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Abstract. Multimodal social networks are omnipresent in Web 2.0 with
virtually every human communication action taking place there. Nonethe-
less, language remains by far the main premise such communicative acts
unfold upon. Thus, it is statutory to discover language communities es-
pecially in social data stemming from historically multilingual countries
such as Luxemburg. An adjacency tensor is especially suitable for repre-
senting such spatiosocial data. However, because of its potentially large
size, heuristics should be developed for locating community structure
efficiently. Linguistic structure discovery has a plethora of applications
including digital marketing and online political campaigns, especially in
case of prolonged and intense cross-linguistic contact. This conference
paper presents TENSOR-G, a flexible genetic algorithm for approximate
tensor clustering along with two alternative fitness functions derived from
language variation or diffusion properties. The Kruskal tensor decom-
position serves as a benchmark and the results obtained from a set of
trilingual Luxemburgian tweets are analyzed with linguistic criteria.

Keywords: language variation, multilingual social networks, cross cul-
tural communication, geolocation edges, tensor algebra, multilayer graphs,
functional analytics, genetic algorithms, heuristics, spatiosocial data

1 Introduction

Diachronically language remains the primary communication vehicle. Thus, not
only is by definition a complex social phenomenon, but also a major generator
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of massive and structured, or often semistructured, humanistic data. The lat-
ter is evident in the case of multimodal social media like Twitter, Facebook,
and LinkedIn where language tends to be short and informal with non-linguistic
elements such as memes and hashtags replacing a sentence or a part thereof. Al-
though text is largely displaced by images in Instagram or by video in Snapchat,
aided by the deployment of 4G mobile networks [22], language is far from ex-
punged from the digital sphere.

Multilingualism is present for various social or historical reasons in various coun-
tries such as Canada, Switzerland, Belgium, and Luxemburg to name a few. This
is strongly reflected in Twitter netizen interaction, as there is no single lingua
franca in terms of data volume. Instead, in this sense Japanese and Spanish are
roughly equivalent with English and Indonesian follows closely [13][27]. This op-
erational frame leads to two major effects. First, language undergoes a ceaseless
alteration driven by external factors [7]. This flux of linguistic changes includes
syntax, forms, emoticons, abbreviations, phonetic spellings, and neologisms [20].
Second, digital linguistic communities are formed whose compactness depends
heavily on social, spatial, and linguistic factors such as overall status, region,
and dialect respectively [48]. This form of online activity which consists of so-
cial, namely linguistic, and spatial components is termed spatiosocial.

Traditionally, Twitter interaction is represented as a follow or a reply graph or
a combination thereof. In the latter case edge weight or valence is determined
by the intensity of these two network functions. However, for complex network
functionality, such as that between multilingual and geographically dispersed
netizens, a sophisticated representation is required. One solution is multilayer
graphs, namely graphs whose edges have one and only one label and each vertex
pair can be connected with more than one edges as long as these edges have
pairwise distinct labels. The algebraic counterpart of a multilayer graph, which
is of combinatorial nature, is an adjacency tensor, which is the analogous of
adjacency matrices for ordinary social graphs.

The primary contribution of this conference paper is TENSOR-G, a genetic
algorithm tailored for locating linguistic communities in multilayer graphs con-
taining spatiosocial data and represented as compressed adjacency tensors. Two
alternative fitness functions based on sociolinguistic notions, specifically of how
resistant to change a language is with social networks acting as an explanatory
framework, are outlined as part of TENSOR-G, though other appropriate ones
can be selected. The proposed genetic algorithm has been applied to Twitter
data from Luxemburg, a trilingual country with rich online activity.

The structure of this conference paper follows. The scientific literature is re-
viewed in section 2. Fundamental sociolinguistic concepts necessary to develop
and evalute the performance of TENSOR-G are introduced in section 3, whereas
the heuristic algorithm itself is outlined in section 4. The conference paper con-
cludes with section 6 where the groundwork for future work is laid. Finally,
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paper notation is summarized in table 1. Tensors are printed in capital italics
and vectors in small boldface.

Table 1. Paper notation.

