rule for the partial derivative ∂ek(n)/∂yj(n), formula (48) is equivalent to

∂ℰ(n)

∂ y j(n)
=∑

k

ek (n)
∂ek (n)

∂υk (n)

∂υk (n)

∂ y j(n)
 (49)

However, in fig. 27, it is clear that

ek (n)=d k (n)− yk (n)=d k (n)−φk (υk (n)) (50)

and hence,

∂ek (n)

∂υk (n)
=−φ' k (υk (n)) (51)

υk (n)=∑
j=0

m

w kj(n) y j(n) (52)

where m is the total number of inputs (apart from the bias) applied to neuron k. The synaptic weight

w0(0) is equal to the bias bk(n) applied to neuron k and the corresponding input is equal to +1

constantly. After differentiating the equation (52), we get:

∂ υk (n)

∂ y j(n)
=w kj(n) (53)

And then, using the formulas (49), (51) and (53), we can write:

∂ℰ(n)

∂ y j(n)
=−∑

k

ek (n)φ' k (υk (n))w kj (n)=−∑
k

δ k (n)wkj (n) (54)

Finally, using the equations (46) and (54), we get the back propagation formula for the local gradient

δj(n), which is described by:

81

δ j(n)=φ' j(υ j(n))∑
k

δk(n)w kj(n) (55)

where neuron j is hidden.

Fig. 28 represents the equation (55) as a signal flowchart, assuming that the output layer is consisted

of mL neurons.

For the calculation of the local gradient δj(n), two factors are used. The first one is the external factor

φ'j(υj(n)) is dependent exclusively on the activation function that corresponds to neuron j. The second factor

is the sum for all k and depends on two sets: the first terms set, δk(n), requires knowledge for the error signals

ek(n) for all the neurons of the next (to the right) layer of the hidden neuron j and connected directly to it; the

second terms set, wkj(n), is consisted of all the synaptic weights regarding these connections.

Let's now summarize the formulas about BK algorithm that were described before. Firstly, the

correction Δwji(n) that is applied to the synaptic weight connecting neuron i to neuron j, is defined by the

delta rule:

Δw ji (n)=η×δ j(n)× y j(n) (56)

Secondly, the local gradient δj(n) depends on whether the neuron j is an output or a hidden node, as described

analytically before.

82

Figure 28: Signal flowchart of part of the conjugate system that executes the

back propagation of error signals.

2.9.3.2 Phases of BK Algorithm

When BK algorithm takes place, there are two different phases of computations; the feed-forward

phase and the feed-backward phase. We need to underline here that the input vector remains the same during

both phases [14].

• Feed-Forward Phase

In this phase, the synaptic weights remain invariable in all network and the operating signals of the

network are calculated neuron by neuron. The operating signal at the output of neuron j is calculated by

y j(n)=φ(υ j(n)) (57)

where υj(n) is the neuron's j local field, defined as:

υ j(n)=∑
i=0

m

w ji (n) yi (n) (58)

where m is the total number of inputs (apart from the bias) applied to neuron j; wji(n) is the synaptic weight

connecting neuron i with neuron j; yj(n) is the input signal for neuron j, or, equivalently, the operating signal

appearing in the output of neuron i. If neuron j is in the first hidden layer of the network, then m=m0 and i

refers to the i-th terminal input node of the network, for which it is:

y i(n)= x i(n) (59)

where xi(n) is the i-th element of the input vector (pattern). On the other side, if neuron j is in the network's

output layer, then m = mL and the indicator j refers to the j-th terminal output node of the network, for which

it is

y j(n)=o j(n) (60)

where oj(n) is the j-th element of the output vector of the multi-layer perceptron. This output is

compared with the desirable response dj(n) and then we get the error signal ej(n) for the j-th output neuron.

83

Thus, the feed-forward phase starts at the first hidden layer, presenting to this layer the inputs vector and

terminates at the output layer, computing the error signal for every neuron of this layer.

• Feed-Backward Phase

In this phase, the computations pass backwards. It starts from the output layer, sending error signals

to the left, in all layers of the network, layer by layer, and by computing δ recursively. This recursive

procedure allows the synaptic weights of the network to be changed according delta rule. For a neuron of the

output layer, δ is simply equal to the error signal of this neuron, multiplied by the first derivative of its non-

linearity. Consequently, we use the equation (56) in order to calculate the changes in the weights of all

connections that feed the output layer. Given the δ for the output layer neurons, we use the equation (55) in

order to compute the δ for the neurons of the semifinal layer, and, consequently, the changes of the weights

of all connections feeding it. This recursive computation continues, layer by layer, propagating the changes

of all the synaptic weights in the network.

2.9.3.3 Activation Function

As described before in section 2.2.2, a neuron's output is defined by the activation function, φ(υ),

where υ is the symbol of the local field. For the calculation of δ for each neuron of a multi-layer perceptron,

it is required to know the derivative of its activation function. This means that φ(·) has to be differentiable. A

constantly differentiable non-linear activation function that is widely used in multi-layer perceptrons is a

function with sigmoid non-linearity. Two forms of this functions are described here [14].

• Logistic Function

This form of sigmoid non-linearity is defined, in its generic form, as:

φ j(υ j (n))=
1

1+exp(−αυ j(n))
, α>0 (61)

where υj(n) is the local field of neuron j and α is a fitting positive parameter. According to this non-

linearity, the output's amplitude is within the range 0≤yj≤1. After differentiating (61), we get:

84

φ ' j(υ j(n))=
α exp(−αυ j (n))

[1+exp(−αυ j(n))]
2 (62)

With yj(n)=φj(υj(n)), we can express φ'j(υj(n)) as

φ ' j(υ j(n))=αy j(n)[1− y j(n)] (63)

For a neuron j of the output layer, it is yj(n)=oj(n), where oj(n) is the operating signal at the output

of neuron j. Hence, the local gradient for neuron j is

δ j(n)=e j (n)φ' j(υ j(n))=α [d j(n)−o j(n)]o j(n)[1−o j (n)] (64)

where dj(n) is the desirable response for neuron j.

For a hidden neuron j, the local gradient can be expressed as

δ j(n)=φ' j(υ j(n))∑
k

δk (n)w kj(n)=αy j (n)[1−y j(n)]∑
k

δk (n)wkj(n) (65)

• Hyperbolic Tangent Function

Hyperbolic Tangent Function is another widely used form of sigmoid non-linearity. In its generic

form, it is defined as

φ j(υ j (n))=α tanh (b υ j(n)) (66)

where α and b are positive constants. In fact, the hyperbolic tangent function is a scaled version of

the logistic function where bias has been applied.

φ j(υ j (n))=αb sech2
(bυ j (n))=αb(1−tanh2

(bυ j(n)))=
b
α
[α−y j(n)][α+ y j(n)] (67)

For a neuron j of the output layer, the local gradient is:

85

δ j(n)=e j (n)φ' j(υ j(n))=
b
α

[d j(n)−o j (n)][α−o j(n)] [α+o j(n)] (68)

For a hidden neuron j, the local gradient is:

δ j(n)=φ' j(υ j(n))∑
k

δk (n)w kj(n)=
b
α
[α−y j (n)][α+ y j(n)]∑

k

δ k (n)w kj(n) (69)

2.9.3.4 Learning Rate

BK algorithm is actually an approach on the weights space, as computed by the method of steepest

descent. The smallest the learning parameter η is, the smallest the changes in the synaptic weights of the

network from the one iteration to the next are. Nevertheless, there is a trade-off on the learning rate, which is

decreased by this improvement. On the other hand, if we increase extremely the learning rate parameter in

order to accelerate a learning rate, the occurring (big) changes in the synaptic weights take such a form that

the network may become unstable and start to oscillate.

A simple method to increase the learning rate with concurrent avoiding of the instability danger is to

modify the delta rule, by including a momentum term:

Δw ji (n)=α Δw ji (n−1)+ηδ j(n) y i(n) (70)

where α is the momentum constant and usually is a positive number. This constant controls the feedback loop

around Δwji(n), as presented in fig. 29, where z-1 is the unit delay operator. The equation (70) is called

generalized delta rule.

86

The equation (70) can be written as an time sequence with t as indicator. The indicator t starts from

the initial moment 0 until the current moment n. Equation (70) can be seen as an equation of differences of

first order for the weights correction Δwji(n).

Δw ji(n)=η∑
t=0

n

αn−t δ j (t) yi(t) (71)

Equation (71) represents a time sequence with (n+1) length and is equivalent to:

Δw ji (n)=−η∑
t=0

n

αn−t ∂ℰ(t)
∂ w ji(t)

 (72)

Based on the equation (72) we observe that:

• The current fitting Δwji(n) represents the sum of an exponentially weighted time series. In order this

time series to converge, the momentum constant has to be limited in the range 0≤|α|<1. When α

equals to 0, the BK algorithms functions without momentum. Besides, α can be positive or negative,

even though it is rather impossible to be negative in practice.

• When the partial derivative ∂ℰ(t)/∂wji(t) has the same algebraic sign in following iterations, the

exponentially weighted sum Δwji(n) is increased in value, and consequently the weight wji(n) is

fitted at a great quantity. The inclusion of the momentum in the BK algorithm tends to accelerate the

descent.

• When the partial derivative ∂ℰ(t)/∂wji(t) has a positive sign in successive iterations, the exponentially

weighted sum Δwji(n) is decreased in value, and consequently a small quantity of the weight wji(n)

87

Figure 29: Signal flowchart presenting the effect of momentum constant α (in the feedback loop).

is fitted. The inclusion of momentum in the BK algorithm has a stabilizing affect in the directions of

which the sign oscillates.

The embedding of momentum in BK algorithm represents a modification of small significance in the

weights update; however, it may have specific beneficial affects in the learning behavior of the algorithm.

The momentum term may also have the advantage that it prevents the learning procedure from finishing in a

shallow local minimum of the error surface.

We have assumed that the learning rate parameter is a constant symbolized by η. However, in fact it

should be defined as ηji; this means that it should depend on the connection between neurons i and j.

It is also important to mention here that in the application of the BK algorithm, we are able to decide

whether all the synaptic weights of the network are adaptable or a certain set of synaptic weights remains

constant during the fitting procedure. In the second case, the errors propagate backwards through the network

in the usual way; however the constant synaptic weights remain invariable. This is feasible by setting the

learning rate parameter ηji for the synaptic weight wji equal to 0 [14].

2.9.3.5 Termination Criteria

In general, it cannot be proved that BK algorithm converges and there are no well-defined criteria for

its termination. Instead, there are some logical criteria, each one of them having its own practical value,

which could be used for the termination of the weights fitting procedure. In order to define such a criterion, it

is reasonable to use the unique properties of a local or global minimum of the error surface. Let the weights

vector w* symbolize a minimum, local or global. A necessary condition for the w* to be a minimum is the

gradient vector g(w) of the error surface depending on the weights vector w, to be equal to 0 at w = w*.

Consequently, a convergence criterion for the learning rate with error back propagation is the one of Kramer

and Sangiovanni-Vincentelli (1989) :

BK algorithm is considered to converge when the Euclid norm of the gradient vector reaches a sufficiently

small gradient threshold.

However, this criterion may have a long learning time for successful testings and it requires the

calculation of g(w).

Another unique property of a minimum is the fact that the cost function ℰav(w) is static at w = w*.

Then we could suggest the following convergence criterion:

88

BK algorithm is considered to converge when the absolute learning rate of the MSE per period is sufficiently

small.

Typically, the rate of change of the MSE is considered sufficiently small if it is within the range from

0.1 to 1% per epoch. Sometimes, much smaller values, e.g. 0.01% per epoch, are used. Unfortunately, this

criterion may have as a result the early termination of the learning procedure.

Another useful and theoretically supported criterion is to control the network for its performance

about the achievable generalization after each iteration of the learning procedure. The learning procedure is

finished when the performance about generalization is judged as sufficient or when it is obvious that its

performance about generalization has come to a maximum [14].

2.9.3.6 Summary

Fig. 24 presents the architectural topology of a multi-layer perceptron. The signal flowchart of fig.

30 presents the learning procedure with error backpropagation, which embeds both phases (feed-forward and

feed-backward) of the involving computations, for the case where L=2, m0=m1=m2=3. The top of the

flowchart refers to the feed-forward phase, while the bottom refers to the error backpropagation and is

referred as a flowchart of sensitivity for the computation of the local gradients of BK algorithm (Narendra

and Parthasarathy, 1990) [14].

89

For the implementation of BK algorithm, it is considered preferable to update successively the

synaptic weights. For this state of operation, BK algorithm runs the training sample in the following steps

[14]:

1. Initialization: Assuming that no past information is available, choose the synaptic weights and the

thresholds from a uniform distribution, of which the median is 0 and the variance is chosen in such a

way that it sets the standard deviation of neurons' local fields within the limit between the linear and

the constant part of the sigmoid activation function.

2. Presentations of training examples: Present an epoch of training examples to the network. For each

example included in the sample, execute the (forward and backwards) computations sequence that

are described in steps 3 and 4 (respectively).

3. Forward Computations: Let a training example in the current epoch be symbolized by (x(n), d(n)).

The inputs vector x(n) is applied to the inputs layer of the sensory nodes and the desirable responses

vector d(n) is presented to the output layer of the computational nodes. Calculate the local fields and

the operating signals of the network moving on forward, in all the extent of the network, layer by

layer. The local field υj
(l)(n) for neuron j of layer l is:

90

Figure 30: Summary plot of the learning procedure with error back propagation. Top: the feedforward phase. Bottom:

the error back propagation phase.

