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Abstract—Human action recognition is currently one of the
hottest areas in pattern recognition and machine intelligence. Its
applications vary from console and exertion gaming and human-
computer interaction to automated surveillance and assistive
environments. In this paper, we present a novel feature extraction
method for action recognition, extending the capabilities of the
Trace transform to the 3D domain. We define the notion of a 3D
form of the Trace transform on discrete volumes extracted from
spatio-temporal image sequences. On a second level, we propose
the combination of the novel transform, named 3D Cylindrical
Trace Transform, with Selective Spatio-Temporal Interest Points,
in a feature extraction scheme called Volumetric Triple Features,
which manages to capture the valuable geometrical distribution
of interest points in spatio-temporal sequences and to give
prominence to their action-discriminant geometrical correlations.
The technique provides noise robust, distortion invariant and
temporally sensitive features for the classification of human
actions. Experiments on different challenging action recognition
datasets provided impressive results indicating the efficiency of
the proposed transform and of the overall proposed scheme for
the specific task.

I. INTRODUCTION

Human action recognition has become one of the very
important topics on the field of pattern recognition, especially
due to its continually growing use in modern applications in
everyday life. In the field of digital games, this relates to
(mostly) console games which utilize cameras like Kinect,
PlayStation Play or the Eyetoy, and exertion games [13] [25].

The problem of human action recognition is the automatic
detection and classification of human activities from infor-
mation acquired from cameras or other sensing modalities,
such as accelerometers [26]. Although the idea is simple, the
specific task is notably challenging as any relevant system has
to overcome a large number of restrictive parameters: illumina-
tion variations, camera view angle, complicated backgrounds,
and occlusions are only a fraction of the existing set of prob-
lems. In addition to the above mentioned, individuality [27] is
another and very important factor that cannot be neglected, as
every person performs the same set of movements (action) in
a unique and different to every other person’s way.

A. Related work

During the last decade, a large number of relevant algo-
rithms have been proposed, as 3D information has started
to play a leading role on emerging technologies. The first
approaches on human action recognition based on 3D data
appeared in the early 1980s; that research mostly utilized
data received by visible-light cameras and monocular sensors,
which demonstrate considerable loss of information. As a
result, the release of low-cost depth sensors boosted further
the growth of research on 3D data. A recent review in [2]
summarizes the major techniques based in 3D imagery and
separates them into four categories: 3D from stereo, 3D from
motion capture and 3D from depth sensors.

In terms of feature extraction strategies, a comprehensive
analysis from Sun et al. [1] classifies them into into four
categories: motion based, appearance based, space-time vol-
ume based, and space-time interest points or local features
based. Regarding representation of action sequences, the same
study detects again four classes, namely: human silhouettes,
space-time shapes, dense trajectories and local 3D patches. In
another recent survey [3], the authors split action recognition
techniques into the single-layered approaches, which regard
the action as a single entity, and the hierarchical approaches,
which focus on the structural primitives that comprise an
action (subactivities).

In a typical example of a pose-based technique that does
not rely on temporal information, authors in [6] presented a
technique that focuses on extracting key poses from action
sequences. In essence, it makes a selection among the most
distinctive poses from a specific set, in an attempt to avoid
using complex action representations. More recent pose-based
approaches range from crafting pyramidal features to represent
human poses [7], to physics-inspired representations that lever-
age environment information [9]. In a more applied frame-
work, Deboeverie et al. [5] employ a Random Forest based
classification on skeletal poses, in order to detect dynamic
gestures in physiotherapy scenarios.

Research on spatio-temporal feature extraction for actions



includes seminal works by Laptev [11] and Chakrabotry et al.
[12], who delved further into the concept of exploiting spatio-
temporal features in a Bag-Of-Video Words (BoVW) pipeline.
This technique will be explained further in a following section.
Recent motion based techniques include the one by Kumar and
John [4], which analyzes optical flow. The one presented in
[10] proposes skeleton fitting and motion trajectory extraction.

B. The proposed work: A preample

The work introduced in this paper is inspired by the study
in [15], where we examined the potential of the original
Trace Transform for human action recognition and proposed
two feature extraction methods for the particular task. The
proposed techniques manage to produce noise robust features
that proved to be sufficient for successful recognition of human
activity when tested on two popular datasets. However, both
of the these techniques were based on modeling actions in a
per-frame fashion, not taking into account any temporal in-
terlinking between prominent features in the action sequence.
Although they show resilience to occlusion, this may reduce
their applicability on highly occluded environments, where
spatial information can be distorted. In the current work, we
propose a new form of the Trace Transform, extending its
capabilities to the 3D space, and we present a novel feature
extraction pipeline, suitable for activity recognition in videos.

