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Abstract—Exertion games form a vastly expanding field, cross-
ing over to machine learning and user studies, with studies of
qualitative traits of actions, such as the player’s level of expertise.
In this work, we show how simple shape descriptors based on
variance features fare on such a demanding task. We formulate
two variance-based features and experiment on a demanding
sports related dataset, captured with a Kinect sensor, in an action-
specific k-NN classification scheme. Results show that simple
shape features can produce meaningful results on determining a
player’s experience level, further encouraging their incorporation
in more intricate schemes and real-world applications.

I. BACKGROUND AND PIPELINE FORMULATION

Modelling and recognition of human actions find increas-
ing use in the field of digital games and human-computer
intraction in general, in applications which utilize cameras and
sensors like Kinect, PlayStation Play or the Eyetoy [7] [19].
A recent applied example of serious games utilizing human
actions is presented by Deboeverie et al. [1], which detect
dynamic gestures in physiotherapy scenarios. There are recent
attempts at modeling actions for exertion gaming applications
([2], [3]), showing that the field is in its prime.

In this paper, we investigate the potential of a lightweight
variance-based scheme for producing temporal sequences that
can be efficiently clustered with respect to the expertise of
the subject performing the captured action. Our approach is
based on computing a variance-based feature vector on actions
represented by spatio-temporal interest points (STIPs). A k-
NN classification scheme is then used, with Dynamic Time
Warping (DTW) as a distance metric, to test the performance
of such features.

This study is partially inspired by the work presented
in [8]. In this paper, a variance-based feature is proposed,
which encompasses information both from shape and motion.
Variance and covariance based shape descriptors have been
originally used for object recognition [10][12]. Recent action
related studies have proposed methods such as covariance
matrices of optical flow in a Riemannian manifold [13] and
spatio-temporal variations in a region-based fashion [17].

In this work, we focus on formulating a lightweight feature
that is fast to compute and would easily support real-time pro-

cessing. The proposed pipeline uses spatio-temporal interest
points (STIPs) as input. Research on spatio-temporal feature
extraction for actions includes seminal works by Laptev [4][6]
and more recent ones like the one by Chakrabotry et al.
[5], who delved further into the concept of exploiting spatio-
temporal features in a Bag-Of-Video Words (BoVW) pipeline.
In this paper, we implement the latter technique. Its properties
are presented below.

A. Selective Spatio-Temporal Interest Points

As mentioned above, the so-called Selective Spatio-
Temporal Interest Points (SSTIPs) technique [5] is incorpo-
rated in our pipeline. In this study, the authors proposed a
STIPs extraction methodology which leverages global motion,
instead of local spatio-temporal information. This prevents
erroneous detection of interest points, due to cluttered back-
grounds and camera motion.

One could summarize the selective STIPs pipeline as a
procedure that:

1) detects spatial interest points, such as Harris corners
2) suppresses unwanted background points, such as points

that show no motion
3) imposes local and temporal constraints on the result,

refining the final set of points
The underlying idea of this methodology lies in the obser-
vation that corner points detected in the background follow
certain geometric patterns, while those on humans do not bear
this property. Spatial and temporal constraints are imposed,
based on the notion that an accurate spatio-temporal inter-
est point should demonstrate considerable positional change
through time. SSTIPs extracted from an actio video in the
THETIS dataset can be seen in Figure 1.

B. Variance-based descriptors on STIPs

A variety of shape and surface descriptors have been pro-
posed over the years [9]. Particularly, it is documented that
moments can be used as function and shape descriptors [11].
If we consider that the STIP distribution in a frame follows a
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Fig. 1. Selective STIPs extracted from a backhand shot video sequence from
the THETIS dataset. t denotes the direction of time.

probability density function, variance forms the second central
moment of this distribution.

In a similar manner as in [8], given an action sequence of
length N (video of N frames), we define two feature vectors,
also of length N :
Variance vector V = [Vi|i = 1..N ]:

Vi =
1

Mi

Mi∑
j=1

(pji − µi)(p
j
i − µi)

T (1)

Cosine distance vector D = [Di|i = 1..N ]:

Di =
1

Mi

Mi∑
j=1

pjiµi
T (2)

where i denotes each frame in the video, Mi is the number
of interest points in the ith frame, pij is its jth interest point
and µi is the mean point. The computation of feature vectors
is illustrated in Figure 2.

The notion behind formulating two closely related features
was to investigate whether variance as a descriptor of distribu-
tion and shape fares better than a simple cosine distance (dot
product), which models whether STIPs fall not too further and
not too close from the mean point.

C. Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known algorithm
for measuring similarity between two temporal sequences
which may vary in speed and length. Initially proposed for
speech recognition [14], it is now a heavily used distance
metric and alignment process for temporal sequences of
various modalities. Studies that utilize temporal sequences
have generally benefited from the use of DTW [15], not
only with respect to results and classification accuracy, but
on performance and efficiency as well [16]. Dealing with
temporal sequences ourselves, we utilize DTW to enable the
k-NN classification scheme presented in the next section to

Fig. 2. The formulation of the feature vector described above. It results in a
vector of size equal to the number of frames that comprise the action video.

handle sequences of variable length. Flow and evolution of
action features and measurements is extremely meaningful and
DTW preserves and incorporates such information.