υ j
(l)(n)=∑

i

w ji
(l)(n) y i

(l−1)(n) (73)

where yi
(l-1)(n) is the output signal (operating signal) of neuron i of the previous layer l-1, in the n-th

iteration, and wji
(l)(n) is the synaptic weight of neuron j of layer l, fed by neuron i of layer l-1. For i =

0, it is y0
(l-1)(n) = +1 and wj0

(l)(n) = bj
(l)(n) is the bias applied to neuron j of level l. Assuming that a

sigmoid function is used, the output signal of neuron j of level l is

y j
(l)
=φ j (υ j(n))

If neuron j belongs to the first hidden layer, set

y j
(0)

=x j(n)

where xj(n) is the j-th element of the input vector x(n).

If neuron j belongs to the output layer (and then l = L, where L indicates the network's depth), set

y j
(L)

=o j(n)

Compute the error signal as

e j(n)=d j(n)−o j(n) (74)

where dj(n) is the j-th element of the desirable responses vector d(n).

4. Backwards computations: Compute the local gradients δ of the network, which are defined as:

δ j
(l)(n)={ e j

(L)φ' j (υ j
(L)(n)) , for neuron j ∈output layer L

φ ' j(υ j
(l)
(n))∑

k

δ k
(l+1)

(n)w kj
(l+1)

(n) , for neuron j∈hidden layer l
 (75)

Fit the network's synaptic weights of layer l according the generalized delta rule:

91

w ji
(l)

(n+1)=w ji
(l)

(n)+α [w ji
(l)

(n−1)]+η δ j
(l)

(n) yi
(l−1)

(n) (76)

where η is the learning rate parameter and α is a constant of momentum.

5. Repetition: Repeat the computations described in steps 3 and 4, presenting new epochs of training

examples to the network, until the selected termination criterion is satisfied.

2.9.4 Cross-Validation

2.9.4.1 Basic Method

The substance of learning with back propagation of the error signal is to encode an input-output

mapping (represented by a set of annotated samples) to the synaptic weights and thresholds of a multi-layer

perceptron. Hence, we expect that the network will end to be well trained, in order to be able to generalize

and make decisions for the future, after having learned a lot from the past experience. Seen from this angle, a

learning procedure is equivalent to the choice of a network configuration for a dataset. Specifically, we can

see the problem of choosing a network as the problem of choosing the “optimal” configuration according to a

particular criterion. A standard tool of statistics for this work is the cross-validation method, which provides

an attractive directive principle (Stone 1974, 1978) [14].

In the first stage of cross-validation method, the available dataset is partitioned randomly in a

training sample and a control set. The training sample is then partitioned in two disjoint subsets: an

evaluation subset and a validation subset. The evaluation subset is used for the choice of the model. The

validation subset is used for the control (validation) of the model.

The idea of the method of cross-validation is the validation of the model to take place based on a

different dataset from the one that was used for the evaluation of the parameters. In this way, the training

sample can be used for the validation of the performance of several candidate models, hence the optimal

among them can be chosen. However, it's very possible the model chosen in this way to end up to being

overfitted. In order to avoid this case, the performance of generalization of the chosen model is evaluated by

a control set which is different from the validation subset. The use of this validation method is attractive

especially if we need to design a large neural network for reliable generalization.

In order to describe the way of thinking for the model choice with cross-validation, we assume an

inlaid structure of categories of Boolean functions:

92

F 1⊂F 2⊂...⊂Fn

F k={F k}={F (x , w) ;w∈W k}

where k=1,2,... , n

 (77)

The k-th category of functions Fk encloses a family of multi-layer perceptrons with similar

architecture and vectors of weights w, pulled from a multidimensional space of weights, Wk. A member of

this category, which is characterized by the function or hypothesis Fk = F(x, w), where w ∈ Wk, maps the

vector of inputs x to {0, 1}. The vector of inputs x is pulled from a space of inputs H with some unknown

probability P. Every multi-layer perceptron of this structure is educated through the BK algorithm, which is

responsible for the education of the parameters of the perceptron. The choice of a model is a problem of a

choice of a certain multi-layer perceptron that gives the optimal value for w, the number of free parameters.

Taking into account that the scalar desirable response for a vector of inputs x is d={0, 1}, we can define the

generalization error as the following probability:

ε g(F)=P (F (x)≠d) , for x∈H (78)

A training sample consisted of annotated examples is described by

T= {(x i , d i)}i=1

N
 (79)

Our goal is to choose a particular hypothesis F(x, w) that minimizes the generalization error εg(F),

occurring when the network is fed by inputs from the control set.

We assume that the structure described by equation (77) has the following property: for every sample

size N, there is always a multi-layer perceptron with a sufficiently great number of free parameters Wmax(N),

which is called fitting number, such that the fitting of the training sample is sufficient. The fitting number is

very significant, as a logical procedure for the choice of a model would choose a hypothesis F(x, w) which

requires W ≤ Wmax(N); otherwise, the complexity of the network would be increased.

Let r be an independent parameter, with value range from 0 to 1 specifies the partitioning of the

training sample , between the evaluation subset ' and the validation subset ''. The evaluation subset is� � �

used for the training of an inlaid sequence of multi-layer perceptrons, resulting to hypotheses F1, F2, …, Fn of

increasing complexity. ' is consisted of � (1-r)N examples. We examine the values of W that are less than or

equal to the corresponding fitting number Wmax((1-r)N).

Using the cross-validation method, we end up to the choice:

93

F cυ= min
k =1, 2,... ,ν

{e ' ' t (F k)} (80)

where ν corresponds to Wν<Wmax((1-r)N), and et''(Fk) is the classification error that is produced by the

hypothesis Fk when is controlled on the validation subset '', which is consisted of � rN examples.

The way to determine the parameter r is quite important. There are several quality properties of the

optimal parameter r, as described in a study of Kearns (1996), such as the following:

• When the target function complexity, which actually defines the desirable response d depending on

the vector of inputs x, is relatively small compared to the sample size N, the performance of the

cross-validation method, shows a relative “unconsciousness” on the choice of r.

• While the target function gets more complex depending on the sample size N, the choice of an

optimal r has a bigger effect on the performance of cross-validation and the value of the same target

function is decreased.

• A single constant value of r works almost optimally for a wide complexity range of the target

function.

Based on the results of the above study (Kearns, 1996), a constant value of the parameter r, equal to

0.2, seems to be a reasonable choice, which means that 80% of the training sample consists a partition for�

the evaluation subset, and the rest 20% consists a partition for the validation subset.

2.9.4.2 Early Stopping Method

A multi-layer perceptron trained by BK algorithm learns in stages: it starts with the implementation

of simple mapping functions and continues with more complicated ones while its training session develops.

In a typical case, the training session develops in many epochs, and while the number of epochs increases,

the mean squared error (MSE) is decreased; usually, in the beginning of the training the MSE has a large

value but after a while it decreases rapidly and then it continues decreasing but more smoothly when the

network is reaching a local minimum on the error surface. When a good generalization is the target, it is

quite difficult to identify when is the appropriate moment to stop the training of the network, taking into

account only the learning curve. Τhe network is likely to result in over-fitting if the training session doesn't

stop on the correct moment.

94

The point at which the overfitting starts can be recognized through the cross-validation method, with

which, as described before, the training data is divided into an evaluation subset and a validation subset. The

evaluation subset can be used for the network training with the usual way with a small difference. The

training session is interrupted periodically every some epochs. After every training period, the network is

controlled on the base of the validation subset. This procedure is called early stopping of the training and is

widely used. It is performed in the following two phases:

• After an evaluation period (which is the training period), every some epochs, all the synaptic weights

and the biases of the multi-layer perceptron are constant and the network functions in a forward

state. The validation error is calculated for each example in the validation subset.

• When the above phase is complete, the evaluation (training) continues for a next period and this

procedure is repeated.

Fig. 31 presents two ideal learning curves; the one corresponds to the evaluation subset and the other

one corresponds to the validation subset. Typically, this model has a better performance in the evaluation

subset (which was the base for the design of the curves) rather than the validation subset. The learning curve

95

Figure 31: Plot of the early stopping rule based on cross-validation.

for the evaluation subset is decreased monotonically with the increment of the number of epochs. In

opposition, the learning curve for the validation subset is decreased monotonically until a minimum and then

it starts increasing while the training goes on. After the minimum point in the learning curve for the

validation subset, the network only learns the noise contained in the training data. This heuristic direction

suggests that the minimum point of the learning curve for the validation subset can be used as a logical

criterion for the termination of the training session.

Nevertheless, in fact the error for the validation subset doesn't evolve over time so smoothly as the

ideal curve of fig. 31. Instead, the error for the validation subset can reach some local minima before starting

to increase with the increment of the number of epochs. In such cases, a termination criterion should be

chosen in a systematic way. Prechelt (1998) conducted an empirical research and proved experimentally that

in fact there is a trade-off on the training time compared to the network performance, regarding the

generalization as target. Based on the experimental results of this work, on a set of 1,296 training sessions,

12 different problems and 24 different network architectures, it is found that, when there are two or more

local minima, the choice of a slower termination criterion, which will finish the procedure later than the other

criteria would do, allows the achievement of a small improvement in the generalization performance, of 4%

on average, with a trade-off on the training time (which is quadruple on average).

Apart from the procedure that was described above, there are variations of it that are applied in

practice, mainly in cases of insufficient annotated examples. In such a case, we can use the multiple cross-

validation method, by dividing the available set of N examples into K subsets, where K > 1. This procedure

assumes that K is divisible by N. The model is trained with all subsets except from one, and the validation

96

Figure 32: Plot of multiple cross-validation method. For a given test, the colored data subset is used

for the model's validation. The model is trained by the rest of the data.

error is calculated by controlling the validation subset based on the specific subset with which the network

didn't train before, during the training period. This procedure is repeated for a set of K tests and each time it

uses a different subset for the validation, as presented in fig. 32 for K = 4. The performance of this model is

evaluated based on the MSE of the validation over the the testing set. The drawback of the multiple cross-

validation is that it might require an excessive volume of computations, as the model needs to be trained K

times, and 1<K≤N .

If the available number of annotated examples N is drastically reduced, an extreme form of multiple

cross-validation can be used. This method is known as leave-one-out method. In this case, N-1 examples are

used for the training of the model and the validation is taking place based on the example that was left out.

The experiment is repeated N times in total and every time a different example is left out and left for the

validation phase. Afterwards, the validation MSE is calculated over the testing set, consisted of N tests [14].

97

98

3 Model's Implementation

Our model implements a supervised on-line learning system for Twitter sentiment analysis. It

consists of the following stages:

• Data acquisition: collection of raw tweets, construction and annotation of the datasets.

• Data pre-processing: a series of steps that aim to reduce as much as possible the noise of our datasets

and maintain the meaningful information.

• Feature Extraction: a series of steps for the extraction of the most important features we considered

in our model, out of the pre-processed tweets, and the construction of the feature vectors.

• Multi-layer Perceptron: the feature vectors feed the inputs of an artificial neural network trained by

the BK algorithm, which aims to classify correctly its inputs into two or three classes ({positive,

negative} or {positive, negative, neutral}).

Each of these stages is going to be described in depth in this chapter. A schematic representation of the

implemented model can be seen in the following figure (fig. 33).

99

100

Figure 33: Schematic representation of the implemented model.

3.1 Data Acquisition

Our system is going to automatically detect the sentiment polarity of tweets. Hence, as a matter of

fact, our first goal is to collect data of raw tweets. For this cause, we created a Twitter account and a Twitter

application under the name “sentiment_analysis_gr” in the Twitter API [18]. A consumer key and a consumer

token as well as an access key and an access token were generated for this application, which allow us to

connect to Twitter and have access to the data the users we follow share (fig. 34).

In order to work with the Twitter API, we have to use OAuth to authorize our application for making

requests on our behalf. Twitter supports OAuth, which is an open standard for authorization. OAuth provides

client applications a secure delegated access to server resources on behalf of a resource owner. It specifies a

process for resource owners to authorize third-party access to their server resources without sharing their

credentials. It is designed specifically to work with Hypertext Transfer Protocol (HTTP); OAuth essentially

allows access tokens to be issued to third-party clients by an authorization server, with the approval of the

resource owner, or end-user. The client then uses the access token to access the protected resources hosted by

the resource server. OAuth is commonly used in Twitter as well as other third party websites, as a way for

users to log into accounts without exposing their password.

We trained and tested our model using a corpus that was divided in two datasets: the first one

contains tweets expressing opinions of three discrete classes (positive, negative, neutral), while the second

one contains tweets expressing opinions of two discrete classes (positive, negative).

The second dataset consists of raw tweets of various contents, already annotated as positive or

negative. Apart from this already prepared annotated dataset, we also collected our own data according to a

certain topic, which consisted our first dataset. The topic that was chosen is the referendum that took place in

101

Figure 34: Schematic representation of the sequence of actions taking place for the acquisition

of data from Twitter.

Greece on July 5th, 2015. Inherently, a referendum is a binary problem that tends to polarize and divide

people's opinions, therefore it was considered an excellent source of data for our cause. We collected data in

a period of time from 1/7/2015 until 7/7/2015.

The annotation was performed manually. In chapter 1, we described some techniques for the

annotation of tweets in an automated way, such as the annotation by taking into account the emoticons used

[7]; for example the smiling smiley “:-)” is more possible to be part of a generally positive tweet rather than

a negative one. However, as the topic about which the tweets were collected is a political one, so the use of

emoticons was not so common, as well as it is very often to use them in an ironic way, we performed the task

of the annotation manually in order to have an accurate and, as much as possible, error-free annotation.

