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Abstract—Identification of unintentional falls is a critical
application in smart assistive environments, especially in the
context of elderly care. However, visually discriminating between
falls and fall-like, intentional activities is a challenging task. In
this paper, we propose the utilization of a novel feature extraction
scheme based on the newly formulated 3D Cylindrical Trace
Transform, on spatio-temporal interest points, for the task of fall
detection. Using this pipeline, we are able to produce features
invariant to occlusion, viewpoint, camera placement and other
distortions. Experimentation on two publicly available datasets,
on a number of different conditions, proved the efficiency of the
proposed methodology for the task at hand.

I. INTRODUCTION

The need to automatically detect falls has mainly arisen
from the tendency of elder people to live alone or spend a
lot of time unattended. Care for the elderly has traditionally
been the responsibility of family members and was provided
within a home environment. Increasingly in modern societies,
state or charitable institutions are also involved in the process.
Decreasing family size, the greater life expectancy of elderly
people, the geographical dispersion of families and changes in
work and education habits have attributed to this [3]. These
changes have affected European and North American countries
but are now increasingly affecting Asian countries as well [4].

Research is focused on the autonomy of elderly people
which tend to live alone or are not able to indulge themselves
in the luxury of an attendance person. Falls are a major public
health issue among the elderly and recently, in this context,
there has been an increasing focus on fall detecting systems.

A division of fall detection techniques could be into two
main categories: wearable sensor based and vision based tech-
niques. The first category is based on wearable devices such as
accelerometers and gyroscopes, or on smartphones that contain
this kind of sensors and are mainly carried continuously by
subjects. The second category is based on 2D or 3D cameras,
involving image analysis and pattern recognition techniques of
high computational complexity. Methods in the latter category
present the advantage that a continually carried device is
not required. Of course, multiple modalities may be joined
to produced composite methods. A characteristic example

of a multimodal approach is given in [7]. In other studies,
researchers in [8] divide fall detectors in three main categories:
wearable device based, ambiance sensor based and camera
(vision) based, while, from a different perspective, researchers
in [9] make distinctions based on whether a specific method
measures acceleration or not.

Primary attempts on providing a general overview of the fall
detection status are presented in [10] and in [9]. However, as
the advancement of technology on this area is rapidly growing,
these reviews are mostly outdated. A newer, comparative study
and more extensive literature review is provided in [6]. This
article aims to serve as a reference for both clinical and
biomedical engineers planning or conducting investigations on
the field. The authors are mostly trying to identify real-world
performance challenges and the current trends on the field. A
more detailed discussion is provided in [8] but lacks references
to new trends, such as smartphone-based techniques.

In the direction of vision based solutions, such as the one
presented in this paper, researchers in [11], placed the camera
on the ceiling and analyzed the segmented silhouette and
the 2D velocity of the subject. The determination of a fall
is achieved by an experienced thresholding. Authors in [12],
in order to draw a distinction between falling and other fall-
like activities, such as sitting, added the extra information of
noise. However a sound-based system cannot be very robust
as most of the environments where such solutions are applied
are noisy. Another approach, presented in [13], is based on a
combination of motion history and human shape variation. To
cover large areas, wall cameras have been mounted and the
final decision is made by thresholding the extracted features.
In the study presented in [14], the classification between every
day activities and fall events is achieved by extracting eigen-
motion and by applying multi-class Support Vector Machines.

3D information extracted using depth sensors, such as the
Microsoft Kinect, is shown to provide efficiency on partial
occlusion and viewpoint problems. Thus, a number of works
based on leveraging such information have been published.
In [15], a velocity based method is presented, that takes into
account the contraction or expansion of the width, height



and depth of a 3D bounding box. A priori knowledge of the
scene is not required as the set of captured 3D information
is adequate to complete the process of fall detection. Another
approach creates two feature parameters: the orientation of
the body and the height information of the spine, using either
image or world coordinates, based on captured Kinect data
[16]. The Kinect sensor is also used in [17], where the
proposed algorithm is based on the speed of the silhouette head
(previously detected), the body centroid and their distance
from the ground. Because it incorporates positions of both the
body centroid and the head, this technique is regarded to be
less affected by the centroid fluctuation. Finally, a statistical
method based on Kinect as proposed in [18]. The decision
is made based on information about how the human moved
during the last few frames. This method combines a set of
proposed features under a Bayesian framework. This study’s
main focus is to create a technique that, while it has been
trained by data captured from a specific viewpoint, is also
able to classify falls that have been captured by a different
one.