Symbol Meaning
4
= Definition or equality by definition

{s1, . . . , sn} Set consisting of elements s1, . . . , sn
|S| or |{s1, . . . , sn}| Set cardinality

S1 \ S2 Asymmetric set difference S1 minus S2

τS1,S2
Tanimoto similarity coefficient between sets S1 and S2

〈xk〉 Sequence of elements xk
(s1, . . . , sn) Tuple of elements s1, . . . , sn

‖T ‖F Tensor Frobenius norm
◦n Vector outer product along dimension n

H (x1, . . . , xn) Harmonic mean of x1, . . . , xn
E [X] Mean value of random variable X

Var [X] Variance of random variable X

2 Previous Work

A mainstay of sociolinguistics is the language evolution process [35][40]. The lat-
ter is treated as crucial to understanding language itself [28]. As [43] states some
linguistic patterns may only make sense with knowledge from outside the dis-
cipline. Change diffusion among communities by correlating linguistic variation
with social factors is examined in [39]. The mechanisms of language maintenance
and change in the multilingual community of Palau are studied in [36]. The uni-
versality of language change as a social phenomenon is treated in [12][1]. Since
speech communities and their digital reflections differ widely, linguistic change
is expected to be universally modeled [33][34]. Moreover, the latter can be cast
in quantitative terms [25]. The propagation and diffusion of this change through
a speech community is influenced by the structural and social properties of that
community [47]. In other words, the processes of change might be the same,
but the social conditions may be different enough to render variation-change-
diffusion models non-transferable across languages [38]. Finally, in certain his-
torical cases lingustics are the focus of sociopolitical dispute as suggested for
instance in [30] which attributes to [45] considerable changes in the scientific
administration of the former USSR.

Multilingual digital interaction is a related yet distinct line of research [25]. The
ways netizens arbitrate among language groups in their social networks, focusing
on social network properties, language choice, and information diffusion are the
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focus of [21]. The study [26] analyzed topic-based cross-language linkings among
blogs and concluded that designing for cross-cultural awareness has an impact
on the underlying network structure. The connections in online social media
tend to be geographically assortative [2][37]. A probabilistic characterization of
macro-scale linguistic connections with respect to demographic and geographic
predictors is given in [29]. The valence of Twitter connections in conjunction with
linguistic changes is the focus of [23]. The diffusion of linguistic changes and their
social correlations comparatively in Tudor and Stuart London is explored in [41].

Multilinear algebra or tensor analysis is the current evolution step of linear
algebra [31][18]. Signal processing applications of tensor algebra include MIMO
radars [42], blind source separation [6], and biomedical image analysis [49][46]. In
data mining tensors have been applied to dimensionality reduction [11] to [44].
Within the context of social network analysis, multilayer graphs were the tool for
sentiment analysis in Twitter [14]. In information retrieval third order tensors
extended the term-document linear algebraic model to term-author-document
[15] and to term-keyword-document [16] models. Finally, higher order statistics,
which are closely associated with tensors, have been used to assess the perfor-
mance of operating system level process scheduling policies [17].

Genetic algorithms are an offshoot of numerical optimization and machine learn-
ing [10]. This class of heuristics imitates Darwinian evolution [9][8]. Operations
include selection, crossover, and mutation and are applied on candidate problem
solutions termed genes [5]. Finally, the close ties between genetic algorithms and
machine learning are overviewed in [24].

3 Linguistic Notions and Spatiosocial Data

In order to facilitate further discussion as well as the analysis of TENSOR-G,
some preliminary notions should be outlined.

Definition 1. Spatiosicial data have spatial and social components at minimum.

Definition 2. A multilayer graph G is the ordered quintuple

G
4
= (V,E,Q,Σ, f) (1)

where V is the vertex set, E ⊆ V × V ×Q the edge set, Q the label set, and Σ
the edge value set. The function f : E → Σ assigns to edges a value.

Thus, (u1, u2, q) denotes that u1 and u2 are connected by an edge whose label
is q, whereas (u1, u2, ∗) means that there exists at least one edge connecting u1
and u2 regardless of its label.