In order to make this task easier for the trainer that performed the annotation, we implemented a

series of pre-processing tasks (described in the subsequent section) that reduced the volume of the available

data. As it will be seen further along, we achieved an average volume reduction of the datasets by 50.07%

per day (or per data subset), which proved to be a very good and helpful result for the trainer's job. However,

even the fact that the original datasets containing from 2,000 to 2,670 tweets were reduced to ones containing

from 1,042 to 1,139 tweets, due to time constraints, we performed the annotation on a set of 500 tweets per

day. The reason for this is that the task of manual annotation is a quite demanding and time consuming

process. Nevertheless, these data were collected with view to be used in a common experiment. In addition,

they were used in combination and not being isolated, so our system could take into account and evaluate the

common dictionary being used in all of them in the framework of the certain political topic. The total number

of the all these data subsets is 7·500 = 3,500 tweets. This number can be considered quite sufficient in order

to train our system.

During the process of manual annotation, it was apparent how difficult it is even for a human to

identify the exact polarity of the sentiment of a written opinion, especially when the polarity should be

quantized in such a small number of classes (3 classes; positive, negative or neutral) and cannot take into

account other types of sentiments, e.g. the irony. Many times we met the difficulty of recognizing the

polarity of the sentiment of an opinion as well as the framework within which it was expressed.

For example, let's check out a tweet of the tweets' collection of July 3 rd, 2015 (from the dataset

referendum_ds{3}):

The above tweet was finally considered to express a positive sentiment. However, it is commonly

accepted that its meaning can be ambiguous due to the use of both words that express extremely negative

sentiments (“risk”, “catastrophe”) and words that express positive sentiments (“positive”); thus, it took us

some time to process and consider the meaning within the total context of the sentence and finally decide

102

“RT @EJDionne: A hope post#greekreferendum: "The risk of catastrophe

will concentrate minds..lead to positive surprises" @LHSummers”

about its class. Therefore, it gets quite clear now that the task of sentiment extraction and classification of

microtexts is a very hard and complicated challenge for an automated system like the one we are

implementing here.

Given the fact that the annotation was performed by the same trainer for all datasets, we can assume

that there is a kind of uniformity in the way that the samples were classified as positive, negative or neutral;

hence, even though a flawless annotation of our samples was, as a matter of fact, impossible, there is a

uniformity in the possibly existing deviations (between the trainer's annotation and the actual intentions of

sentiment from the users expressing the collected opinions) of all datasets, and we therefore consider these

deviations negligible regarding the conclusions extracted from our system.

• referendum_ds{1}: a dataset of initially 2,000 unannotated raw tweets, posted on July 1 st, 2015 and

regarding the Greek Referendum of July 5th, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,119 positive, negative and neutral tweets.

• referendum_ds{2}: a dataset of initially 2,670 unannotated raw tweets, posted on July 2nd, 2015 and

regarding the Greek Referendum of July 5th, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,095 positive, negative and neutral tweets.

• referendum_ds{3}: a dataset of initially 2,670 unannotated raw tweets, posted on July 3rd, 2015 and

regarding the Greek Referendum of July 5th, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,042 positive, negative and neutral tweets.

• referendum_ds{4}: a dataset of initially 2,000 unannotated raw tweets, posted on July 4 th, 2015 and

regarding the Greek Referendum of July 5th, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,043 positive, negative and neutral tweets.

• referendum_ds{5}: a dataset of initially 2,000 unannotated raw tweets, posted on July 5 th, 2015 and

regarding the Greek Referendum that took place on this day. After a series of pre-processing tasks, a

subset of the initial dataset was created, consisting of 1,108 positive, negative and neutral tweets.

• referendum_ds{6}: a dataset of initially 2,000 unannotated raw tweets, posted on July 6 th, 2015 and

regarding the Greek Referendum of July 5th, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,139 positive, negative and neutral tweets.

• referendum_ds{7}: a dataset of initially 2,000 unannotated raw tweets, posted on July 7 th, 2015 and

regarding the Greek Referendum of July 5th, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,121 positive, negative and neutral tweets.

Table 1 summarizes all datasets of our experiments. As one can notice in this Table, the original

subsets of positive, negative and neutral tweets for the datasets concerning the referendum

(referendum_ds{day}) are not balanced. However, for the examination of our implemented architecture, we

103

kept a set of 300 tweets per day (balanced_referendum_ds{day}); 100 positive, 100 negative and 100 neutral.

The sum of these subsets produces a greater dataset, the balanced_referendum_ds, of 300·7 = 2,100 tweets,

out of them 700 are positive, 700 negative and 700 neutral.

To sum up, the datasets that were used in order to train and test our model are the following ones:

• balanced_referendum_ds: a dataset of 2,100 annotated raw tweets, regarding the Greek

Referendum of July 5th, 2015, and consisting of 700 positive, 700 negative and 700 neutral tweets.

• various_contents_ds: a dataset of 2,000 already annotated raw tweets of various contents,

consisting of 1,000 positive and 1,000 negative tweets.

Datasets Total

number of

tweets

Polarity Positive class Negative

class

Neutral

class

referendum_ds{1} 500 Positive, negative,

neutral

114 218 168

referendum_ds{2} 500 Positive, negative,

neutral

154 182 164

referendum_ds{3} 500 Positive, negative,

neutral

131 127 242

referendum_ds{4} 500 Positive, negative,

neutral

163 162 175

referendum_ds{5} 500 Positive, negative,

neutral

155 152 193

referendum_ds{6} 500 Positive, negative,

neutral

121 178 201

referendum_ds{7} 500 Positive, negative,

neutral

121 262 117

Sum of all

referendum_ds{1:7}

3,500 Positive, negative,

neutral

959 1281 1260

balanced_referendum_ds{

day}

300 Positive, negative,

neutral

100 100 100

Sum of all

balanced_referendum_ds{

1:7}

2,100 Positive, negative,

neutral

700 700 700

various_contents_ds 2,000 Positive, negative 1000 1000 0

Table 1: Overview of the datasets.

104

3.2 Pre-processing and Feature Extraction

3.2.1 Features of our Model

The features we decided to take into account for the model we implemented are extracted from the

original words that consist a tweet, and are the following ones:

• lemmas

• stems

• parts-of-speech (POS)

A lemma (plural lemmas or lemmata) is the canonical form, dictionary form, or citation form of a set

of words (headword). For example, in English, the words “run”, “runs”, “ran” and “running” are forms of

the same lexeme, and their lemma is the word “run”. Lexeme, in this context, refers to the set of all the

forms that have the same meaning, and lemma refers to the particular form that is chosen by convention to

represent the lexeme. In lexicography, this unit is usually also the citation form or headword by which it is

indexed.

The process of determining the lemma for a given word is called lemmatization. The lemma can be

viewed as the chief of the principal parts, although lemmatization is at least partly arbitrary [19].

A stem is a part of a word. The term is used with slightly different meanings. In one usage, a stem is

a form to which affixes can be attached. Thus, in this usage, the English word “friendships” contains the

stem “friend”, to which the derivational suffix “-ship” is attached to form a new stem “friendship”, to

which the inflectional suffix “-s” is attached. In a variant of this usage, the root of the word (in the example,

“friend”) is not counted as a stem.

In a slightly different usage, a word has a single stem, namely the part of the word that is common to

all its inflected variants. Thus, in this usage, all derivational affixes are part of the stem. For example, the

stem of “friendships” is “friendship”, to which the inflectional suffix “-s” is attached. This is the usage we

adopted in our model. The stem needs not to be identical to the morphological root of the word; it is usually

sufficient that related words map to the same stem, even if this stem is not in itself a valid root.

Stemming is the term used to describe the process for reducing inflected (or sometimes derived)

words to their word stem, base or root form. Algorithms for stemming (also known as stemmers) have been

studied in computer science since the 1960s. Many search engines treat words with the same stem as

synonyms as a kind of query expansion [19].

The difference between stems and lemmas is that a stem is the part of the word that never changes

105

even when morphologically inflected, whilst a lemma is the base form of the word. For example, from

“produced”, the lemma is “produce”, but the stem is “produc”. This is because there are words such as

“production”. In linguistic analysis, the stem is defined more generally as the analyzed base form from

which all inflected forms can be formed. Some lexemes have several stems but only one lemma. For

example, the lemma “go” has the stems “go” and “went”.

A part-of-speech (POS) is a category of words (or, more generally, of lexical items) which have

similar grammatical properties. Words that are assigned to the same part of speech generally display similar

behavior in terms of syntax -they play similar roles within the grammatical structure of sentences- and

sometimes in terms of morphology, in that they undergo inflection for similar properties. Commonly listed

English parts of speech are noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection, and

sometimes numeral, article or determiner. Table 2 presents all the parts-of-speech we considered in our

model [20].

A part of speech (particularly in more modern classifications, which often make more precise

distinctions than the traditional scheme does) may also be called a word class, lexical class, or lexical

category, although the term lexical category refers in some contexts to a particular type of syntactic category,

and may thus exclude parts of speech that are considered to be functional, such as pronouns. The term form

class is also used, although this has various conflicting definitions. Word classes may be classified as open or

closed: open classes (like nouns, verbs and adjectives) acquire new members constantly, while closed classes

(such as pronouns and conjunctions) acquire new members infrequently, if at all.

Part-of-speech tagging (POS tagging or POST), also called grammatical tagging or word-category

disambiguation, is the process of marking up a word in a text (corpus) as corresponding to a particular part of

speech, based on both its definition, as well as its context.

Once performed by hand, POS tagging is now done in the context of computational linguistics, using

algorithms which associate discrete terms, as well as hidden parts of speech, in accordance with a set of

descriptive tags. POS tagging algorithms fall into two distinctive groups: rule-based and stochastic [19].

By POS tagging, we take into account the parts of speech within a document that indicate emotion.

In most cases these are adjective-noun combinations such as “devastating loss”.

106

CC Conjunction, coordinating

 (e.g. &, 'n, and, both, et, for, times, vs., yet)

CD Numeral, cardinal

 (e.g. mid-1890, fifteen, 271.124, '60s, dozen)

DT Determiner

 (e.g. all, an, another, any, this)

EX Existentiel there

 (there)

FW Foreign word (non-english word)

 (e.g. je, objets, fiche, hund, Herr)

IN Preposition or conjunction, subordinating

 (e.g. astride, among, upon, below, within, behind)

JJ Adjective or numeral, ordinal

 (e.g. third, pre-war, multilingual)

JJR Adjective comparative

 (e.g. calmer)

JJS Adjective, superlative

 (e.g. calmest)

LS List item marker

 (e.g. A, A., first, SP-44002)

MD Modal auxiliary

 (can, cannot, couldn't, might)

NN Noun, common singular or mass

 (e.g. wind, hyena, override)

NNP Noun, proper, singular

 (e.g. Oceanside, Escobar, Christos)

NNPS Noun, proper, plural

 (e.g Americans, Amharas, Syndicalists)

NNS Noun, common, plural

107

 (e.g. undergraduates, bric-a-brac, products)

PDT Pre-determiner

 (e.g. all, both, half)

POS Genitive marker

 (e.g. George's)

PRP Pronoun, personal

 (e.g. hers, herself, me)

PRP$ Pronoun, possessive

 (e.g. her, his, mine)

RB Adverb

 (e.g. occasionally, technologically, fiscally)

RBR Adverb, comparative

 (e.g. further, grander, gloomier, louder)

RBS Adverb, superlative

 (e.g. best, biggest, earliest)

RP Particle

 (e.g. aboard, about, across, along, back)

SYM Symbol

 (e.g. %, &, *, +, <, =, >, @)

TO “to” as preposition or infinitive marker

 (to)

UH Interjection

 (e.g. Goodbye, Wow, Oops, amen, honey, anyways)

VB Verb, base form

 (e.g. ask, assess, assign, bake)

VBD Verb, past tense

 (e.g. dipped, pleaded, halted)

VBG Verb, present participle or gerund

108

 (e.g. telegraphing, focusing, alleging, encrypting)

VBN Verb, past participle

 (e.g. desired, used, experimented, imitated)

VBP Verb, present tense, not 3rd person singular

 (e.g. resort, sue, cure, appear, tend)

VBZ Verb, present tense, 3rd person singular

 (e.g. bases, reconstructs, marks, mixes)

WDT WH-determiner

 (that, what, whatever, which, whichever)

WP WH-pronoun

 (that, what, whatever, whatsoever, which, who, whom,

 whosoever)

WP$ WH-pronoun, possessive

 (whose)

WRB WH-adverb

 (how, however, whence, whenever, where, whereby,

 wherever, wherein, whereof, why)

Table 2: The part-of-speech (POS) tags considered by our model.

Therefore, after the pre-processing procedure of the raw datasets of tweets that is subsequently

described, we expect to have kept a refined form of the tweet, which constructs a feature vector consisting of

a combination of the features we described here: the original words, lemmas, stems and POS tags. For

example, the tweet

is expected to take the following form, which makes use of a combination of the original words, their

lemmas and POS tags:

109

“the children are playing in the yard #sunday”☀

[('children', u'child', 'NNS'), ('are', u'be', 'VBP'), ('playing', u'play', 'VBG'),

('yard', 'yard', 'NN'), ('sun', 'sun', 'NN'), ('sunday', 'sunday', 'NN')]

3.2.2 Pre-processing

Given the fact that the language of microblogging requires a special treatment (as the use of informal

and irregular words as well as the use of slang, misspellings, emoticons and acronyms are very frequent,

which is aptly presented in the humorous fig. 35), we implemented a series of pre-processing tasks in order

to correct and normalize the tweets for the feature extraction and construction of the feature vectors [21].