A. The proposed work: A preample

The work introduced in this paper is a follow-up study to
the one presented in [22], which was based on the pipeline
proposed in [19]. However, this study focused on modeling
actions in a per-frame fashion, not taking into account any
temporal interlinking between prominent features in the action
sequence. Although they show resilience to occlusion, this may
reduce their applicability on highly occluded environments,
where spatial information can be distorted. Moreover, without
any mechanism to cope with the different lengths of action
sequences, these techniques could not accurately incorporate
any information regarding rapid position changes and velocity,
which is vital in discriminating between similar actions. For
instance, in an unintentional fall, we observe more abrupt
position changes of the subject than when performing a
crouching action or lying down. The methodology presented in
[22] lacks the properties to take this information into account.

In this work, we take advantage of a new extension of the
Trace Transform to the 3D domain, called the 3D Cylindrical
Trace Transform [25] and its advanced properties, to surpass
the limitations of previous methods and a solution to a
practical problem.

II. OVERVIEW OF THE PROPOSED SYSTEM

The Trace transform can be seen as a generalization of the
Radon Transform [20]. While the Radon transform of an image
is a 2D representation of the image in coordinates φ and p
with the value of the integral of the image computed along
the corresponding (φ, p) line, Trace calculates functional T
along this tracing line. This functional may not necessarily
be the integral. The final transform is created by tracing an
image with straight lines and calculating certain functionals of
the image values along these lines. Transforms for different
action snapshots are given in Figure 1. A detailed overview
of the fundamental theory behind the Trace transform can be

found in [21] and its use in action recognition can be seen in
[19].

Fig. 1. Examples of Radon and Trace transforms created from the silhouettes
of different action snapshots taken from various datasets.

A. The 3D Cylindrical Trace Transform

The definition of the 3D Cylindrical Trace Transform
(thereby called 3D-CTT) has been inspired by the 3D Radon
transform [23], as it is formulated in [24]. The 3D-CTT is an
extension of the Trace Transform [21] to the 3D space.

As explained thoroughly in [25], the Cylindrical Trace
Transform CTTf is applied on spatio-temporal volumes such
as spatio-temporal interest point (STIP) meshes [2][1]. If
we consider a spatio-temporal mesh as a 3D model M , the
3D-CTT associates a functional T to each line tracing the
model, placed at cell (p, ϕ, θ), with distance p and angle ϕ
characterizing uniquely a line and the plane that forms angle θ
with the origin. In essence, Trace transforms are continuously
calculated on planes rotating in the direction of polar axis A,
cutting the 3D mesh M .

Considering each cutting plane as a 2D function ξ(x, y)
formed by the projection of the M on that plane, its Trace
transform ǧ(p, ϕ) can be given by evaluating a functional T
along all lines (p, ϕ) tracing ξ:

ǧ(p, ϕ) = T (ξ(x, y)δ(p− x cosϕ− y sinϕ)) (1)

The final representation of the 3D model, the proposed 3D-
CTT, is also a 2D function of parameters (p, ϕ). It is given
by the sum of the individual calculations of Trace transforms
on planes rotated by angle θ relative to the origin:

CTTf (p, ϕ) =
N∑

n=1

ǧn(p, ϕ). (2)

where ǧn is the nth Trace transform, i.e. the transform
calculated on the 2D planar projection of M on the plane that
forms angle θn with the origin. Also: N ≥ 2, 0 < θn ≤ θmax

and θmax = 180o. An illustration of the 3D Cylindrical Trace
transform on a STIP mesh is given in Figure 2.