The rest of the paper is organized as follows. The funda-
mental theory behind the Trace transform and the 3D Radon
transform, which are the source of inspiration for the proposed
3D Cylindrical Trace transform, is presented in Section II. The
presentation and the notation for the proposed transform are
also found in the same section. The overview of the proposed
feature extraction scheme is described in Section III. The
experimental procedure and a discussion on the results are
provided in Section IV, followed by a short conclusion in
Section V.

II. THE 3D CYLINDRICAL TRACE AND ITS RELEVANT
TRANSFORMS

The Trace transform can be considered as a generalization
of the Radon [16] transform, in the sense that Radon is a
subcase of Trace. While the Radon transform of an image
is a 2D representation of the image in coordinates φ and p
(with the value of the integral of the image computed along
the corresponding line, placed at cell [φ, p]), Trace calculates
functional T along the tracing line. This functional may not
necessarily be the integral. The final transform is created by
tracing an image with straight lines and calculating certain
functionals of the image values along these lines. This way,
a variety of transforms, baring different properties can be
extracted from the same image. The transform produced is a
2-dimensional function of the parameters (φ, p) of the tracing
lines. Definition of these parameters is given in Figure 1.
Examples of Radon and Trace transforms for different action
snapshots are given in Figure 2. A detailed overview of the
fundamental theory behind the Trace transform can be found
in [17] and [15].

Fig. 1. Definition of the parameters of an image tracing line.

Fig. 2. Examples of Radon and Trace transforms created from the silhouettes
of different action snapshots taken from various datasets.

A. The 3D Generalized Radon Transform

The definition of the transform proposed in this paper
is inspired by the 3D Radon transform [18]. The latter is
defined using 1D projections of a 3D object f(x, y, z) where
these projections are obtained by integrating f(x, y, z) on a
plane, whose orientation can be described by a unit vector
~a. Geometrically, the continuous 3D Radon transform maps
a function in R3 into the set of its plane integrals in R3. To
make the comprehension of the proposed transform easier, we
provide a brief overview of the 3D Radon transform, as it is
formulated in [19]. The definitions and the basic properties of
the continuous form of the transform proven in [18], are also
valid for the discrete form presented bellow.

Let M be a 3D model and f(x) the volumetric binary
function of M, which is defined as:

f(x) =

{
1, when x lies within the 3D model’s volume
0, otherwise

(1)
Let also, η be the unit vector in R3. The 3D discrete Radon

transform of the 3D model f(x) is given by:

Tf (η, ρ) =

N∑
n=1

f(xn)δ(xTnη − ρ) (2)

where η is a unit vector in 3D space, denoting the transforma-
tion of point xn in spherical coordinates, ρ is a real number,
and δ(·) is the Dirac delta function. The unit vector η can be
written in spherical coordinates as:



η = [cosφ sin θ, sinφ sin θ, cos θ]. Thus, equation (2) is
rewritten as:

Tf (ρ, θ, φ) =

N∑
n=1

f(xn, yn, tn) · δ(xn cosφ sin θ

+ yn sinφ sin θ + tn cos θ − ρ)

(3)

This specific transform is easy to calculate. It is not invariant
to scaling, translation and rotation, though.

B. The 3D Cylindrical Trace Transform

The proposed 3D Cylindrical Trace Transform (CTT) is an
extension of the Trace Transform [17] to the 3D space. The
Cylindrical Trace Transform CTTf of the binary function
f(x), of a 3D model M , associates a functional T to each
tracing line placed at cell (p, ϕ, θ), with distance p and angle
ϕ characterizing uniquely a line and the plane that forms angle
θ with the origin. A depiction of this can be seen in Figure 3.

In essence, Trace transforms are continuously calculated on
planes rotating in the direction of polar axis A, cutting the
3D mesh M . The virtual cylinder created by the continuous
rotation of planes in the polar direction is of radius ρ and of
length l, with origin O : (0, 0, 0). The radius ρ is defined as
the distance of the outermost point x(ρmax) of M from the
longitudinal axis L of the cylinder. The length l is defined as
the parallel to the longitudinal axis distance between the two
most distant antipodal points of the 3D model. Every Trace
transform ǧ is calculated with respect to the center of the
3D model which coincides with the point K of the longitu-
dinal axis of the virtual cylinder with cylindrical coordinates
(0, 0, l/2). Thus, after 180 degrees of rotation, the resulting ǧ
is equal to the transform calculated on the plane with θ = 0.