The pre-processing tasks we considered are the following:

1) Conversion of tweet to lower-case.

2) Conversion of hyperlinks (strings starting by “www.”, “http://” and “https://”) to the string

“url”.

3) Conversion of name mentions (“@username”) to the string “at_user”.

4) Elimination of additional white spaces.

5) Replacement of hashtags by converting hashtags of the generic form “#foo” into “foo”

(removing the hash sign “#”).

110

Figure 35: “Twitter bird in real life”. Humorous portrayal of the language used in

Twitter by Scott Hampson [36].

6) Elimination of punctuation

7) Elimination of strings “at_user”, “url” and “rt” strings.

8) Elimination of duplicates.

9) Replacement of emoticons.

10) Replacement of acronyms.

11) Elimination of stop words.

12) Elimination of remaining non-ASCII characters.

Let's now describe further the above steps:

111

Figure 36: Flowchart of the pre-processing procedure. The output of this procedure (the pre-

processed tweet) is a cleaned version of the original tweet, in the sense that noise has tried to

be eliminated while the meaningful information has tried to be maintained.

• Step 1: In the first step we convert all tweets to lower-case. This is because our implementation is

case-sensitive; if this step was absent, the system would treat different forms of the same word as

different words. Thus, it would miss a lot of significant information about the correlation among

words.

• Step 2: In this step, hyperlinks (all strings starting by “www.”, “http://”, “https://”) are converted

into the generic string “url”. The processing of hyperlinks would be extremely hard and quite

unlikely to provide us with meaningful information, due to the fact that hyperlinks are very possible

to contain meaningless sequences of letters or numbers. The most possible scenario would be that

such a task would add noise to our data.

• Step 3: This step converts all mentions of usernames (of the form “@username”) into the generic

string “at_user”. Name mentions don't provide any useful information for our system.

• Step 4: In this step, more than one white spaces are replaced.

• Step 5: In opposition to hyperlinks and name mentions, hashtags are possible to carry very useful

information. A hashtag is a type of label or meta-data tag used on social network and microblogging

services which makes it easier for users to find messages with a specific theme or content, e.g.

“#elections”. Users create and use hashtags by placing the hash sign “#” in front of a word or

unspaced phrase, either in the main text of a message or at the end of it. Searching for that hashtag

will then present each message that has been tagged with it. It is also very common for Twitter users

to use hashtags in order to describe their emotion or attitude, e.g. “#cool”. For this reason, we want

to make use of the information that hashtags contain for our feature vectors. In step 5, a hashtag of

the generic form “#foo” is replaced by the string “foo”, which is actually the original string of the

hashtag without the “#” sign. As mentioned before, it is common a hashtag to contain an unspaced

phrase, which makes the task of natural language processing much more complex. However, we

have not taken any precautions in order to recognize such phrases and divide them into the original

words; this kind of phrases may be considered as noise, but they are possible to additionally provide

information if they are repeated and express a certain attitude regarding a topic.

• Step 6: In this step, all punctuation symbols are removed. Even though they are used to emphasize

the presence of a sentiment in a microtext (e.g. “I am very angry!”), they just amplify the intensity

of this sentiment and not add a new one; hence we didn't consider them important for the extraction

of significant information that would lead our system to further acquisition of knowledge.

112

• Step 7: As by now we have grouped all hyperlinks and name mentions under the generic strings

“url” and “at_user” respectively, our system filters them out. In addition, in this step it filters out

the indicative string of retweets “rt” as neither does this type of meta-data provide any useful

information to our model; actually the existence of retweets confirms the existence of duplicates,

which do not offer more knowledge to our system but repeating the already existent knowledge. For

this reason, we need to eliminate the strings of “rt” from all tweets in order to identify and eliminate

the useless duplicates from our dataset (as seen in the subsequent step).

• Step 8: In this step, all duplicate tweets from the whole dataset are eliminated, and only one instance

of every tweet is kept, as more instances of the same sample do not provide further knowledge to our

system.

• Step 9: This step replaces emoticons by the word of the emotion or attitude they are considered to

express. Emoticons (or emoticon icons) are meta-communicative pictorial representations of facial

expressions that, in the absence of body language and prosody, serve to draw a receiver's attention to

the tenor or temper of a sender's nominal non-verbal communication, changing and improving its

interpretation. It expresses -usually by means of punctuation marks (though it can include numbers

and letters)- a person's feelings or mood, though as emoticons have become more popular, some

devices have provided stylized pictures that do not use punctuation. As social media has become

widespread, emoticons have played a significant role in communication through technology. They

offer another range of "tone" and feeling through texting that portrays specific emotions through

facial gestures while in the midst of text-based cyber communication. For these reasons, in order to

make use of their potentially very important value, in this step of the pre-processing procedure we

replace emoticons by the word of the emotion they are supposed to represent. A dictionary of the 100

most common emoticons used in Twitter was made and can be accessed in the Appendix.

• Step 10: Acronyms are abbreviations formed from the initial components in a phrase or a word. They

dominate in social networks and Twitter; apart from the fact that acronyms consist a quick, easy and

popular way to write a phrase, they also compress a long phrase into several letters, which is very

useful for expressing a greater piece of information while respecting the 140-characters limitation of

Twitter. For this reason we couldn't ignore the information contained in acronyms. For our work, we

created a dictionary of the 664 most frequently used acronyms of Twitter. In this step of the pre-

processing procedure, acronyms are “decompressed” and replaced by the full phrase they express,

according to the dictionary of the collected acronyms. The first 50 acronyms of this dictionary are

given in the Appendix.

113

• Step 11: Stop words are words which are usually filtered out before or after processing of natural

language data. Though stop words usually refer to the most common words in a language, there is no

single universal list of stop words used by all processing of natural language tools, and indeed not all

tools even use such a list. Some tools specifically avoid removing these stop words to support phrase

search. In this step, all words that are members of a list of stop words we chose are eliminated from

the tweets dataset. The list contains 320 english stop words and can be seen in Appendix. This step

takes place after having replaced the emoticons and acronyms, as some words used in them (in the

emoticons and especially in the acronyms) may consist stop words and therefore they should be

eliminated.

• Step 12: In this step, the remaining non-ASCII characters (that were not replaced in previous steps,

e.g. 香) are eliminated as our system wouldn't be able to understand and use them and, as a matter of

fact, they would consist pure noise.

Let's see an example of how the pre-processing procedure develops. The following tweet (from

referendum_ds{6}):

after steps 1 to 6, would be converted into:

and after step 7 it would be converted into

It is very common a user to share a tweet of another user, using the option of retweet and then the

string of “RT” would appear in the beginning of the shared tweet. In addition, a user might retweet an

already existing tweet and mention another user or add a hyperlink or hashtag. For instance, a user different

from the one that reposted the above tweet, had earlier written:

These two tweets carry the same piece of information, which is extracted in the string:

114

“rt at_user time for europe to embrace greece url”

“time for europe to embrace greece”

“Time for Europe to embrace #Greece”

“time for europe to embrace greece ”

“RT @ariannahuff: Time for Europe to embrace #Greece

http://www.demanjo.com/news/world/...”

This example makes obvious the fact that the first 1-8 steps are very useful in order to identify the

available information within a tweet and eliminate the meta-data of mentioning another user, retweeting or

adding a hyperlink, which are not offering any meaningful information but noise to our system. By doing

this, we are able to identify the duplicates in our dataset and eliminate them; they wouldn't give any

additional knowledge to the system, and they would increase the required storing space and the processing

time; hence they would burden the performance of the system. In addition, they would make the task of

manual annotation much harder: As we described in section 3.1 for the data acquisition, our first datasets

consist of already annotated tweets; nevertheless the datasets concerning the topic of the referendum

(referendum_ds{day}, where day={1,2, …, 9}) were not annotated. The annotation was performed manually

by us. The task of annotation requires plenty of time and concentration in order to offer careful and accurate

results regarding the correct classification of tweets in the three classes of interest (positive, negative and

neutral). For this additional reason, steps 1-8 were very essential for making the task of annotation the

simplest possible for the human trainer that was assigned to it. Hence, for the datasets concerning the

referendum, the pre-processing procedure was interrupted after step 8 in order to perform the manual

annotation. After the annotation of tweets, the pre-processing procedure continued from step 9 to step 12.

For datasets DS1 and DS2, all steps of the pre-processing procedure, from 1 to 12, were performed in order,

without any interruption.

115

Figure 37: Schematic representation of the pre-processing procedure (as a black box) of a random raw tweet

from our dataset. The output of this procedure is a cleaned tweet containing the meaningful information of

the original tweet.

Let's now see how a tweet is transmuted after each pre-processing step, in another example. The

tweet:

after steps 1-6, would take the following form:

After step 7, “at_user”, “url” and “rt” strings are eliminated, and it would be converted into:

If this cleaned tweet was repeated again in the dataset, the repetitions would be removed at step 8. Then, after

step 9, the tweet would take the form:

The subsequent step 10 would convert the tweet into:

Afterwards, at step 11, stop words would be eliminated:

and finally, step 12 would convert the tweet into the final pre-processed tweet:

Fig. 36 summarizes all the steps of the pre-processing procedure of our model.

3.2.3 Feature Extraction

After having performed the pre-processing steps described above onto our datasets, we have reduced

their volume and have tried to eliminate the noise from them. In addition we have tried to make the text of

tweets more comprehensible for a machine (for example a machine wouldn't be able to make a correlation

between an emoticon and its corresponding word; for instance, “happy” and “ ”� are referring to the same

or similar sentiment, and our algorithm should be able to make use of this property). Hence, at this point,

each tweet is represented by a much more clear sequence of words.

116

“RT @ledzeppelin: FYI Now Playing on #radio: Led Zeppelin Kashmir

https://youtu.be/sfR_HWMzgyc ”�♬♬

“rt at_user fyi now playing on radio led zeppelin kashmir url ”� ♬♬

“fyi now playing on radio led zeppelin kashmir ”� ♬♬

“fyi now playing on radio led zeppelin kashmir happy ”♬♬

“for your information now playing on radio led zeppelin kashmir happy

”♬♬

“information playing on radio led zeppelin kashmir happy ”♬♬

“information playing on radio led zeppelin kashmir happy”

The features we chose for our system are the stems, lemmas and POS tags. Thus the next steps have

to do with extracting or constructing these features from our set of tweets, which actually now consist lists of

words; each tweet is now represented by a list of words. After extracting these features, by combining them

we construct the feature vectors, as seen in fig. 38.

For the extraction of features, we have defined three functions: a function for the stemming, a

function for the lemmatization and a function for the POS tagging of the tweets.

For the POS tagging, the Natural Language Toolkit (NLTK) platform provides a tool which assigns

each word to its corresponding POS tag (one of the available POS tags we presented in Table 2). For

example, “loved” would be assigned to the POS tag “VBD”, which corresponds to a verb of past tense,

according to Table 2.

For the stemming we have used the Lancaster Stemmer from NLTK. Every word out of a tweet is

assigned to its stem. For example, the word “loved” would be assigned by the Lancaster Stemmer to the

stem “lov”.

117

Figure 38: Schematic representation of the feature extraction process (as a black

box). After extracting the features of each word consisting a tweet, the latter is

transformed into a feature vector.

Finally, for the lemmatization we have used the Wordnet Lemmatizer from NLTK, which also takes

into account the POS tag of words. For example, the word “loved” would be assigned to its lemma “love”.

After having assigned each word to its POS tag, stem and lemma, we can make various combinations

of these features. For example, we can construct feature vectors consisted of the original word appearing in

the raw tweet, with its stem and its POS tag; or we can construct feature vectors consisted of the original

word with its lemma and its POS tag. Let's see an example: For the original tweet coming from the dataset

referendum_ds{2}:

after the pre-processing procedure we would end up with a list of words of this shape:

which can be assigned to a feature vector which consists of tuples of the form (original word, stem, POS

tag):

or it could be presented as a feature vector of tuples of the form (original word, lemma, POS tag):

or even as a vector that combines both stems and lemmas, of the form (word, stem, lemma):

118

“RT @tsipras_eu: The #referendum gives an entire people the chance to

affect the negotiation process. #Greece #Greferendum”

['referendum', 'gives', 'entire', 'people', 'chance', 'affect', 'negotiation',

'process', 'greece', 'greferendum']

[('referendum', 'referend', 'NN'), ('gives', 'giv', 'VBZ'), ('entire', 'entir', 'JJ'),

('people', 'peopl', 'NNS'), ('chance', u'chant', 'NN'), ('affect', 'affect', 'NN'),

('negotiation', u'negoty', 'NN'), ('process', 'process', 'NN'), ('greece', 'greec',

'NN'), ('greferendum', 'greferend', 'NN')]

[('referendum', 'referendum', 'NN'), ('gives', u'give', 'VBZ'), ('entire',

'entire', 'JJ'), ('people', 'people', 'NNS'), ('chance', 'chance', 'NN'), ('affect',

'affect', 'NN'), ('negotiation', 'negotiation', 'NN'), ('process', 'process', 'NN'),

('greece', 'greece', 'NN'), ('greferendum', 'greferendum', 'NN')]

[('referendum', 'referend', 'referendum'), ('gives', 'giv', u'give'), ('entire',

'entir', 'entire'), ('people', 'peopl', 'people'), ('chance', u'chant', 'chance'),

('affect', 'affect', 'affect'), ('negotiation', u'negoty', 'negotiation'), ('process',

'process', 'process'), ('greece', 'greec', 'greece'), ('greferendum', 'greferend',

'greferendum')]

This variety of combinations was used in our experiments (described in Chapter 4) in order to

examine which type of feature vectors achieves the optimal performance for our case.