5

Let L(u) denote the language set of vertex u, where |L(u)| ≥ 1. Also, let
`(v) ∈ L(v) be the predominant language, namely the language more often used
in online communication. Finally, if there are n vertices in total, then the total
number of languages L0 is

L0
4
= |L(1) ∪ . . . ∪ L(n)| =

∣∣∣∣∣
n⋃
k=1

L(k)

∣∣∣∣∣ (2)

Assumption 1 Each vertex u has a single predominant language.

This does not imply that a netizen is obliged to post only in one language, but
indicates instead which language is the most frequent.

Definition 3. Two vertices u1 and u2 are coherent if and only if `(u1) = `(u2).

Definition 4. The set of neighbors of u is denoted as Γ (u), while that of co-

herent neighbors as Γ̃ (u). Then 0 ≤
∣∣∣Γ̃ (u)

∣∣∣ ≤ |Γ (u)|

Definition 5. The coherency c`(S) of a set of vertices S ⊆ V , S 6= ∅ for a
language ` ∈

⋃
s∈S L(s) is the average ratio of the coherent neighbors to the total

number of neighbors.

c`(S)
4
=

1

|s ∈ S ∧ ` = `0(s)|
∑

s∈S∧`=`0(s)

∣∣∣Γ̃ (s)
∣∣∣

|Γ (s)|
, 0 ≤ c`(S) ≤ 1 (3)

Definition 6. The density d`(S) of a set of vertices S ⊆ V , S 6= ∅ for a languge
` ∈

⋃
s∈S L(s) is ratio of the vertices whose predominant language is ` to |S|.

d`(S)
4
=
|s ∈ S ∧ ` = `0(s)|

|S|
, 0 ≤ d`(S) ≤ 1 (4)

Next a social, in particular linguistic, and a spatial factor are introduced, upon
which the fitness function of TENSOR-G will be built.

Definition 7. Factor φ`(u) expresses how easy is for a linguistic change to
spread from u for language `. The contagion depends on the ratio of the number
of coherent neighbors to that of noncoherent ones. Thus

φ`(u)
4
=

 1
2 + 1

2π arctan

(
|Γ̃ (u)|

|Γ (u) \ Γ̃ (u)|

)
, Γ̃ (u) ⊂ Γ (u)

1, Γ (u) = Γ̃ (u)
(5)

The continuous function of arctan (·) has been selected since it monotonously
maps R to

[
−π2 ,

π
2

]
. Alternatively, a related metric φ′`(u) is defined as

φ′`(u)
4
= τΓ (u),Γ̃ (u)

4
=

∣∣∣Γ (u) ∩ Γ̃ (u)
∣∣∣∣∣∣Γ (u) ∪ Γ̃ (u)
∣∣∣ =

∣∣∣Γ (u) ∩ Γ̃ (u)
∣∣∣

|Γ (u)|+
∣∣∣Γ̃ (u)

∣∣∣− ∣∣∣Γ (u) ∩ Γ̃ (u)
∣∣∣ (6)

Although both φ`(u) and φ′`(u) return a value in [0 , 1], the latter is preferrable

due to its superior numerical stability, especially when Γ̃ (u)� Γ (u).
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Definition 8. Factor ψ(u1, u2) is a function of the geographic distance d(u1, u2)
between two netizens u1 and u2 as follows

ψ(u1, u2)
4
=


1, (u1, u2, ∗) ∈ E ∧ 0 ≤ d(u1, u2) ≤ δ0

δ0
d(u1,u2)

, (u1, u2, ∗) ∈ E ∧ d(u1, u2) > δ0

0, (u1, u2, ∗) 6∈ E

(7)

Finally, the following definition will be valuable in assessing the performance
of the proposed genetic algorithm.

Definition 9. When φ`(u) or φ′`(u) exceed a threshold η0, then u is uncontested.