Considering each cutting plane as a 2D function ξ(x, y)
formed by the projection of the mesh on that plane, its Trace
transform ǧ(p, ϕ) can be given by evaluating a functional T
along all lines (p, ϕ) tracing ξ:

ǧ(p, ϕ) = T (ξ(x, y)δ(p− x cosϕ− y sinϕ)) (4)

The final representation of the 3D model is the proposed
3D CTT. This transform is also a 2D function of parameters
(p, ϕ) and is given by the sum of the individual calculations
of Trace transforms on planes rotated by angle θ relative to
the origin. in the direction of the angular coordinates defined
by θ:

CTTf (p, ϕ) =

N∑
n=1

ǧn(p, ϕ). (5)

where ǧn is the nth Trace transform, i.e. the transform
calculated on the 2D planar projection of M on the plane that
forms angle θn with the origin. Also: N ≥ 2, 0 < θn ≤ θmax

and θmax = 180o. An illustration of the 3D Cylindrical Trace
transform is given in Figure 3.

To make the transform scale invariant, the maximum dis-
tance dmax between the center of the mass and the most distant

Fig. 3. 3D Cylindrical Trace transform illustration.

voxel of the 3D volume is calculated. In following, f(x) is
scaled so that dmax = 1. CTT is always calculated with respect
to the center of the mass, which coincides with the point K.
Thus, CTT is translation invariant. The same properties hold
for the continuous and the discrete form as well.

III. OVERVIEW OF THE PROPOSED SYSTEM

In [15], two different ways based on the Trace transform
have been proposed, for the extraction of features from human
action videos. Both methods (History Trace Templates (HTTs)
and History Triple Features (HTFs)) were able to create
representations of low dimensionality from an action sequence.
Both proved to be robust in noise and illumination variations.
However, lack of time sensitivity and occlusion issues could
not be effectively handled. This inspired the newly formulated
transform and the methodology presented in this study.

The proposed scheme has been designed for the scenario
of human action recognition in video sequences. It combines
the proposed 3D CTT with a state of the art algorithm for
spatio-temporal interest point acquisition, the so-called Selec-
tive Spatio-Temporal Interest Points (SSTIPs) [12]. A three-
dimensional spatio-temporal volume is crafted based on the
SSTIPs mesh and various 3D Cylindrical Trace Transforms,
using different functionals, are calculated by it. Finally, the
results are used in a triple-feature extraction scheme that
produces feature vectors of very small length. The concept of
this particular methodology is to take advantage of the most
valuable attributes each one of these techniques has to provide
and combine them in a final and straightforward pipeline.

Spatio-temporal feature acquisition methods, such as STIPs
and Bag of Visual Words (BOVW), are very hot lately in
the field of action recognition. However, this kind of rep-
resentations ignore potential valuable information that refers
to the global spatio-temporal distribution of interest points
[19]. By introducing the Cylindrical Trace Transform, the
methodology presented in this paper manages to capture de-
tailed information about the geometrical distribution of interest
points, while at the same time it provides the versatility of
creating a large number of potential features for a variety of



capturing conditions, environments and applications. The use
and the combination of different and suitable functionals for
the calculation of different features can provide very robust
representations of an action video sequence, in the form of
feature vectors. More details on the individual techniques and
the proposed scheme are provided in the following subsec-
tions.

A. Selective Spatio-Temporal Interest Points

As mentioned above, the proposed scheme incorporates the
use of a novel approach to the STIPs acquisition problem,
presented in [12], the so-called Selective Spatio-Temporal
Interest Points technique. In this study, the authors proposed
a Spatio-Temporal Interest Points (STIPs) extraction method-
ology which focuses on global motion instead of local spatio-
temporal information, thus preventing the erroneous detection
of interest points due to cluttered backgrounds and camera
motion. Furthermore, they show that their method performs
well in producing stable, repeatable STIPs, robust to the local
properties of the detector throughout the motion sequence.

One could summarize the selective STIPs pipeline as a
procedure that: 1. detects spatial interest points, 2. suppresses
unwanted background points and 3. imposes local and tem-
poral constraints on the result. The first step is essentially
conducted using a Harris corner detector. The underlying idea
behind the second step is the observation that corner points
detected in the background follow some particular geometric
pattern, while those on humans do not bear this property.
Finally the spatial and temporal constraints are imposed, based
on the notion that for an interest point to be considered an
accurate and repeatable STIP, it should show a positional
change through the motion sequence. An example of extracted
SSTIPs from a sample of the THETIS dataset is given in
Figure 4.

Fig. 4. Selective STIPs extracted from a backhand shot video sequence from
the THETIS dataset. t denotes the direction of time.