3.3 Architecture

3.3.1 Input Preparation

As described in section 3.2.3, our feature vectors are consisted of a combination of the original

119

Figure 39: Procedure of feature extraction. The stems, lemmas and POS tags of a word are

extracted and combined in order to construct the feature vector of a tweet.

words of the preprocessed tweets, their stems, lemmas and POS tags. In our implementation, these vectors

are initially represented by lists of tuples; each tuple contains a number of string values, e.g. ('people',

'peopl', 'NNS').

After the stages of pre-processing and feature extraction, we need to start training our model, and the

way we chose to do this is by an artificial neural network. The feature vectors feed the inputs of this ANN,

being also assigned to a target value, which corresponds to the desirable output of the network (+1 if the

tweet expresses a positive sentiment, 0 if it is neutral, and -1 if it expresses a negative sentiment). Based on

these feature vectors and their assigned targets, our network is being trained by the BK algorithm (described

in section 2.9).

Typically, a neural network is able to receive as inputs numerical values, in order to calculate the

outputs of the activation functions. For this reason, we need a way to transform the inputs of our network

from a list of tuple into numerical values. In order to achieve this, we made use of a hash function that

assigns each of the tuples contained in the feature vector to a unique integer.

In general, a hash function is any function that can be used to map digital data of arbitrary size to

digital data of fixed size. The values returned by this hash function are called hash values, hash codes, hash

sums, or simply hashes. For our model, the hash function converts every different tuple of string values into

a unique numerical value of integer data type.

120

Figure 40: Transformation of the feature vectors' data type through a hash function.

The length of a feature vector, m, is the number of its component tuples. Hence, the length of the

vector of the example of section 3.2.3 is 10. Our constructed set of feature vectors, which will be used for the

training and testing of our network, contains vectors of various lengths. The number of the inputs of the

network is judged by the length of the feature vectors; for this reason, all feature vectors of a given set need

to have a common, consistent, length. In order to achieve this, we pad the vectors that are shorter than the

longest one with as many padding tags as needed in order to make them consistent to the longest vector of

our set. The padding tags we used are zeros (0), as the padding tags need to be of the same data type as the

rest of the components of the vector, and, furthermore, zeros will not affect the network: the padding tags are

treated as another regular word by the network while it learns its weights; so, as they will be multiplied by

the synaptic weights, a result of 0 will be produced. The only reason we pad our vectors is to have a common

length for all tweets and these padding tags should not play any other role within the network; hence, zeros

serve this cause in an excellent way. Padding could have been avoided if the network was implemented with

a max-over-time module, which chooses the most significant features from variable-length sentences to get a

fixed size feature vector.

All the above processing steps took place for every experimental combination and system

architecture we examined. After performing the above steps, we examined two different techniques of

treating the input vectors. These techniques are two variations of the idea of n-grams.

An n-gram is a contiguous sequence of n items from a given sequence of text or speech. The items

can be phonemes, syllables, letters, words or base pairs. The n-grams typically are collected from a text or

speech corpus. A “unigram” is an n-gram of size 1 and a “bigram” is an n-gram of size 2. Bigram features are

not that commonly used in text classification tasks. However, bigrams seem to improve the performance

[22], and this is why we decided to try our system on both bigrams and unigrams.

For our application, the n sequential items are words (even if they are represented by numerical

values); we consider the feature vectors as vectors consisted of n-grams of the features we have extracted for

each tweet. For example, for the sentence

a vector consisting of unigrams would be

while a vector of bigrams would be

Therefore, we examined the performance of our system being fed by the following types of feature vectors:

121

“time for europe to embrace greece”

[“time”, “for”, “europe”, “to”, “embrace”, “greece”]

[(“time”, “for”), (“for”, “europe”), (“europe”, “to”), (“to”, “embrace”),

(“embrace”, “greece”)]

• a feature vector of unigrams of our processed tweets, which actually is equivalent to the feature

vector produced after the step of padding.

• a feature vector of bigrams of our processed tweets.

The vector of n-grams that is going to feed the neural network, in the second case (vector of

bigrams), is consisted of a number of tuples. For the reason we described earlier, we need again to apply a

hash function onto this vector in order to convert the tuples into numerical values. For the case of unigrams,

the feature vector remains the same.

122

Figure 41: Summary of the sequence of stages of tweets' processing procedure before feeding the input

of the neural network.

3.3.2 Multi-layer Perceptron

By now, we have prepared the feature vectors in order to be in acceptable forms to feed the inputs of

our network. Let's now describe the architecture of the implemented neural network.

Neural networks initialized using weights derived from linear models have been shown to present a

good performance on a variety of classification tasks [23]. Our neural network for the task of sentiment

analysis consists of 3 layers (including the input layer); an input layer, a hidden one and an output one, as

seen in fig. 37. The architectures we examined depend on the dimension of the hidden layer and are

presented later, in Table 3. Let's, firstly, define the symbols we are going to use:

dinput = dimension of input layer

dhidden = dimension of hidden layer

doutput = dimension of output layer

w12 = weights vector from input layer to hidden layer

w23 = weights vector from hidden layer to output layer

The layers of our network are common in all the architectural variations we examined and are

described below.

1. Input Layer

The input layer is a linear layer, which performs a simple multiplication and an additive bias layer.

The synaptic weights vector w12 is multiplied with the input matrix x, and a bias b is added to each element.

The synaptic weights and the bias are learned using the BK algorithm (described in section 2.9). The

dimension of the input layer is equal to the length of the padded feature vectors, mp:

d input=mp

123

2. Hidden Layer

The hidden layer is a hyperbolic tangent (tanh) layer, in the sense that it applies the tanh function to

each element in the matrix a1 which is consisted of the outputs of the input layer. This introduces a sigmoid

non-linearity which make the architecture different from regular linear classifiers. Tanh is a constantly

differentiable non-linear activation function (it is a function with sigmoid non-linearity). It is defined as

124

Figure 42: Architecture of the network. In this example, the inputs of the network are fed by bigrams of the feature

vector.

tanh(x)=
sinh(x)
cosh (x)

=
e x

−e−x

e x
+e− x

where x is acontinuous variable

We examined the system's response depending on different architectures; the difference among them lays on

the dimension of this layer. Table 3 presents the dimension of the hidden layer for every architecture we

examined.

3. Output Layer

The output layer is again a linear layer. As for the input, the linear output layer performs a

multiplication and an additive bias layer. The synaptic weights vector w23 is multiplied by the matrix a2 of

the outputs of the hidden layer (i.e. after the application of the sigmoid activation function on them). The

synaptic weights and the bias are learned using the BK algorithm. The dimension of the output layer may be

3 in the case of 3 classes of interest (positive, negative, neutral), or 2 in the case of only two classes of

interest (positive, negative).

d output=number of classes of interest={2, if 2classesof interest {positive , negative }

3, if 3 classesof interest {positive , negative , neutral}

Size of Layers

Input Layer Hidden Layer Output Layer

Architecture 1 dinput dinput doutput

Architecture 2 dinput dinput div 2 doutput

Architecture 3 dinput dinput div 4 doutput

Architecture 4 dinput dinput·2 doutput

Architecture 5 dinput dinput·2 div 3 doutput

Architecture 6 dinput dinput·4 doutput

Architecture 7 dinput (dinput+doutput)·3 div 2 doutput

Architecture 8 dinput (dinput+doutput)·2 div 3 doutput

Table 3: Overview of the examined architectures.

125

3.4 Computational Complexity

As described earlier, our model consists of four main stages:

• the pre-processing stage

• the feature extraction stage

• the input preparation stage

• the multi-layer perceptron stage

The computational complexity of the total model is derived from the partial orders of complexity of

these stages. Before computing the complexity of each stage, let's define the symbols we are going to use for

126

Figure 43: Example of network with the architecture 5. The input vector is consisted of bigrams of the feature vector

[f1, f2, …, f9]. The dimension of the input layer is 8; the dimension of the hidden layer is (8·2 div 3) = 5; and the

dimension of the output layer is 3, as the network is able to classify the input vector into one out of three classes

(positive, negative or neutral).

the computation of the order of complexity of our model.

ninitial = number of tweets that consist the original dataset

minitial = initial maximum number of words per tweet

nfinal = n = number of remaining tweets in dataset after step 7 of pre-processing,

n ≤ ninitial

mtemp1 = number of words per tweet after step 7 of pre-processing,

mtemp1 ≤ minitial

mtemp2 = number of words per tweet after steps 9-10 of pre-processing,

mtemp2 ≥ mtemp1

mfinal = m = number of remaining words per tweet after step 11 of pre-processing,

m ≤ mtemp2

dinput = m dimension of input layer of MLP

dhidden = dimension of hidden layer of MLP

doutput = dimension of output layer of MLP

l = number of training epochs

Let's note here that the symbol n that will be used here as the (final) number of remaining tweets

after step 7 of pre-processing, is independent of the symbol n that was used in the case of n-grams earlier.

Let's now explain further these symbols. The initial number of tweets per dataset is symbolized by

ninitial. In step 8 of pre-processing, possible duplicate tweets are eliminated, hence the number of tweets per

dataset changes and now is equal to nfinal which will be referred as n for reasons of simplicity. It is nfinal ≤

ninitial.

The initial maximum number of words per tweet is symbolized by minitial; at the worst case scenario,

all tweets are consisted of m words. In step 7, strings “at_user”, “url” and “rt” are eliminated, so the new

number of words per tweet is symbolized now by mtemp1, mtemp1 ≤ minitial. In steps 9 and 10, emoticons and

acronyms are replaced by their corresponding words; thus the total number of words per tweet is possible to

increase, and now it is equal to mtemp2 ≥ mtemp1. Nevertheless, in the next step of pre-processing (step 11), stop

words are filtered out, hence the number of words per tweets is possible to differ from the previous one. We

symbolize this final number of words per tweet with mfinal or m, for reasons of simplicity. It is mfinal ≤ mtemp2.

In the stage of input preparation our system pads the tweets in order to set them all in a consistent

length; this length is equal to m as well as to the number of the inputs of the perceptron: dinput = m.

127

In the stage of pre-processing, steps 1-6 are performed in a single dataset scan, which means that the

system needs to access ninitial tweets of length minitial each (at worst case scenario); step 7 is performed

similarly; step 8 accesses each tweet (ninitial tweets) without trying to access the words consisting it; steps 9-

10 are performed in a single scan and need to access nfinal = n tweets of length mtemp1 each; step 11 needs to

access n tweets of the new length mtemp2; step 12 needs to access n tweets of the new length (after step 11)

mfinal = m. The partial orders of complexity can be seen in Table 4.

In the stage of feature extraction, each one of the tasks of lemmatization, stemming and POS tagging

need to access each word of the pre-processed tweets. The number of pre-processed tweets is n and the

maximum number of words in them is m. This stage produces a tuple out of each word; the length of each

feature vector produced of each tweet remains equal to m.

In the stage of input preparation, each of the tasks of padding, hashing and construction of the

bigrams needs to access each tuple per feature vector; this means they need to access n feature vectors

consisting of m tuples.

The orders of complexity for the stages of feature extraction and input preparation can be also seen

in Table 4.

Let's now compute the complexity of the multi-layer perceptron. When training a multi-layer

perceptron, its computational complexity is determined by several factors. Our multi-layer perceptron

consists of a single hidden layer network. The network is fully connected and the factor of the momentum is

standard.

The dominating factor in training the MLP is the number of synaptic weights. As our network is fully

connected, there are dinput·dhidden = m·dhidden weights from the input layer to the hidden layer, and dhidden·doutput

weights from the hidden layer to the output layer. This gives a total of dhidden·(m+doutput) weights. The number

of inputs and outputs for a given dataset is fixed, hence the only variable term is dhidden.

Let's now describe in terms of complexity the back propagation error phase. The computation of

error at the output nodes uses the same back propagation error term, δj :

δ j=(t j−o j)o j(1−o j) (81)

where tj is the target for output node j and oj is the actual value for output node j.

This error term is �(1) for each output node and that there are doutput·dhidden output weights, which

yields �(doutput·dhidden) for the output layer. After computing the error at the output nodes, the error at each

hidden node is computed. Using the same assumptions as for equation 81,

δ h=oh(1−oh) ∑
k ∈outputs

w kh δ k (82)

128

where wkh represents the weight from node h in the hidden layer to node k in the output layer.

This computation is �(doutput) for each hidden node and there are dhidden·m weights, yielding

�(m·doutput·dhidden) for the entire hidden layer.

The total order of complexity is �(m·doutput·dhidden+dhidden·doutput) or �(dhidden·doutput·(m+1)) for training a

single epoch. For training l epochs, the total order of complexity is �(dhidden·doutput·l·(m+1)). For the training of

the whole (pre-processed and prepared) dataset that contains n tweets, the total order of complexity is

�(dhidden·doutput·l·n·(m+1)). As we use standard momentum, this order of complexity is unchanged and fewer

epochs are required for convergence that without momentum. Standard momentum requires additional

storage for each weight. Storage requirements are directly proportional to the number of weights; with

dhidden·(m+doutput) weights, there are 2·dhidden·(m+doutput) values to store.

The total order of complexity of our model is �(dhidden·doutput·l·n·(m+1)). Table 4 summarizes the

orders of complexity for every stage and individual task of our model.