4 Genetic Algorithm Tensor Clustering

4.1 Tensor and Multilayer Graph Representations

The spatiosocial multilayer graph was constructed as follows from Twitter data
by a language sampling approach as described in the next section. First, the
label set was decided to contain five elements, and thus |Q| = 5, namely

Q
4
= {:location, :german, :french, :english, :social} (8)

Notice that the spatial component is expressed by the geolocation distance,
whereas there are four spatial components, namely the three languages most
commonly spoken in Luxemburg, and one dimension for online interaction as
indicated by the follow and reply functions. The edge labels follow the Neo4j
notation [32]. The following two criteria determined whether there is digital
interaction between any two netizens:

– If netizen u follows v or vice versa, then interaction is considered to exist.
– Alternatively, if either of netizens u and v mention the other, then interaction

is also considered to take place.

Then, each netizen was mapped to one vertex of the graph so |V | = n. The
connectivity conditions for any netizen pair u and v were the following:

– If u and v are interacting, then edge (u, v, :social) is added.
– If d(u, v) < 8δ0, then edge (u, v, :location) is added.
– If `0(u) = `0(v), then the appropriately labeled edge is added.

The geolocation of each vertex was determined by the location Twitter meta-
data field and it was compared to the bounds of a rectangle circumscribing the
borders of Luxembourg. Furthermore, the latitude and longitude pair of each
tweet was checked against both the national and regional borders of Luxembourg
as encoded by GIS files publicly available through the Global Administrative Ar-
eas database (GADM)5.

5 www.gadm.org
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Concerning the language set of each vertex, two methods were used. First, the
corresponding tweets were analyzed as in [19]. The starting points were words
unique to a specific language. Then, by dividing the findings into linguistic classes
such as phonetic spellings and lexical words a profile for each candidate language
was built and it was compared to that of the three languages under investigation.
Second, the frequencies of digrams and trigrams, namely byte sequences encoding
Unicode characters, were compared to these from standard corpora.

Finally, Σ
4
={0, 1}, as TENSOR-G focuses on edge labels, and Σ contains token

values indicating whether an edge exists or not.

As is the case with ordinary social graphs, multilayer graphs can be also repre-
sented algebraically through adjacency tensors. A tensor is a multidimensional
vector meaning that each entry is indexed by a tuple of p non permutable integers
(i1 . . . ip) where 1 ≤ ik ≤ Ik. Formally

Definition 10. A p-th tensor T , p ∈ Z+, is a linear mapping simultaneously
connecting p not necessarily distinct linear spaces Sk, 1 ≤ k ≤ p.

In this specific case the linear spaces combined to create the adjacency tensor
are the netizen space, in fact twice, and the label space. Thus, the corresponding
adjacency tensor T is of third order, specifically

T ∈ Σ|V |×|V |×|Q| = {0, 1}n×n×(L0+2)
(9)

4.2 Algorithmic Aspects

The proposed genetic algorithm TENSOR-G is outlined in algorithm 1. As
with any such scheme, its development is more an art then science. For instance,
being a heuristic, TENSOR-G relies heavily on random numbers which largely
decide the outcome of selection and crossover operators. Finally, observe that
algorithm 1 has a low conditional Kolmogorov complexity, since once the data,
namely the tensor T and the random number sequence, are factored out, then
the algorithm proper is of constant size and can be thus efficiently coded in the
universal Turing machine. The use of 〈ρk〉 is implied throughout the algorithm.

Since the initial number of communities J0 is unknown, it is selected semiran-
domly based on knowledge from linguistics and the Gaussian distribution

fJ0(j0) =
1

4L0

√
2π

exp

(
−
(
j0 − 3L0

4L0

)2
)

(10)

Namely, E [J0] = 3L0 and Var [J0] = 16L2
0. These parameters were selected based

on statistical observations from [29], while the Gaussian distribution itself was
chosen because it has the maximum differential entropy among all distributions
with the same finite variance giving, thus, an upper limit to the variation of J0.
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Algorithm 1 Proposed Genetic Algorithm (TENSOR-G)

Require: Termination criterion τ0, random sequence 〈ρk〉, tensor T
Ensure: Linguistic communities are approximately discovered
1: pick number of communities J0 semirandomly
2: partition T by assigning vertices to each community Ck, 1 ≤ k ≤ J0
3: repeat
4: evaluate fitness of each community Ck
5: retain the dα0J0e fittest communities with probability pα
6: retain the dβ0J0e least fit communities with probability pβ
7: crossover the remaining m communities to create each possible pair
8: select the m fittest of the Θ