B. 3D CTT on Selective Spatio Temporal Interest Points

Kadyrov and Petrou [17], through the formulation of the
Trace transform, have shown that not only integrals (Radon
transform) but also other selectively calculated functionals,
such as the median or the mean, along straight lines tracing a
two dimensional function, have the ability to reconstruct this
function fully. As already explained above, by using a variety
of functionals, we have the ability to calculate different Trace
transforms of that function. Every transform is itself a 2D-
function of the parameters (p, ϕ) of each tracing line.

Accordingly, 3D CTT is produced by tracing consecutive
planes, rotated by angle θ, belonging to the same minimal
window (cylinder) of a 3D model and having the same origin
K. The 3D CTT is the sum of individual planar transformations
which results in a new 2D function of parameters (p, ϕ). In
the same way as in Trace transform, one can produce a variety
of 3D CTTs providing different properties by calculating
different functionals.

The ultimate goal is to capture the dynamic information and
structure of an action to the best possible extent. At this point,
Trace transform has already shown its suitability for this task
[15]. The 3D CTT proposed in this paper is an evolution of
the Trace transform that provides the benefits of the regular
form and extends its capabilities into the 3D space, which,
in the context of action recognition, is the spatio-temporal
domain. Consequently, this formulation is more suitable for the
representation of actions, which are inherently spatio-temporal
volumes.

Let M be the 3D model formed by the SSTIPs mesh created
from a human action video. Let ρ and l be the radius and
the length respectively, of the smallest cylinder bounding the
mesh. Then, let z be a random plane with size 2ρ x l where
ρ is the radius and l is the length of the minimum cylinder
bounding the 3D mesh. The Trace transform ǧz(p, ϕ), is a
function defined on the space of straight lines that trace z. p
and ϕ are the parameters that define the position of the line
on the relative 2D coordinate system of z, which forms angle
θ with the origin. So, as documented in equation 4, z can be
expressed as a 2D projection ξ(x, y) of the nearby (within a
certain tolerance) and coincident points on z and ǧz(p, ϕ) is
the transform calculated by evaluating a functional T over the
line p = x cosϕ+ y sinϕ which traces z. The reference point
is defined by the center of the SSTIPs volume. The sum of all
the planar transforms gives the final 3D CTT of mesh M , as
explained in equation 5.

By applying different functionals to the SSTIPs mesh M ,
a set of CTTfi(p, ϕ) transforms is produced, where i = 1...I
and I is the number of transforms one chooses to calculate.
The final set of 3D CTTs will become subject to the triple-
feature extraction scheme provided in the next subsection.

This scheme provides the benefit that silhouette extraction
or temporal alignment of the sequences is not required. Spatio-
temporal interest points are extracted based on the spatial and
temporal evaluation of movement and intensity changes. By
calculating the CTT on such a mesh, the geometric distribution



of the points is embedded in the final transform, which
will also capture the distinct and persistent spatio-temporal
information that characterizes each action. Thus, temporal
alignment is not required. An illustration of how 3D CTT is
calculated across SSTIPs is given in Figure 5.

Another improvement compared with previous techniques
is the ability of this pipeline to encode variations in the length
of action sequences. In other words, if the speed at which an
action is performed plays a significant role in the classification
of that action, this pipeline has the ability to incorporate it
in the extracted feature vector. We call this property time-
sensitivity. Previous techniques based on the extraction of
features in a per-frame fashion lack this property.

Finally, it should be noted that, as 3D CTT has been
designed having in mind the extraction of features from
spatio-temporal sequences, it also differentiates itself from
3D Radon in another way. Since the 3D models that CTT is
applied on are in fact spatio-temporal volumes, the transform
processing is always performed with the direction of time
being perpendicular to the rotational axis. This way, it is
assumed that the pose of a spatio-temporal mesh is constant
and aligned with the time axis. As this is always the case of
application of the proposed transform and the time dimension
will never be rotated into another direction within the 3D
space, CTT can take the form of a cylinder and not necessarily
this of a sphere. This way, the proposed transform manages
to be more time efficient.

Fig. 5. 3D CTT calculation on Selective STIPs extracted from an action video
sequence. t denotes the direction of time.

C. The Volumetric Triple Feature (VTF) extraction scheme
The fundamental work of Kadyrov and Petrou [17] proposes

the formulation of a specific type of features, called triple
features, as a very simple but rich representation of the result
of the Trace transform of an image. Initially formulated as a
solution for the classification problem of images of fish closely
resembling each other, a triple feature is constructed in the
following manner:

1) The Trace transform of a 2D function is produced, using
a Trace functional T .

2) By calculating a diametric functional P along the
columns of the 2D function’s Trace transform, a circus
function is obtained.

3) The final triple feature is ultimately produced by apply-
ing a circus functional Φ along the resulting vector of
numbers from step 2.

The theory behind triple features is further elaborated in
[17].