Task Computational Complexity

Pre-processing

Steps 1-6 �(ninitial·minitial)

Step 7 �(ninitial·minitial)

Step 8 �(ninitial)

Steps 9-10 �(n·mtemp1)

Step 11 �(n·mtemp2)

Step 12 �(n·m)

Feature extraction

Lemmatization �(n·m)

Stemming �(n·m)

POS tagging �(n·m)

Input preparation

Padding �(n·m)

Hashing �(n·m)

Bigrams construction �(n·m)

Multi-layer perceptron �(dhidden·doutput·l·n·(m+1))

Table 4: Summary of computational complexity of all individual tasks of the model.

3.5 Performance Evaluation

For the performance evaluation of the implemented system we used the method of k-fold cross-

validation. As described in section 2.9.4, in this method, the original sample is randomly partitioned into k

equal sized subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing

129

the model, and the remaining k−1 subsamples are used as training data. The cross-validation process is then

repeated k times, with each of the k subsamples used exactly once as the validation data. The k results from

the folds can then be averaged (or otherwise combined) to produce a single estimation. By using this method

over repeated random subsampling, all observations are used for both training and validation, and each

observation is used for validation exactly once. In our implementation, k was set equal to 5 (5-fold cross-

validation).

The performance of the our system is evaluated by the metric of the mean squared error (MSE),

defined as a function of the free parameters of our system, which are the synaptic weights of the neural

network. The MSE of an estimator measures the average (mean magnitude) of the squares of the errors, that

is the difference between the model's estimation of the test values and the actual (corresponding) test values.

Squaring is used to covert the errors to an absolute value. The physical interpretation of the MSE metric is

how close, on average, the hyperplane drawn by our network gets to the actual cloud of data in the validation

set.

3.6 Implementation

We implemented our system using Python [24]. Python provides some very useful tools for our

application. We mainly used the modules of Tweepy, NLTK and PyBrain. All of these modules are open-

sourced and hosted on GitHub [37].

Tweepy is Twitter API library for Python [25]. It enables Python to communicate with Twitter

platform and use its API.

NLTK (Natural Language Toolkit) is a leading platform for building Python programs to work with

human language data [20]. It provides easy-to-use interfaces to corpora and lexical resources, along with a

suite of text processing libraries for classification, tokenization, stemming, lemmatization, tagging, parsing,

and semantic reasoning.

PyBrain (Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network

Library) [26] is a modular Machine Learning Library for Python. It offers powerful algorithms for machine

learning tasks and a variety of environments for testing and comparison. It contains algorithms for neural

networks, reinforcement learning (and the combination of the two), unsupervised learning, and evolution.

130

Χ

4 Experiments and Results

In this chapter we are going to describe the different experiments, techniques and architectures of the

neural network that were examined, and present their results. Before that, we are going to describe the

system characteristics of the computer where the experiments took place, the parameters that we set for the

training and the testing of the artificial neural network, as well as the data corpus that was used. In the end,

we will discuss the results and suggest ideas for improvement.

4.1 Computer System Characteristics

The characteristics of the computer system where the experiments took place are presented in the

following Table.

Memory 7.7 GiB

Processor Intel® CoreTM i7-4500U CPU @ 1.80GHz x 4

OS type 64-bit

OS Ubuntu 14.04.2 LTS

Disk 448.9 GB

Table 5: Computer system characteristics.

131

4.2 Training and Testing Corpus

Let's remind here the corpus of our experiments. The initial corpus is pre-processed and cleaned of

duplicates. The sections of the corpus that are used for the training and the testing phases of our system

consist of the 75% and 25%, respectively, of the datasets after the pre-processing steps.

Number of tweets

Datasets Polarity Initial

corpus

Positive

class of

initial

corpus

Negative

class of

initial

corpus

Neutral

class of

initial

corpus

Pre-

processed

corpus

Training

corpus

Testing

corpus

balanced_

referendu

m_ds

Positive,

negative,

neutral

2,100 700 700 700 1,830 1,373 457

various_c

ontents_d

s

Positive,

negative

2,000 1,000 1,000 0 1,751 1,314 437

Table 6: Overview of the training and testing corpus.

Let's also underline that the two datasets of our corpus differ in two points:

• The dataset balanced_referendum_ds contains tweets of a certain topic (the Referendum of July 5 th,

Greece) while the dataset various_contents_ds contains tweets of various topics and contents.

• The dataset balanced_referendum_ds contains tweets with opinions that have been annotated as

positive, negative or neutral (three classes of polarity), while the dataset various_contents_ds

contains tweets of opinions that have been annotated as positive or negative (two classes of

polarity).

132

4.3 Training and Testing parameters

The proportion of the training and the testing data to the total corpus was set at 75% and 25%

respectively.

The term of the learning rate is a training parameter that controls the size of weight and bias changes

in learning of the training algorithm [14]. Its real domain is [0, 1]. We decided that the value that leads our

system to a better performance is 0.01.

The momentum is a term that adds a fraction m of the previous weight update to the current one. The

momentum parameter is used to prevent the system from converging to a local minimum or saddle point. A

high momentum parameter can also help to increase the speed of convergence of the system. However,

setting the momentum parameter too high can create a risk of overshooting the minimum, which can cause

the system to become unstable. A momentum coefficient that is too low cannot reliably avoid local minima,

and can also slow down the training of the system. Its real domain is [0, 1] [27]. We set the momentum

parameter equal to 0.5

The parameter of weight decay adds a penalty term to the error function. The penalty used is the sum

of squared weights times a decay constant. The weight decay penalty term causes the weights to converge to

smaller absolute values than they otherwise would. Large weights can hurt generalization in two different

ways. Excessively large weights leading to hidden units can cause the output function to be too rough,

possibly with near discontinuities [27]. Excessively large weights leading to output units can cause wild

outputs far beyond the range of the data if the output activation function is not bounded to the same range as

the data. In other words, large weights can cause excessive variance of the output (Geman, Bienenstock, and

Doursat 1992).

The number of epochs was set at 1,000. This number determines when training will stop once the

number of iterations exceeds epochs or when the network converges to a minimum error.

Table 5 summarizes the training parameters of the neural network.

133

Proportion of the training dataset

to the total corpus 0.75

Proportion of the testing dataset

to the total corpus 0.25

Learning rate 0.01

Momentum 0.5

Weight decay 0.01

Number of epochs 1,000

Cross-validation 5-fold

Performance metric Mean Squared Error (MSE)

Table 7: Overview of the training parameters

4.4 Experiments and Techniques

For the dataset balanced_referendum_ds, we examined the performance of the implemented system

in two different experiments, depending the features that constructed the feature vectors:

• Experiment 1: The features that were selected are the original word, its stem and POS tag.

• Experiment 2: The features that were selected are the original word, its lemma and POS tag.

For the second dataset, various_contents_ds, we examined the performance of the system with the

techniques of unigrams and bigrams, taking into account the features of the experiment 1.

4.5 Examined Architectures

Apart from the different techniques and experiments that were tried and are related to the inputs of

the multi-layer perceptron, various architectural schemata of the perceptron were also examined, as described

in section 3.3.2. We rewrite here the Table that summarizes all the architectures that we examined (keeping

the symbolization of the previous chapter).

134

Size of Layers

Input Layer Hidden Layer Output Layer

Architecture 1 dinput dinput doutput

Architecture 2 dinput dinput div 2 doutput

Architecture 3 dinput dinput div 4 doutput

Architecture 4 dinput dinput·2 doutput

Architecture 5 dinput dinput·2 div 3 doutput

Architecture 6 dinput dinput·4 doutput

Architecture 7 dinput (dinput+doutput)·3 div 2 doutput

Architecture 8 dinput (dinput+doutput)·2 div 3 doutput

Table 8: Overview of the examined architectures

4.6 Results

4.6.1 Results for the Dataset balanced_referendum_ds

4.6.1.1 Examined Architectures

The following Table summarizes the dimensions of the layers of the multi-layer perceptron that was

created for the dataset balanced_referendum_ds.

135

Size of Layers

Input Layer Hidden Layer Output Layer

Architecture 1 26 26 3

Architecture 2 26 13 3

Architecture 3 26 6 3

Architecture 4 26 52 3

Architecture 5 26 17 3

Architecture 6 26 104 3

Architecture 7 26 43 3

Architecture 8 26 19 3

Table 9: Overview of the examined architectures of the multi-layer perceptron for the dataset balanced_referendum_ds.

4.6.1.2 Summarized Results

For the dataset balanced_referendum_ds, we tested our implementation under all the architectural

schemata (1, 2, 3, 4, 5, 6, 7 and 8) and for both experiments, with the technique of unigrams. After 10

repetitions, we gathered the mean values of the MSE for every architectural schema. These results are

presented in the following Table.

After the pre-processing steps, the final number of tweets in our dataset is 1,830, out of them 1,373

are used for the training and 457 are used for the testing of our system (75% and 25%, respectively, of the

final corpus).

136

Architectu

re

MSE

MSE (@ number of epoch)

Unigrams

Experiment

1 2

1 Minimum 0.1485 @ 708 0.1468 @ 694

1 Average 0.1905 0.1909

1 Maximum 0.5138 @ 98 0.5684 @ 126

2 Minimum 0.1455 @ 692 0.1485 @ 641

2 Average 0.1657 0.1695

2 Maximum 0.3858 @ 103 0.3585 @ 233

3 Minimum 0.1474 @ 264 0.1488 @ 242

3 Average 0.1572 0.1621

3 Maximum 0.2488 @ 89 0.2844 @ 122

4 Minimum 0.1474 @ 788 0.1470 @ 697

4 Average 0.2391 0.2485

4 Maximum 0.7964 @ 336 0.8472 @ 336

5 Minimum 0.1486 @ 691 0.1450 @ 845

5 Average 0.1765 0.1716

5 Maximum 0.4237 @ 132 0.4538 @ 147

6 Minimum 0.1457 @ 643 0.1478 @ 509

6 Average 0.4513 0.4557

6 Maximum 3.9719 @ 11 4.5260 @ 32

7 Minimum 0.1477 @ 748 0.1472 @ 592

7 Average 0.2210 0.2209

7 Maximum 0.7313 @ 117 0.6551 @ 92

8 Minimum 0.1476 @ 887 0.1451 @ 795

8 Average 0.1758 0.1741

8 Maximum 0.4825 @ 149 0.4483 @ 104

137

Table 10: Summarized results of dataset balanced_referendum_ds, for experiments 1 and 2, with the technique of

unigrams.

The indicative running times for architecture 6 (which is the most complex architecture) for the first

and second experiments are 201m and 203m respectively.

We noticed that the neural network converges to a minimum MSE with a mean value of 0.147 for all

architectures. Thus, we started the testing phase of the system after this criterion was satisfied; its

convergence to the optimal MSE value for each architecture. After 10 repetitions for the tests of each

architectural schema and each experiment, we concluded to the following results (Table 6).

Unigrams

Experiment 1 Experiment 2

Architect

ure

Total

number

of

predictio

ns

Number

of

correct

predictio

ns

Number

of wrong

predictio

ns

Success

rate

Number of

correct

predictions

Number of

wrong

predictions

Success rate

1 457 302 155 66.08% 310 147 67.83%

2 457 314 143 68.71% 303 154 66.30%

3 457 320 137 70.02% 322 135 70.46%

4 457 295 162 64.55% 307 150 67.18%

5 457 313 144 68.49% 306 151 66.96%

6 457 311 146 68.05% 303 154 66.30%

7 457 300 157 65.65% 305 152 66.74%

8 457 301 156 65.86% 306 151 66.96%

Table 11: Summarized results of the predictions of the neural network for the dataset balanced_referendum_ds.

138

4.6.2 Results for the Dataset various_contents_ds

4.6.2.1 Examined Architectures

The following Table summarizes the dimensions of the layers of the multi-layer perceptron that was

created for the dataset various_contents_ds.

Size of Layers

Input Layer Hidden Layer Output Layer

Architecture 1 27 27 2

Architecture 2 27 13 2

Architecture 3 27 6 2

Architecture 4 27 54 2

Architecture 5 27 18 2

Architecture 6 27 108 2

Architecture 7 27 43 2

Architecture 8 27 19 2

Table 12: Overview of the examined architectures of the multi-layer perceptron for the dataset various_contents_ds.

4.6.2.2 Summarized Results

For the dataset various_contents_ds, we tested our implementation under the architectural schemata

1, 2, 3, 4, 5, 6, 7 and 8, for the first experiment and both the techniques of unigrams and bigrams. Again we

tested each architecture for 10 times in order to get the mean value of the MSE. We present the results in the

following Table (Table 13).

After the steps of pre-processing, the initial corpus of 2,000 tweets was decreased and the final

corpus contains 1,751 tweets. A section of 75% of this corpus, which consists of 1,314 tweets, was used in

order to train the system, while a section of 25% of it, which consists of 437 tweets, was used for testing it.

139

Architect

ure

MSE

MSE (@ number of epoch)

Experiment 1

Unigrams Bigrams

1 Minimum 0.1629 @ 567 0.1789 @ 671

1 Average 0.1739 0.2012

1 Maximum 0.4081 @ 122 0.4532 @ 301

2 Minimum 0.1670 @ 696 0.1751@ 584

2 Average 0.1895 0.1960

2 Maximum 0.3604 @ 459 0.3641 @ 108

3 Minimum 0.1665 @ 578 0.1749 @ 479

3 Average 0.1767 0.1848

3 Maximum 0.2554 @ 306 0.3063 @ 265

4 Minimum 0.1676 @ 763 0.1751 @ 203

4 Average 0.2783 0.2808

4 Maximum 0.7224 @ 63 0.6993 @ 70

5 Minimum 0.1662 @ 74 0.1758 @ 912

5 Average 0.1971 0.2024

5 Maximum 0.3914 @ 676 0.3704 @ 102

6 Minimum 0.1662 @ 320 0.1769 @ 574

6 Average 0.9730 0.5902

6 Maximum 40.1450 @ 13 8.2925 @ 1

7 Minimum 0.1664 @ 998 0.1739 @ 807

7 Average 0.2512 0.2546

7 Maximum 0.6239 @ 855 0.6132 @ 68

8 Minimum 0.1661 @ 303 0.1754 @ 622

8 Average 0.2003 0.2062

8 Maximum 0.4236 @ 639 0.3916 @ 540

Table 13: Summarized results of the dataset various_contents_ds, for experiment 1, with the techniques of unigrams and

bigrams.