II. EXPERIMENTAL EVALUATION

In this section, we will document the experimental proce-
dure we followed in order to test the accuracy of the variance-
based features we formulated earlier, on the THETIS dataset.

In the following experiments, the leave-one-person-out
cross-validation protocol was utilized. In a hypothetical real
world scenario, the physical activity of an unknown person is
captured by a vision-based recognition system and thereafter
processed and compared against a preprocessed dataset that
has been used to train that system. The classification of the
recorded activity is determined based on its relevance when
compared to any sample of the data that comprise the training
set, according to the system’s specific rules. Accordingly,
the leave-one-person-out protocol utilizes one person’s action
samples for testing, while the rest of the samples form the
training set. This procedure is repeated N times, where N is
the number of subjects (persons) within the dataset. Perfor-
mance is measured as the average accuracy A:

A =
1

N

N∑
i=1

A(si) (3)

where A(si) is the reported accuracy, when using actions
performed by subject (person) si as a test subset (while at
the same time using the rest of the dataset for training).

A. Experimental setup

This study presents experiments on the THETIS [18] ac-
tion database. This dataset consists of 12 basic tennis shots
performed by 31 amateurs and 24 experienced players. All
videos have been captured using a Kinect sensor placed in
front of the subjects. Each shot has been performed at least 3
times, resulting in 8734 videos, converted to AVI format. The
shots performed are the following: backhand with two hands,
backhand, backhand slice, backhand volley, forehand flat,
forehand open stands, forehand slice, forehand volley, service
flat, service kick, service slice and smash. THETIS includes
RGB, depth and skeleton videos. However, the modality used
in these experiments is the RGB format, because the Selective
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STIP acquisition pipeline is designed for grayscale video
input. Furthermore, skeleton videos do not include actual joint
positions. Samples from the THETIS dataset are illustrated in
Figure 3.

Fig. 3. Action samples from the THETIS database for the backhand, flat
service, forehand flat, slice service and smash moves. Top row: RGB samples,
bottom row: depth samples.

The action videos were scaled to a resolution of 320x240
pixels and directly transformed into V and D vectors, fol-
lowing equations 1 and 2, in the way shown in Figure 2.
These vectors were then used as training and testing input for
class-specific k-NN classifiers. As the length of videos varies
throughout the dataset, so does the feature vector length for
every action video. This is the reason we utilized DTW to
align the vectors, which are essentially time sequences.

To experiment on the variations in the results produced
by using the DTW distance metric differently, two different
experimental scenarios, both following the leave-one-person-
out protocol were conducted. At first, the minimum distance
between two time-sequences, as calculated by DTW was
used. Essentially, the k-NN classification scheme asserted the
similarity between two vectors by measuring this minimum
distance. In the second scenario, though, we modified the
scheme to time-align the vectors, using a warping path cal-
culated by DTW. This enabled us to use simple Euclidean
distance to measure similarity.

Human action recognition is a multi-class problem. How-
ever, in this study, we focused on determining the level of
expertise of tennis players in a class specific fashion. This
reduced the task at hand to a binary classification problem,
in specific action class contexts. For instance, experiments
are reported on determining the experience level of players
performing a certain tennis action (e.g. backhand with two
hands). As explained in equation 3, in each experiment, a
k-NN classifier is trained with the complete action class-
specific subset, except from a certain persons’ actions. These
are used for testing. The process is repeated for all persons
performing that action and the average accuracy is finally
reported. Results of this experimental procedure can be found
in the next paragraph.

B. Results

Results on determining the level of experience for each ten-
nis action class can be found in Tables I and II, accompanied
by the minimum number of neighbors needed to achieve these
results. In addition, Table III compares the best performances
of the two features used in this study, in every action class.

A look at these tables reveals that even simple and fast
to calculate features such as these can produce meaningful
results. Table I shows maximum performance for the V feature
vector in the Backhand action class, without time-aligning the
action sequences. On the other hand, the D feature vector
presents better performance on the Backhand Volley action,
with time-aligned sequences. In general, the variance-based
shape descriptor V achieves higher accuracy than the cosine
distanceD in most of the action classes. However,D achieves
the single best result (in the backhand volley action class).

It is interesting to ponder on these results and the meaning
they carry in future studies, with respect to specific traits
that describe specific action classes. For instance, one can
comment on the less intuitive nature of backhand actions that
makes their spatio-temporal volumes easily characterized by
shape descriptors, in the sense that a backhand performed by
an expert tennis player differs significantly from an action
similarly performed by an amateur.

III. CONCLUSION

In this preliminary study, we demonstrate how simple
and fast features, such as variance-based shape descriptors
on spatio-temporal volumes, can handle complex tasks, like
determining the level of expertise of exertion game players
performing certain sport related actions. Two different feature
vectors on STIP meshes representing action sequences were
formulated: a vector of STIP variance per frame and a vector
of average STIP cosine distance per frame. Experiments on
a demanding dataset containing tennis actions performed by
(self-reported) amateurs and expert players show that this
notion has potential, especially for applications such as serious
exertion games. Further steps on schemes such as the one
formulated here could include evaluating on skeletal joint
information and incorporating them on more complicated
pipelines that aim on real-time human-computer interaction.
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