(
m2
)

new pairs
9: choose a community pair with probability pγ and mutate the pair

10: with probability pζ :
11: for all community pairs do
12: if any two communities are spatiosocially close then
13: merge these communities and update J0
14: end if
15: end for
16: until τ0 is true
17: return {Ck}

Each of the J0 communities can have an arbitrary number of vertices as long
as it is not empty. Note that the n netizens can be distributed to J0 with a very
large number of ways, specifically(

n

L0

)
=

∂L0

∂xL0
(1 + x)

n

∣∣∣∣
x=0

≈ nL0 , L0 ≤ n (11)

To avoid this, the vertices are randomly assigned to communities. Although this
may lead to less than satisfactory fitness, it is computationally efficient and its
effects are eventually nullified over some iterations.

There are two fitness functions for evaluating spatiosocial communities. The
first is the harmonic mean of coherency and ψ̄, the mean value of factor ψ

g1(Ck)
4
=H

(
c`(Ck), ψ̄

)
= 2

(
1

c`(Ck)
+

|Ck|∑
u1,u2∈Ck

ψ(u1, u2)

)−1
(12)

while the second is the harmonic mean of density and ψ̄

g2(Ck)
4
=H

(
d`(Ck), ψ̄

)
= 2

(
1

d`(Ck)
+

|Ck|∑
u1,u2∈Ck

ψ(u1, u2)

)−1
(13)

In each iteration a portion dα0J0e of the fittest communities is kept unchanged
with probability pα. This is done in order to preserve a possibly very good so-
lution. On the other hand, it entails the potential danger that TENSOR-G is
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trapped to a local maximum. For this reason, with probability pβ a segment of
the dβ0J0e least fit communities is also retained in order to provide a (counter-
intuitive) escape from such a trap.

Since TENSOR-G is designed for tensor clustering, it is imperative that each
netizem is assigned to one and only one language community and that no commu-
nities become void. To this end, the crossover, selection, and mutation operations
were designed to uphold these constraints in spite of their inherent randomness.
Specifically, the crossover operation creates selects each possible pair of the m
communities. Inside each of the Θ

(
m2
)

pairs a number of netizens, which may
be random or determinstic, is selected to be swapped. Note that m is a random
variable whose values and their associated probabilities are

m =


J0 − dα0J0e , pα

J0 − dβ0J0e , pβ

J0 − dα0J0e − dβ0J0e , pαpβ

J0, 1− pα − pβ − pαpβ

(14)

This potentially large number of community pairs is then evaluated by either
g1 or g2 and the m fittest are selected. Finally, with probability pγ a random
pair of the m new ones is selected and only one vertex is swapped between them.

The last and optional operation of community merge may come as a surprise
to the reader familiar with genetic algorithms, the reason being that merge is
a typical clustering operation and not part of the standard functions a genetic
algorithn performs. However, since TENSOR-G is essentially a clustering algo-
rithm, it is worth incorporating a clustering element with probability pζ . Thus,
TENSOR-G can partially work as an agglomerative algorithm. The condition
which determines the spatiosocial proximity of two communities is that they
have the same predominant language and also that a random sample of b neti-
zen pairs has low overall value for the ψ factor. In this case

b
4
= max {log |Ci| , log |Cj |} (15)

The primary termination criterion τ0 was a combination of a hardcoded maxi-
mum number of M0 iterations, with a minimum of µ0 iterations, and of a condi-
tion that the average total fitness sum should exceed a threshold γ0 during the
past five iterations. Also, there was a secondary termination criterion τ1 that
stopped TENSOR-G when a partition achieved a fitness of γ1.