140

The indicative running time for architecture 6 (which is the most complex architecture) for unigrams

is 116m and for bigrams is 117m.

For the dataset various_contents_ds and the technique of unigrams, we notice that the network

converges for all architectures to a minimum MSE with a mean value of 0.166. For the technique of bigrams,

the corresponding minimum MSE has a mean value of 0.176. Consequently, we started the testing phase of

the system after the convergence criterion was satisfied, and the network converged to the optimal MSE for

each architecture and technique. After 10 repetitions of the tests of each architectural schema and each

technique, we concluded to the mean values of the success rates of the predictions of the network, which are

presented in the following Table (Table 14).

Experiment 1

Unigrams Bigrams

architect

ure

Total

number

of

prediction

s

Number

of

correct

predictio

ns

Number

of wrong

prediction

s

Success

rate

Number of

correct

predictions

Number of

wrong

predictions

Success rate

1 437 279 178 63.84% 222 215 50.80%

2 437 234 203 53.55% 225 212 51.49%

3 437 255 182 58.35% 238 199 54.46%

4 437 237 200 54.23% 235 202 53.78%

5 437 239 198 54.69% 255 182 58.35%

6 437 231 206 52.86% 244 193 55.84%

7 437 236 201 54.00% 235 202 53.78%

8 437 226 211 51.72% 229 208 52.40%

Table 14: Summarized results of the predictions of the neural network for the dataset various_contents_ds.

4.7 Discussion

Let's, firstly, discuss about the outcome of our tests for the two separate datasets. We notice that the

141

first dataset (balanced_referendum_ds) achieves an overall very satisfactory performance, with a maximum

success rate of 70%. On the other hand, the second dataset (various_contents_ds) doesn't give such good

results; the maximum success rate it achieves is 63.84%. We consider that this great difference between the

results of the experiments on our datasets is produced due to an essential characteristic that distinguishes

them: the fact that the first dataset contains tweets of a common topic. As a matter of fact, this dataset

contains a common dictionary which helps the perceptron correlate words and phrases in a context in a more

accurate and massive way, and learn more from its environment. It gets very clear here that the contents of a

dataset play a very significant role in the final results. Another factor that may have caused the unsatisfactory

performance of the network for the second dataset is its small size. We assume that a dataset that contains

opinions of various contents should be quite large in order to give the network the chance to gain knowledge

about the way the various dictionary is used and the information it carries.

Let's now explore the results of the experiments for the first dataset: balanced_referendum_ds. We

notice that all the architectural schemata for both the experiments converge to a common optimum, for a

common minimum MSE, below which our model doesn't seem to be able to walk. The mean value of this

minimum MSE is 0.147. However, each architecture that was examined has a different behavior over time,

starts with different configurations and reaches its minimum more smoothly or abruptly. The best

performance of the experiments that used this dataset is achieved with the 3 rd architectural schema, with a

success rate of 70% for both experiments. The difference between the success rates of this architecture

between the two experiments is very slight, hence it is considered negligible. The simplest probabilistic

model would classify tweets of three discrete classes with a success rate of 33.33%. As a matter of fact, our

system achieves a very satisfactory improvement to this performance, with a success rate of 70%. The worst

performance for experiment 1 is achieved with the 4th architecture, with a success rate of 64.55%, while for

the experiment 2 it is achieved with the 2nd and 6th architecture, with a success rate of 66.30% for both. In

general, we can say that the architectures for the 2nd experiment present success rates that follow a more

smooth distribution than the ones of the 1st experiment. However, four of the architectures that were tried for

the 1st experiment (architectures 2, 5 and 6) achieve a better success rate than the corresponding ones of the

2nd experiment. The mean value of the success rates of the 1st experiment is 67.18% while the corresponding

mean value of the 2nd experiment is 67.34%; the difference between them is very small. The following plot

(fig. 44) presents the distributions of the success rates for the two experiments, for the technique of

unigrams, using the dataset balanced_referendum_ds.

142

Let's now see the results that were achieved by experiment 1 for the dataset various_contents_ds, for

each of the techniques of unigrams and bigrams, and all the architectures. First of all, as we mentioned

before and can be seen in Table 9, all the architectural schemata for each technique converge to an

approximately common optimum, a common minimum MSE, the mean value of which is 0.167 for unigrams

and 0.176 for bigrams. After the convergence of every configuration of the networks to this minimum value,

we started testing the network on the testing dataset. The mean success rate for the technique of unigrams is

55.40%, while the corresponding value for the technique of bigrams is 53.86%. The technique of unigrams

achieves an overall better performance than the technique of bigrams. We can assume that this happens

because of the fact that the dictionary that is used in the certain dataset is various and is not associated to a

common content or topic; hence, as a matter of fact, the phrases and the word sequences that are used might

be very different from tweet to tweet and, consequently, the bigrams that are formed are not frequently

repeated in order to help the network learn. The best performance of the network for the dataset

various_contents_ds is achieved for the 1st architecture and the technique of unigrams, with a success rate of

143

Figure 44: Distribution of success rates of experiments 1 and 2, for the technique of unigrams and the dataset

balanced_referendum_ds.

1 2 3 4 5 6 7 8
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

Distribution of Success Rates of Experiments 1 and 2

balanced_referendum_ds, unigrams

Experiment 1

Experiment 2
Architecture

S
u

cc
es

s
R

at
e

63.84%. Architecture 3 presents a performance that, for the case of unigrams, is the next most satisfactory

performance. Regarding the technique of bigrams, the maximum success rate achieved is 58.35% with the 5 th

architectural schema. The following plot (fig. 45) presents the distribution of the success rates of the

experiment 1, for the techniques of unigrams and bigrams and every architecture, for the dataset

various_contents_ds.

4.8 Ideas for Improvement and Future Directions

In the approaches we examined, we noticed that, out of the two datasets, the network performs much

better on the first one, balanced_referendum_ds. This dataset differs from the second one,

various_contents_ds, on the point that it is composed of tweets and opinions about a common topic and

content; this particular property of this dataset makes it contain a basic common dictionary, the words of

144

Figure 45: Distribution of success rates of experiment 1, for the techniques of unigrams and bigrams, and the dataset

various_contents_ds.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distribution of Success Rates of Unigrams and Bigrams

various_contents_ds, experiment 1

Unigrams

BigramsArchitecture

S
u

cc
es

s
R

at
e

which may be repeated many times from tweet to tweet. This is a big assistance for the neural network, and it

helps it find the correlation between words and the sentiment they probably or usually carry, in a more

accurate and massive way. It is apparent that the results of our experiments depend very much on the

contents of a dataset. Thus, as a matter of fact, we consider that datasets containing opinions of the same

topic help the network learn better from its environment and improve itself. We suggest the use of such

datasets for the future experiments, or much larger (than the one we used) datasets of various contents.

Another idea for improvement of our model is a modification in the structure of the network. Our

model implements a multi-layer perceptron with one hidden layer that applies the hyperbolic tangent

function. A modification to the model of the multi-layer perceptron that can appear very promising is its

extension to a convolutional network [28] [29], by adding a layer of one of the following three types:

convolutional, max-pooling or fully-connected [30].

• Convolutional: Such layers consist of a rectangular grid of neurons. It requires the previous layer

also to be a rectangular grid of neurons. Each neuron takes inputs from a rectangular section of the

previous layer of neurons; the weights of this rectangular section are the same for each neuron in the

convolutional layer. Thus, the convolutional layer is just an image convolution of the previous layer,

where the weights specify the convolution filter.

• Max-Pooling: After each convolutional layer, there may be a pooling layer. The pooling layer takes

small rectangular blocks from the convolutional layer and subsamples it to produce a single output

from that block. There are several ways to do this pooling, such as taking the average or the

maximum, or a learned linear combination of the neurons in the block. Our pooling layers will

always be max-pooling layers; that is, they take the maximum of the block they are pooling.

• Fully-Connected: Finally, after several convolutional and max pooling layers, the high-level

reasoning in the neural network is done via fully connected layers. A fully connected layer takes all

neurons in the previous layer (be it fully connected, pooling, or convolutional) and connects it to

every single neuron it has. Fully connected layers are not spatially located anymore (you can

visualize them as one-dimensional), so there can be no convolutional layers after a fully connected

layer.

Apart from modifying the structure of the network, various forms of inputs can also be examined.

The input representations we tried are combinations of the lemmas, stems and POS tags of words, as well as

the n-grams. Other representations can also be tried. A simplifying representation that is widely used in

natural language processing and information retrieval is the bag-of-words model [31]. In this model, a text

(or sentence) is represented as a multiset (bag) of words appearing in the text, disregarding grammar and

145

even word order but keeping multiciplitly.

Furthermore, new features that are considered important can be extracted and taken into account. For

instance, the frequency of occurrences of a word in a tweet or in the total corpus, or the position of a word

[32] might make a difference (tweets might often have some kind of structure: it's common to begin with a

periphrastic expression of an opinion and then finish the tweet by an overall sentiment statement usually part

of a hashtag, e.g. “#angry”).

Finally, another idea we suggest for the improvement of our model is the implementation of a user

profiling system. Such a system will keep information about every user or every user model. This

information can be very essential for the task of the sentiment extraction of a tweet. For example, let's

imagine a user that usually posts positive tweets about a certain topic. If once he posts an apparently negative

tweet, a traditional system that performs sentiment analysis, like ours, would assume that this tweet should

be classified as negative, even though it might be a humorous or sarcastic tweet with a positive attitude.

Nevertheless, a system that keeps information about the users' profiles will be able to take into account the

fact that this particular user usually posts positive tweets about the certain topic, and after a procedure that

takes into account the user's statistics and the theory of probabilities, it might finally classify the certain

tweet into the positive class.

4.9 Conclusion

In this work we examined the performance of a model for Twitter sentiment analysis, composed of

two parts: a part that performs pre-processing tasks for the text refinement and noise cleaning and a part that

implements a multi-layer perceptron with one hidden layer. We tried our system onto a corpus of tweets that

was divided into two datasets: a dataset of tweets referring to a common topic and expressing sentiments of

three discrete classes (positive, negative, neutral), and a dataset of tweets expressing various content of

subjective opinions of two classes (positive, negative).

We performed two different experiments; each one of them was based on different combinations of

the features that consist the feature vectors: composed of the original words, stems and POS tags, or the

original words, lemmas and POS tags. We also examined what difference the performance of unigrams and

bigrams could have. In addition, we examined several different architectural schemata for the perceptron.

We noticed that the experiments that used the dataset of opinions of a common topic present a much

better performance, with a maximum success rate of 70%, compared to the experiments that used the dataset

of various contents, which succeeded a maximum success rate of 63.84%. The architectural schema that

achieved the most satisfactory performance for the first dataset and both experiments is the architecture 3,

with a success rate of 70% (there is a slight difference between the success rates of architecture 3 of the two

146

experiments but it is so small that is considered negligible). For the second dataset, the architecture 1

achieves the best performance for the technique of unigrams, with a success rate of 63.84%, while the

architecture 5 achieves the best performance for the technique of bigrams, with a success rate of 58.35%. In

our approaches, the technique of unigrams presents an overall better performance; we consider that the

reason for this performing difference is the fact that there is no common dictionary in the dataset

various_contents_ds, hence each phrase or word sequence is not present in many tweets. Consequently, no

more knowledge is offered to the network; actually the network might lose knowledge that it could have

gained by the repetition of single words (as in the case of unigrams).

The results of our approaches for the first dataset are very satisfactory. However, we recognize that

the results of the second dataset are not good enough and the overall outcome is not optimal. There are other

approaches, like support vector machines [32] [22], that seem to be highly competitive on such tasks and are

able to provide very good results. Nevertheless, our system based on artificial neural networks can

potentially present an equally competitive performance with light modifications or extensions. Our

implementation of a strong and self-sufficient model can consist a powerful base, to which a few extensions,

such as a convolutional layer in the multi-layer perceptron as mentioned earlier, can make the difference and

provide a very satisfactory improvement.

147

148

Bibliography

[1] L. Batista, “User Sentiment and Opinion Analysis”, Encyclopedia of Social Network Analysis and

Mining, Prof. Reda Alhajj, Prof. Jon Rokne, 2014.

[2] G. Lugano, “Extracting Individual and Group Behavior from Mobility Data”, Encyclopedia of

Social Network Analysis and Mining, Prof. Reda Alhajj, Prof. Jon Rokne, 2014.

[3] “Machine learning”, URL https://en.wikipedia.org/wiki/Machine_learning.

[4] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[5] C. Lin and Y. He, “Sentiment Analysis in Social Media”, Encyclopedia of Social Network Analysis

and Mining, Prof. Reda Alhajj, Prof. Jon Rokne, 2014.

[6] “Enterprise Mobile Computing news and information.” URL

http://searchmobilecomputing .techtarget.com/.

[7] G. Li and K. Chang, “Twitter Microblog Sentiment Analysis”, Encyclopedia of Social Network

Analysis and Mining, Prof. Reda Alhajj, Prof. Jon Rokne, 2014.