In [15] it is shown that ratios of pairs of different triple
features, constructed by using different functionals T , P and
Φ on the frames of an action sequence (video), can create
feature vectors that effectively represent the action sequence.
This feature vector extraction technique, called History Triple
Features (HTFs), offered robust features, sufficient for the suc-
cessful recognition of human activity. This technique, however,
came with shortcomings.

The methodology presented in this paper aims to tackle
these shortcomings, as seen in the previous section. Now,
using the newly formulated 3D Cylindrical Trace Transform
on spatio-temporal volumes produced by SSTIPs of action
sequences, we propose the formulation of triple features on
volumes, called Volumetric Triple Features (VTFs). The ex-
traction scheme of VTFs follows the aforementioned pattern
for triple feature extraction. For every CTTfi(p, ϕ), calculated
using functional Ti, we apply a diametric functional Pi along
the columns of the transform. Then, a circus functional Φi is
evaluated along the resulting string. This way, a set of Π triple
features is computed. The procedure is illustrated in Figure 6.

All Π features are then divided by each other, to produce a
new set of independent features. So, the given action sequence
is finally depicted by a vector v, the so-called VTF vector,
which is essentially the set of all calculated triple feature
ratios, based on the set of the different CTTfi applied on
the SSTIPs of the action sequence:

v = (Πrat1 ,Πrat2 , ...,Πrath−1
,Πrath) (6)

where each Πrat is a ratio of two triple features and h is the
total number of calculated ratios.

This method enables the effortless construction of a large
number of features, while at the same time keeping the
produced representation relatively concise. In the scenario
that 10 functionals are utilized for each stage (e.g. 10 T
functionals, 10 P functionals and 10 Φ functionals), one may
construct up to 10x10x10 = 1000 triple features. The number
of divisions performed may affect the length of the final vector.

Due to the fact that not all features in the vector share the
same discriminatory power, the use of a dimensionality reduc-
tion technique is deemed suitable for the task of selecting the
most discriminant features. It will also make the classification
problem more tractable. In this pipeline, Principal Component
Analysis (PCA) is applied on the VTF vectors, in order to
construct an appropriate subset of the features that is suitable
for classification. In our experiments, only a small fraction of
the initial VTF vector survives this task (typically between 25
and 40 features).



Fig. 6. Triple feature extraction from a spatio-temporal volume.

IV. EXPERIMENTAL EVALUATION

In this section, we will document the experimental pro-
cedure we followed in order to indicate the efficacy of the
proposed technique on the task of human action recognition.
Experimental results are reported on a set of different known
and challenging datasets. The algorithm performance under
different data sources is also demonstrated.

At this point and before we describe the experimental
protocols used, it is important to mention that, according to
[20], there is a variety of different experimental scenarios
used for the same datasets among researchers working on
action recognition from videos. It is also reported that methods
evaluated on known datasets such as KTH [14] and Weizmann
[21] may present result variations up to 10.67% when different
validation approaches are applied.

In the following experiments, the leave-one-person-out cross
validation protocol was used for the evaluation of performance.
This protocol represents real-world conditions in the best way.
In a hypothetical real world scenario, the physical activity of
an unknown person is captured by a vision-based recognition
system and thereafter processed and compared against a pre-
processed dataset that has been used to train that system. The
classification of the recorded activity is determined based on
its relevance when compared to any sample of the data that
comprise the training set, according to the system’s specific
rules. Accordingly, the leave-one-person-out protocol utilizes
one person’s action samples for testing, while the rest of the
samples form the training set. This procedure is repeated N
times, where N is the number of subjects (persons) within the

dataset. Performance is measured as the average accuracy of
I =

∑N
n=1Hn iterations, where Hn is the number of samples

for the nth subject within the dataset.

A. Experimental setup

For the experiments, three different datasets have been used.
The KTH [14], the Weizmann [21] and the THETIS [22]
action databases. Figures 7, 8 illustrate various samples for the
different types of actions contained in the first two datasets. In
the KTH dataset, six types of different actions are contained,
namely walking, jogging, running, boxing, hand waving and
hand clapping. These actions are performed a number of
times, by 25 different persons in four different scenarios,
under various illumination conditions. All video sequences
were captured over homogeneous backgrounds at 25 frames
per second, using a static camera.

The Weizmann video database is comprised by a set of
90 low-resolution video sequences showing nine different
subjects. Each subject performs 10 natural actions such as run-
ning, walking, skipping, jumping-jack (jack), jumping forward
on two legs (jump), jumping in place on two legs (pjump),
galloping sideways (or side), waving with two hands (wave2),
waving using one hand (wave1) and bending.

Fig. 7. Weizmann dataset: samples of the wave1, wave2, walk, pjump, side,
run, skip, jack, jump and bend actions.