4.3 Kruskal Decomposition

At this point the reference method, Kruskal tensor decomposition, is introduced.
Given a p-th order tensor T ∈ RI1×...×Ip and an integer r0 ≤ p, the Kruskal
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numer of the tensor rank, r0 rank one tensors Gk and positive normalization
scalars λk are computed such that

T =

r0∑
k=1

λk Gk, λk > 0 (16)

A rank one tensor Gp ∈ RI1×...×Ip is one that can be written as a series of
p− 1 vector outer products [31], namely

Gp
4
= v1◦1v2◦2v3 . . .vp−1◦p−1vp, vk ∈ RIk , ‖vk‖2 = 1 (17)

Note that this is a direct generalization of a rank one matrix, essentially a second
order tensor G2, which is written as

G2
4
= v1◦1v2 =

 v1[1]v2[1] . . . v1[1]v2[I2]
...

. . .
...

v1[I1]v2[1] . . . v1[I1]v2[I2]

 , ‖v1‖2 = ‖v2‖2 = 1 (18)

Along similar lines, a third order tensor G3 is defined as

G3
4
=v1◦1v2◦2v3,G3[i1, i2, i3] = v1[i1]v2[i2]v3[i3], vk ∈ RIk , ‖vk‖2 = 1 (19)

However, both computing r0 and the exact Kruskal decomposition are NP-hard
problems. Therefore, for various estimates r̂0 the approximate decomposition is
computed instead

min
r̂0,λk,Gk

∥∥∥∥∥T −
r̂0∑
k=1

λkGk

∥∥∥∥∥
F

= min
r̂0,λk,vk,j

∥∥∥∥∥T −
r̂0∑
k=1

λkvk,1◦1vk,2 . . .vk,p

∥∥∥∥∥
F

(20)

where the Frobenius norm ‖T ‖F of a real valued tensor T is defined as

‖T ‖F
4
=

 I1∑
i1=1

. . .

Ip∑
ip=1

T 2[i1, . . . , ip]

 1
2

=

 ∑
(i1,...,ip)

T 2[i1, . . . , ip]

 1
2

(21)

4.4 Implementation Aspects

Regarding implementation, TENSOR-G was implemented in MATLAB. To
conserve memory, the tensor was stored in quadruples of the form (i1, i2, i3, `)
and the netizen properties such as their geolocation and predominant language
were separately stored. In other words, the tensor was compressed with the co-
ordinate scheme which requires four integers for every non-zero entry. Although
more efficient tensor compression schemes exist [3], the coordinate method is bal-
anced between memory conservation and simplicity. Each gene of TENSOR-G
was encoded as a list quadruples for efficient manipulation. The Kruskal decom-
position was already implemented in the MATLAB tensor toolbox [4].
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Finally, the data was obtained by a Twitter crawler implemented in Python
using the tweepy6 library. The latter uses the OAuth authentication protocol in
conjunction with the quadruple of Twitter generated tokens. Also, it is subject
to the constraints placed by Twitter for batch data harvest.

5 Results

5.1 Data Synopsis

The tensor contains information about n = 579 Luxemburgian netizens, 217 of
whom were identified as predominantly tweeting in English, 199 in German, and
163 in French. In overall this is a fairly balanced sample in terms of language
representation. Table 2 contains more information about these netizens.

Table 2. Netizen statistics.

Property Value

Follows and replies 7571
Spatial connections 1933

min, max, avg degree 1, 31, 17
Monolinguals 29

Bilinguals 196
Trilinguals 354

As it can be deduced, the above network is sparse since the average degree is
17. That justifies the coordinate compression scheme for the spatiosocial tensor.

5.2 Performance

The values and the characteristics of the thresholds and parameters used in
TENSOR-G are summarized in table 3.

The number of communities which achieved the better overall fitness in TENSOR-
G for both fitness functions was 5. Using a range of values of ±3 around this
number as r̂0, the lowest Frobenius difference norm was achieved for 7 communi-
ties. These number of uncontested vertices was computed using φ′`. For the En-
glish, German, and French respectively the clustering obtained by TENSOR-G
returned 201, 170, and 126 , whereas the Kruskal decomposition yielded 192, 163,
and 109. This can be attributed to the dispersion of predominantly French speak-
ing netizens among the more adamant German speakers and the omnipresent

6 www.tweepy.org
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Table 3. TENSOR-G parameters.