[8] “Microblogging”, 2015, URL https://en.wikipedia.org/wiki/Microblogging.

[9] “Twitter,” 2015, URL https://en.wikipedia.org/wiki/Twitter.

[10] “Twitter, Inc.”, URL https://twitter.com/.

[11] W. Kahle and M. Frotscher, Color Atlas of Human Anatomy, Vol. 3: Nervous System and Sensory

Organs, 2nd ed. Paschalidis, 2010.

[12] S. Ramon y Cajal, “Cajal’s Degeneration and Regeneration of the Nervous System”, Oxford

149

https://twitter.com/
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Microblogging
http://searchmobilecomputing.techtarget.com/
http://searchmobilecomputing/
https://en.wikipedia.org/wiki/Machine_learning

University Press, New York, 1991.

[13] R. Mundra and R. Socher, “Deep Learning for Natural Language Processing”, Stanford University,

2015.

[14] S. Haykin, Neural Networks and Learning Machines, 3rd ed. Pearson Education, Inc, 2009.

[15] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice Hall, 1998.

[16] M. A. Fischler and O. Firschein, Intelligence: The Eye, the Brain and the Computer. Addison-

Wesley, 1987.

[17] T. D. McFarland and R. Parker, Expert Systems in Education and Training. Educational Technology,

1990.

[18] Twitter Application Manager, URL https://apps.twitter.com/.

[19] L. Bauer, Introducing Linguistic Morphology, 2nd ed. Georgetown University Press, 2003.

[20] Natural Language Toolkit for Python, URL http://www.nltk.org/.

[21] P. Gamallo and Garcia, Marcos, “Citius: A Naive-Bayes Strategy for Sentiment Analysis on English

Tweets”.

[22] S. Wang and C. D. Manning, “Baselines and Bigrams: Simple, Good Sentiment and Topic

Classification”.

[23] K. Sheng Tai, “Sentiment Analysis of Tweets: Baselines and Neural Network Models”, 2013.

[24] Python, URL https://www.python.org/.

[25] Twitter API library for Python, URL http://www.tweepy.org/.

150

http://www.tweepy.org/
https://www.python.org/
http://www.nltk.org/
https://apps.twitter.com/

[26] “Pybrain, Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network

Library”, URL http://pybrain.org/.

[27] “Artificial Neural Networks/Neural Network Basics”, 2015. URL

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Neural_Network_Basics.

[28] C. Nogueira dos Santos and M. Gatti, “Deep Convolutional Neural Networks for Sentiment Analysis

of Short Texts”.

[29] Y. Kim, “Convolutional Neural Networks for Sentence Classification”, New York University.

[30] A. Gibiansky, “Convolutional Neural Networks”, URL

http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural- networks.

[31] Y. Yoshikawa, T. Iwata, and H. Sawada, “Latent Support Measure Machines for Bag-of-Words Data

Classification”.

[32] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment Classification using Machine

Learning Techniques”, presented at the EMNLP 2002, 2002.

[33] A. C. Clarke, 2001: A Space Odyssey, Hutchinson, 1968.

[34] Q. Jarosz, “Structure of a typical neuron”, URL https://en.wikipedia.org/wiki/Axon.

[35] “Brain clip art”, www.openclipart.org.

[36] “‘Twitter bird in real life’ by Scott Hampson”, URL

https://www.flickr.com/photos/toonz/3677263997.

[37] “GitHub: Where software is built”, URL https://github.com/.

151

https://github.com/
https://www.flickr.com/photos/toonz/3677263997
http://www.openclipart.org/
https://en.wikipedia.org/wiki/Axon
http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-
http://andrew.gibiansky.com/blog/machine-
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Neural_Network_Basics
http://pybrain.org/

152

Appendix

A. Table of the 100 Most Common Emoticons in Twitter Considered by

our Model

153

Table 15: Table of the 100 most common emoticons in Twitter that were considered by our model.

:) happy \xF0\x9F\x98\x83 happy
:} happy \xF0\x9F\x98\x86 laugh
;) happy \xF0\x9F\x98\x8A happy
;P ironic \xF0\x9F\x98\x8D love

O:) angel \xF0\x9F\x98\x93 tired
\xf0\x9f\x98\x8a happy \xF0\x9F\x98\x98 kiss

;< sad \xF0\x9F\x98\x9D ironic
:) happy \xF0\x9F\x98\xA1 angry

;} happy \xF0\x9F\x98\xA4 triumph
:P ironic \xF0\x9F\x98\xA9 weary
;P ironic \xF0\x9F\x98\xAD cry

3:) evil \xF0\x9F\x98\xB2 astonished
\xF0\x9F\x98\x81 happy \xF0\x9F\x98\xB7 mute

|{ sad \xF0\x9F\x98\xBA happy
:o) happy \xF0\x9F\x98\xBD kiss
:> happy \xF0\x9F\x98\x80 scream

:P ironic \xE2\x9C\x96 no
<3 love \xF0\x9F\x92\x94 love
:X mute \xF0\x9F\x92\x97 love
:(sad \xF0\x9F\x92\x9A love
:(sad \xF0\x9F\x92\x9D love

:| sad \xe2\x99\xa5\xe2\x99\xa5 much love
:| sad \xE2\x9D\xA4\xE2\x9D\xA4\xE2\x9D\xA4 very much love

|: sad \xF0\x9F\x91\x8D\xF0\x9F\x91\x8D like
|: sad \xE2\x98\x81 cloud
;(sad \xF0\x9F\x98\x84 happy
:X mute \xE2\x9D\xA4 love

\xF0\x9F\x98\x82 laugh \xF0\x9F\x98\x8B ironic
\xF0\x9F\x98\x85 laugh \xF0\x9F\x98\x8F smirk
\xF0\x9F\x98\x89 happy \xF0\x9F\x98\x94 sad
\xF0\x9F\x98\x8C relieved \xF0\x9F\x98\x9A kiss
\xF0\x9F\x98\x92 unhappy \xF0\x9F\x98\x9E disappointed
\xF0\x9F\x98\x96 confused \xF0\x9F\x98\xA2 sad
\xF0\x9F\x98\x9C ironic \xF0\x9F\x98\xA5 disappointed
\xF0\x9F\x98\xA0 angry \xF0\x9F\x98\xAA sleepy
\xF0\x9F\x98\xA3 persevere \xF0\x9F\x98\xB0 sad
\xF0\x9F\x98\xA8 afraid \xF0\x9F\x98\xB3 astonished
\xF0\x9F\x98\xAB tired \xF0\x9F\x98\xB8 laugh
\xF0\x9F\x98\xB1 scream \xF0\x9F\x98\xBB love
\xF0\x9F\x98\xB5 dizzy \xF0\x9F\x98\xBE unhappy
\xF0\x9F\x98\xB9 laugh \xE2\x9C\x8C victory
\xF0\x9F\x98\xBC wry \xF0\x9F\x92\xAA power
\xF0\x9F\x98\xBF cry \xF0\x9F\x92\x95 love

\xE2\x9C\x94 yes \xF0\x9F\x92\x98 love
\xF0\x9F\x92\x93 love \xF0\x9F\x92\x9B love

B. Table of 50 out of the 664 Acronyms Considered by our Model

154

Table 16: Table of 50 out of the 664 acronyms that were considered by our model.

AAMOF as a matter of fact
ABFL a big fat lady
ABT about
ADN any day now

AFAIC as far as I’m concerned
AFAICT as far as I can tell
AFAICS as far as I can see
AFAIK as far as I know

AFAYC as far as you’re concerned
AFK away from keyboard
AH asshole

AISI as I see it
AIUI as I understand it
AKA also known as
AML all my love

ANFSCD and now for something completely different
ASAP as soon as possible

ASL assistant section leader
ASL age sex location

ASLP age sex location picture
A/S/L age/sex/location
ASOP assistant system operator
ATM at this moment
AWA as well as

AWHFY are we having fun yet?
AWGTHTGTTA are we going to have to go trough this again?

AWOL absent without leave
AWOL away without leave
AYOR at your own risk
AYPI? and your point is?

B4 before
B4N bye for now
BAC back at computer
BAG busting a gut
BAK back at the keyboard

BBIAB be back in a bit
BBL be back later

BBLBNTSBO be back later but not to soon because of
BBR burnt beyond repair
BBS be back soon
BBS bulletin board system
BC be cool

B/C because
BCnU be seeing you

BEG big evil grin
BF boyfriend

B/F boyfriend
BFN bye for now
BG big grin

BION believe it or not

C. Table of the 320 English Stop Words Considered by our Model

155

Table 17: Table of the 320 english stop words that were considered by our model.

a behind everything i nobody side thus why
about being everywhere ie none since to will
above below except if noone sincere together with
across beside few in nor six too within
after besides fifteen inc not sixty top without

afterwards between fify indeed nothing so toward would
again beyond fill interest now some towards yet

against bill find into nowhere somehow twelve you
all both fire is of someone twenty your

almost bottom first it off something two yours
alone but five its often sometime un yourself
along by for itself on sometimes under yourselves

already call former keep once somewhere until
also can formerly last one still up

although cannot forty latter only such upon
always cant found latterly onto system url

am co four least or take us
among computer from less other ten very

amongst con front ltd others than via
amoungst could full made otherwise that was
amount couldnt further many our the we

an cry get may ours their well
and de give me ourselves them were

another describe go meanwhile out themselves what
any detail had might over then whatever

anyhow do has mill own thence when
anyone done hasnt mine part there whence

anything down have more per thereafter whenever
anyway due he moreover perhaps thereby where

anywhere during hence most please therefore whereafter
are each her mostly put therein whereas

around eg here move rather thereupon whereby
as eight hereafter much re these wherein
at either hereby must same they whereupon

back eleven herein my see thick wherever
be else hereupon myself seem thin whether

became elsewhere hers name seemed third which
because empty herself namely seeming this while
become enough him neither seems those whither
becomes etc himself never serious though who
becoming even his nevertheless several three whoever

been ever how next she through whole
before every however nine should throughout whom

beforehand everyone hundred no show thru whose

	Περίληψη
	Εκτεταμένη Περίληψη
	Abstract
	Acknowledgements
	Instead of a Preface
	Contents
	List of Figures
	List of Tables
	1 Sentiment Analysis and Twitter
	1.1 Machine Learning
	1.1.1 Definition
	1.1.2 Theory
	1.1.3 Approaches

	1.2 Sentiment Analysis
	1.2.1 Definition
	1.2.2 Historical Background and Learning Approaches
	1.2.2.1 Supervised Learning
	1.2.2.2 Semi-Supervised Learning
	1.2.2.3 Unsupervised or Weakly Supervised Learning

	1.3 Twitter Sentiment Analysis
	1.3.1 Microblogging
	1.3.2 Twitter Sentiment Analysis

	2 Artificial Neural Networks
	2.1 Human Nervous System
	2.1.1 Basic Structure
	2.1.2 Anatomy and Physiology

	2.2 Neurons
	2.2.1 Neuron Models
	2.2.2 Activation Function
	2.2.3 Stochastic Neuron Model
	2.2.4 Definition of Neural Network

	2.3 Neural Networks as Directed Graphs
	2.4 Feedback
	2.5 Neural Networks Architectures
	2.5.1 Single-layer Feedforward Network
	2.5.2 Multi-layer Feedforward Network
	2.5.3 Recurrent Neural Network

	2.6 Knowledge Representation
	2.7 Learning Procedures
	2.7.1 Learning with a Trainer or Supervised Learning
	2.7.2 Learning without Trainer
	2.7.2.1 Reinforcement Learning
	2.7.2.2 Unsupervised Learning

	2.8 Rosenblatt's Perceptron
	2.8.1 The Perceptron
	2.8.2 Perceptron's Convergence Theorem
	2.8.3 Summary of Perceptron's Convergence Algorithm

	2.9 Multi-layer Perceptron
	2.9.1 Definition
	2.9.2 Batch and Online Learning
	2.9.2.1 Batch Learning
	2.9.2.2 Online Learning

	2.9.3 Back Propagation
	2.9.3.1 The Algorithm
	2.9.3.2 Phases of BK Algorithm
	2.9.3.3 Activation Function
	2.9.3.4 Learning Rate
	2.9.3.5 Termination Criteria
	2.9.3.6 Summary

	2.9.4 Cross-Validation
	2.9.4.1 Basic Method
	2.9.4.2 Early Stopping Method

	3 Model's Implementation
	3.1 Data Acquisition
	3.2 Pre-processing and Feature Extraction
	3.2.1 Features of our Model
	3.2.2 Pre-processing
	3.2.3 Feature Extraction

	3.3 Architecture
	3.3.1 Input Preparation
	3.3.2 Multi-layer Perceptron

	3.4 Computational Complexity
	3.5 Performance Evaluation
	3.6 Implementation

	4 Experiments and Results
	4.1 Computer System Characteristics
	4.2 Training and Testing Corpus
	4.3 Training and Testing parameters
	4.4 Experiments and Techniques
	4.5 Examined Architectures
	4.6 Results
	4.6.1 Results for the Dataset balanced_referendum_ds
	4.6.1.1 Examined Architectures
	4.6.1.2 Summarized Results

	4.6.2 Results for the Dataset various_contents_ds
	4.6.2.1 Examined Architectures
	4.6.2.2 Summarized Results

	4.7 Discussion
	4.8 Ideas for Improvement and Future Directions
	4.9 Conclusion

	Bibliography
	Appendix
	A. Table of the 100 Most Common Emoticons in Twitter Considered by our Model
	B. Table of 50 out of the 664 Acronyms Considered by our Model
	C. Table of the 320 English Stop Words Considered by our Model