Fig. 8. KTH dataset: samples of the walking, jogging, running, boxing, hand
waving and hand clapping actions respectively.

The THETIS set is comprised of 12 basic tennis shots
performed by 31 amateurs and 24 experienced players. All
videos have a resolution of 640x480 and have been captured
using a Kinect sensor placed in front of the subjects. Each
shot has been performed at least 3 times, resulting in 8734
(single period cropped) videos, converted to AVI format. The
shots performed are the following: backhand with two hands,
backhand, backhand slice, backhand volley, forehand flat,
forehand open stands, forehand slice, forehand volley, service
flat, service kick, service slice and smash. The modalities of
the dataset used in these experiments are RGB, Depth and
3D Skeleton videos. Samples from the THETIS dataset are
illustrated in Figure 9.

The action videos of the aforementioned datasets were
scaled up or down, whenever deemed necessary. Then they



Fig. 9. Action samples from the THETIS database for the backhand, flat
service, forehand flat, slice service and smash moves. Top row: RGB samples,
middle row: depth samples, bottom row: 3D skeleton samples.

were used as input for the proposed pipeline, in order to
create feature vectors. These were in following fed to a
series of gaussian radial basis function based Support Vector
Machines (SVMs). To experiment on the variations in the
results produced by using different values for the plane rotation
θ step, the pipeline was tested with step value 9o and 6o. One
can intuitively determine that the smaller this step is, the closer
it gets to the continuous form of the proposed transform. This
may offer more robust features, although at the cost of time
efficiency. Finally, PCA is performed on the produced vectors,
in order keep the subset of the most discriminant features and
reduce dimensionality.

Human action recognition is a multi-class problem. In order
to follow the leave-one-out protocol, we formulate the problem
as a general case of binary classification. In essence, we
trained 6 class-specific SVMs, one for each class of the KTH
dataset, using an one-against-all protocol. Similarly, we trained
another 10 and 12 class-specific SVMs for the classes of
the Weizmann and the Thetis dataset respectively. The final
decision was made by assigning each testing sample to a class
Ca, according to the distance d of the testing vector from
the support vectors of the specific class. However, since the
purpose of the evaluation process was to test the generalization
of the proposed pipeline in a more broad fashion, we tested
every sample against all the class-specific SVMs and recorded
both the successful classifications and the false positives. The
results of this experimental procedure can be found in IV-B.

TABLE I
CONFUSION MATRIX OF THE PERFORMANCE OF THE PROPOSED METHOD

ON THE KTH DATASET

boxing handclapping handwaving jogging running walking
boxing 1 0 0 0 0 0
handclapping 0.0009 0.9991 0 0 0 0
handwaving 0 0 1 0 0 0
jogging 0 0 0 1 0 0
runing 0 0 0,01 0 1 0
walking 0 0 0 0 0 1

TABLE II
CONFUSION MATRIX OF THE PERFORMANCE OF THE PROPOSED METHOD

ON THE WEIZMANN DATASET

bend jack jump pjump run side skip walk wave1 wave2
bend 1 0 0.1111 0 0 0 0 0 0 0
jack 0 1 0.0455 0 0 0 0 0 0 0
jump 0.0588 0.0294 0.9706 0.0294 0.1176 0.0294 0.0588 0.0294 0.0588 0.0294
pjump 0.0303 0.0303 0.0303 0.9697 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303
run 0.1053 0.1579 0.2105 0.1053 0.9474 0.0526 0.1579 0.0526 0.1053 0.0526
side 0 0 0 0 0 1 0.0357 0 0 0
skip 0.0526 0.0526 0.1053 0.0526 0.0789 0.0526 0.9474 0.0526 0.0526 0.0526
walk 0.0455 0.0455 0.1364 0 0.0455 0 0.0455 1 0 0
wave1 0.0476 0.0476 0.0476 0 0.0952 0.0476 0.0952 0.0476 0.9524 0.0476
wave2 0 0 0 0 0 0 0 0 0 1

B. Results

Comparative results on the action recognition task can be
found in Table III. In addition, Tables I, II show the confusion
matrices generated by the presented method on the vastly
investigated KTH and Weizmann datasets. Rows depict the
accuracy achieved (correct answers/all answers) by all trained
SVMs on a certain action class. Columns, on the other hand,
show the performance of individual, class-specific SVMs on
all action classes.