Parameter Meaning Value

α0 Percentage of best fit clusterings kept in each iteration 0.1
β0 Percentage of worst fit clusterings kept in each iteration 0.1
γ0 Threshold that must be exceeded in τ0 to continue 0.15
γ1 Terminating threshold in criterion τ1 0.85
δ0 Geolocation distance for maximum assortativity 25 Km
η0 Threshold for declaring a vertex uncontested 0.65
M0 Maximum number of iterations in criterion τ0 1024
µ0 Minimum number of iterations in criterion τ0 32
N0 Number of instances of TENSOR-G executed 2048
b Random sample size for merging communities Ci and Cj eq.(15)

L0 Total number of languages in the tweets 3
pα Probability distribution for retaining best clusterings Binomial
pβ Probability distribution for retaining worst clusterings Binomial
pγ Probability distribution for mutation Poisson
pζ Probability distribution for agglomeration check Poisson

English ones. Also, notice that Kruskal decomposition was desgined with another
minimization property in mind. Specifically, the constraint for rank 1 tensors led
to more communities which are more compact but left many vertices in a con-
tested state.

6 Conclusions

This conference paper presents TENSOR-G, a genetic algorithm for spatiosocial
sparse tensor clustering. The latter contains trilingual Twitter data in English,
French, and German from Luxemburg, a country with thriving language com-
munities and strong digital presence. The communities obtained by TENSOR-
G using two different fitness functions based on languistic criteria were com-
pared to those obtained by Kruskal tensor decomposition. Although the pro-
posed methodology is slower and more memory intensive than the benchmark,
the communities of TENSOR-G were more compact from a linguistic viewpoint
and also make more sense in gelocation terms.

This work can be improved in many aspects. A more detailed description of
digital interaction would include separate labels for follow and mention options
and possibly additional layers for other Twitter functions. Also, bidirectional
connections between netizens would reveal more communication patterns, for
instance how differs the communication between netizens and between a netizen
and an institution or a company and whether Dunbar’s number is a loose bound
or not in the digital sphere. Moreover, better fitness functions can be designed
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utilizing observable and measurable languge variations such as change in indi-
vidual words and their spelling compared to template corpora. However, it is
not necessarily true that language change proceeds horizontally in the different
domains. Thus, any research of language change needs to incorporate both the
similarities and the differences in mechanisms across different domains [23].

Regarding future research directions, language change results from the differ-
ential propagation of linguistic variants distributed among the linguistic reper-
toires of communicatively interacting netizens. From this it follows that language
change is socially-mediated in two important ways. First, language is a social
epidemiological process that takes place by propagating some aspect of commu-
nicative practice across a network and the organization of the social group in
question can affect how a variant propagates. Second, sociocultural factors such
as language ideologies, can encourage the propagation of particular variants at
the expense of others in particular context. Variant selection leads to language
change when it forms part of larger scale processes of differential variant prop-
agation within the speech community. Since tensors are particularly suited to
diffusion phenomena, their application to spatiosocial data in general and to the
propagation of language changes should be thoroughly examined.
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44. Papalexakis, E., Doğruöz, A.S.: Understanding multilingual social networks in on-
line immigrant communities. In: 24th WWW. pp. 865–870. ACM (2015)

45. Stalin, J.V.: Marxism and problems of linguistics. In: Pravda (May 1950)
46. Tagkalakis, F., Papagiannaki, A., Drakopoulos, G., Megalooikonomou, V.: Aug-

menting fMRI-generated brain connectivity with temporal information. In: Pro-
ceedings of the 6th International Conference of Information, Intelligence, Systems,
and Applications. IISA 2016, IEEE (July 2016)

47. Trudgill, P.: Social structure, language contact and language change. The SAGE
Handbook of Sociolinguistics pp. 236–249 (2011)

48. Weinreich, U., Labov, W., Herzog, M.I.: Empirical foundations for a theory of
language change. University of Texas Press (1968)

49. Westin, C.F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Pro-
cessing and visualization for diffusion tensor MRI. Medical image analysis 6(2),
93–108 (2002)