As seen in Table III, the feature extraction pipeline based on
3D CTT and the Selective STIPs achieves impressive accuracy
on all examined datasets and is on a par with or even outper-
forms other published methods in the field. Particularly on
the KTH database, the presented technique achieves a notable
99.98% accuracy, which is validated by the corresponding
confusion matrix (Table I). In a noticeable comparison, the
pipeline proposed by Yuan et al. in [19], which is based on fea-
tures extracted using a formulation of the 3D Radon transform
and a combinatorial STIP + BoVW method, achieves 95.49%
accuracy on the same dataset. Results on the Weizmann, where
accuracy of 96.34% was achieved, suggest the existence of a
slight confusion of the class-specific classifiers, especially of
the ones dedicated to the ”jump” action.

There is considerable difference in performance between
the three data types in the THETIS set. In the comparative
results of Table III, one can see that the proposed tech-
nique outperforms all other methods tested on this dataset,
namely the HOG-HOF based method on STIPs, by Laptev
et al. [11], the dense trajectories approach of Wang et al.
[24] (on the Depth and Skelet3D subsets) and the dynamic
phases based approach of Vainstein et al. [23] (on the RGB
subset). Although the results on the Skelet3D subset cannot be
considered unsatisfactory, one can notice a drop in accuracy.
To a certain point, this drop was expected, considering the
nature of the data. Skeletons are an oversimplified model of
the moving human body with minimum surface, hindering
accurate STIP acquisition. However, compared to the results of
another prominent STIP based method reported in [11], this
method seems to be an outright improvement. On the other
hand, in the Depth subset, the results are close to perfect.
Noteworthy, though, is that 100% accuracy can be reported on
the RGB subset. This indicates the suitability of the presented
method on RGB and gray-scale imaging.



TABLE III
CLASSIFICATION PERCENTAGES (%) ACHIEVED BY DIFFERENT PUBLISHED METHODS ON THE KTH, WEIZMANN AND THETIS DATABASES.

Method Dataset
KTH Weizmann THETIS-Skelet3D THETIS-Depth THETIS-RGB

3D CTT - SSTIP based VTFs 99.98 96.34 86.06 98.03 100
Selective STIPs + BoVW [12] 96.35 99.5 - - -
Dense Trajectories: MBH [24] (rep. in [22]) 92.32 - 46.84 51.59 -
Dense Trajectories: Combination [24] (rep. in [22]) 90.65 - 50.78 54.32 -
Dense Trajectories: Trajectory [24] (rep. in [22]) 86.98 - 53.08 57.5 -
History Triple Features [15] 93.14 95.42 - - -
Yuan et al. [19] 95.49 - - - -
Vainstein et al. [23] - - - - 86.44
Kumar and John [4] 94.62 95.69 - - -
Liu et al. [8] 96.7 - - - -
Laptev et al. [11] (reported in [22]) 92.99 - 54.4 60.23 -

V. CONCLUSION

In this paper, we propose an extension of the Trace trans-
form to the 3D space and a new combinatorial scheme for
feature extraction, applied on a mesh of spatio-temporal inter-
est points extracted from an action video. The method blends
the newly formulated 3D Cylindrical Trace transform with
Selective Spatio-temporal Interest Points in a triple features
extraction methodology, which manages to provide a higher
level of discrimination in the task of characterizing different
types of actions. The proposed pipeline has the ability to
create distortion invariant and temporally sensitive action
representations. Experimental results on different challenging
datasets indicated that the produced features show robustness
in noise, illumination variation, translation and scaling issues.
At the same time, the method provides the ability of adaptation
to various types of applications and their particular conditions.

ACKNOWLEDGMENT

This work was supported by the 4-year EC funded project
iRead (Jan 2017-Dec 2020). This project has received funding
from the European Union’s Horizon 2020 innovation pro-
gramme under grant agreement No 731724.

REFERENCES

[1] C. Sun, I. N. Junejo, M. Tappen, H. Foroosh, Exploring sparseness
and self-similarity for action recognition. IEEE Transactions on Image
Processing, 24(8), 2015, pp. 2488-2501.

[2] J. Aggarwal, L. Xia, Human activity recognition from 3d data: A review,
Pattern Recognition Letters 48 (2014): 70-80.

[3] Cheng, G., Wan, Y., Saudagar, A. N., Namuduri, K., Buckles, B. P.
(2015). Advances in human action recognition: A survey. arXiv preprint
arXiv:1501.05964.

[4] S. S. Kumar, M. John, Human activity recognition using optical flow
based feature set. In Proc. of IEEE International Carnahan Conference
on Security Technology (ICCST), 2016, pp. 1–5.

[5] Deboeverie, F., Roegiers, S., Allebosch, G., Veelaert, P., Philips, W.
(2016, September). Human gesture classification by brute-force machine
learning for exergaming in physiotherapy. In Computational Intelligence
and Games (CIG), 2016 IEEE Conference on (pp. 1-7). IEEE.

[6] S. Baysal, M. C. Kurt, P. Duygulu, Recognizing human actions using key
poses, Pattern Recognition, International Conference on (2010) 1727–
1730.

[7] L. Liu, L. Shao, X. Zhen, X. Li, Learning discriminative key poses for
action recognition, IEEE transactions on cybernetics 43.6 (2013): 1860-
1870.

[8] A.A. Liu, Y.T. Su, P.P. Jia, Z. Gao, T. Hao, Z.X. Yang, Multipe/single-
view human action recognition via part-induced multitask structural
learning, IEEE transactions on cybernetics 45.6 (2015): 1194-1208.

[9] A. Mansur, Y. Makihara, Y. Yagi, Inverse dynamics for action recognition,
IEEE transactions on cybernetics 43.4 (2013): 1226-1236.

[10] M. Devanne, H. Wannous, S. Berretti, P. Pala, M. Daoudi, A. Del Bimbo,
3-D human action recognition by shape analysis of motion trajectories
on Riemannian manifold, IEEE Trans. on Cybernetics 45.7 (2015): 1340-
1352.

[11] I. Laptev, M. Marszałek, C. Schmid, B. Rozenfeld, Learning realistic
human actions from movies, in: Conference on Computer Vision &
Pattern Recognition (CVPR), IEEE, 2008.

[12] B. Chakraborty, M. Holte, T. Moeslund, J. Gonzalez, Selective spatio-
temporal interest points, Computer Vision and Image Understanding
116 (3) (2012) 396–410.

[13] J. Nijhar, N. Bianchi-Berthouze, G. Boguslawski, Does Movement
Recognition Precision Affect the Player Experience in Exertion Games?,
in: Proceedings of INTETAIN 2011, pp 73–82.

[14] C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: A local
SVM approach, in: Proc. ICPR, 2004, pp. 32–36.

[15] G. Goudelis, K. Karpouzis, S. Kollias, Exploring trace transform for
robust human action recognition, Pattern Recognition 46 (12) (2013)
3238–3248.

[16] S. R. Deans, The Radon Transform and Some of Its Applications,
Krieger Publishing Company, 1983.

[17] A. Kadyrov, M. Petrou, The Trace transform and its applications, IEEE
Trans. Pattern Anal. Mach. Intell. 23 (2001) 811–828.

[18] A. Averbuch, Y. Shkolnisky, 3d fourier based discrete radon transform,
Applied and Computational Harmonic Analysis 15 (1) (2003) 33 – 69.

[19] C. Yuan, X. Li, W. Hu, H. Ling, S. Maybank, 3d R transform on spatio-
temporal interest points for action recognition, in: IEEE Conference on
Computer Vision & Pattern Recognition (CVPR), 2013, pp. 724–730.

[20] Z. Gao, M.-Y. Chen, A. G. Hauptmann, A. Cai, Comparing evaluation
protocols on the KTH dataset, in: Proc. of the First Int. Conf. on Human
Behavior Understanding, HBU’10, Springer-Verlag, 2010, pp. 88–100.

[21] M. Blank, L. Gorelick, E. Shechtman, M. Irani, R. Basri, Actions
as space-time shapes, in: The 10th IEEE International Conference on
Computer Vision (ICCV’05), 2005, pp. 1395–1402.

[22] S. Gourgari, G. Goudelis, K. Karpouzis, S. Kollias, Thetis: Three
dimensional tennis shots a human action dataset, in Proc. of IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 676-681, 2013.

[23] J. Vainstein, J. Manera, P. Negri, C. Delrieux, A. Maguitman, Modeling
video activity with dynamic phrases and its application to action recogni-
tion in tennis videos, in: Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, Springer, 2014, pp. 909–916.

[24] H. Wang, A. Klaser, C. Schmid, C.-L. Liu, Action recognition by dense
trajectories, in Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011, pp. 3169–3176.

[25] N. Bianchi-Berthouze, K. Isbister, Emotion and Body-Based Games:
Overview and Opportunities, in K. Karpouzis, G. N. Yannakakis (eds.),
Emotion in Games: Theory and Praxis, Springer, pp. 235–255.

[26] G. Caridakis, K. Karpouzis, M. Wallace, L. Kessous, N. Amir, Multi-
modal users affective state analysis in naturalistic interaction, Journal on
Multimodal User Interfaces, Vol. 3(1), pp. 49–66.

[27] G. Caridakis, J. Wagner, A. Raouzaiou, Z. Curto, E. Andre, K. Kar-
pouzis, A multimodal corpus for gesture expressivity analysis. Multi-
modal Corpora: Advances in Capturing, Coding and Analyzing Multi-
modality, p. 80, 2010.