B. Feature extraction scheme

1) 3D Cylindrical Trace Transform on STIP meshes: As
stated in more detail in [25], the 3D-CTT is applied on STIP
meshes. Specifically, the STIP acquisition implementation



Fig. 2. 3D CTT calculation on Selective STIPs extracted from an action video
sequence. t denotes the direction of time.

followed in the proposed pipeline is the one presented in
[1], the so-called Selective Spatio-Temporal Interest Points
(SSTIPs). This methodology focuses on global motion instead
of local spatio-temporal information, thus preventing the erro-
neous detection of interest points due to cluttered backgrounds
and camera motion. Furthermore, the authors show that their
method produces stable, repeatable STIP meshes, robust to the
local scene properties and suitable for action recognition tasks.
An example of extracted SSTIPs from an action sequence is
given in Figure 3.

Fig. 3. Selective STIPs extracted from an action sequence. t denotes the
direction of time.

By applying different functionals to the SSTIPs mesh M ,
a set of CTTfi(p, ϕ) transforms is produced, where i = 1...I
and I is the number of transforms one chooses to calculate.

An improvement compared with previous techniques is the
ability of this pipeline to encode variations in the length of
action sequences. In other words, if the speed at which an

action is performed plays a significant role in the classification
of that action, this pipeline has the ability to incorporate it in
the extracted feature set. We call this property time-sensitivity.
Results on the fall detection datasets in section III-B demon-
strate the potentness of this property in distinguishing between
very similar spatio-temporal volumes of different, however,
length. A typical example of such volumes are the ones
generated by lying down and falling. As already mentioned
in section I-A, previous Trace transform based techniques in
[19] and [22] fail to take this information into account because
they are not time-sensitive.

2) Volumetric triple features: In The fundamental work in
[21], the formulation of Trace transform-based triple features
is proposed in the following manner:

1) The Trace transform of a 2D function is produced, using
a Trace functional T .

2) By calculating a diametric functional P along the
columns of the 2D function’s Trace transform, a circus
function is obtained.

3) The final triple feature is ultimately produced by apply-
ing a circus functional Φ along the resulting vector of
numbers from step 2.

In [19] it is shown that ratios of pairs of different triple
features, constructed by using different functionals T , P and
Φ on the frames of an action sequence video, create feature
suitable for action recognition. Work in [22] also indicates
their efficacy in the unintentional fall detection task.

The novel formulation of 3D-CTT in [25] proposed a
modification of the aforementioned scheme, called Volumetric
Triple Features (VTFs). Instead of a per-frame fashion, the
triple feature extraction scheme is applied on the results
of the 3D Trace transform of the complete spatio-temporal
volume. For every CTTfi(p, ϕ), calculated using functional
Ti, a diametric functional Pi is applied along the columns of
the transform. Then, a circus functional Φi is evaluated along
the resulting string. This way, a set of Π triple features is
computed. The procedure is illustrated in Figure 4.

All Π features are then divided by each other, to produce a
new set of independent features. So, the given action sequence
is finally encoded into a vector v, the so-called VTF vector,
which is essentially the set of all calculated triple feature
ratios, based on the set of the different CTTfi applied on
the SSTIPs of the action sequence.

v = (Πrat1 ,Πrat2 , ...,Πrath−1
,Πrath) (3)

where Πrat is the ratio of two triple features and h the number
of calculated ratios.

The use of a dimensionality reduction technique on the
resulting vectors is considered necessary, due to the fact that
not all features in the vector share the same discrimina-
tory power. In the proposed pipeline, Principal Component
Analysis (PCA) is applied on the VTF vectors, in order to
construct an appropriate subset of the features that is suitable
for classification. In our experiments, only a small fraction of



the initial VTF vector survives this task (typically between 25
and 40 features).

Fig. 4. Triple feature extraction from a spatio-temporal volume.

III. EXPERIMENTAL EVALUATION

Although fall detection can be classified as a human action
recognition task, the results are mostly calculated on a yes or
no basis and a specific experimental approach is required. A
potential fall detection system continually monitors a subject
whose physical dynamic behavior is captured. This behavior is
then analyzed at regular intervals and compared against a pre-
processed dataset of sample actions, used to train the system.
The final decision is made upon determining the relevance
of the recorded incident, when compared to any one of the
different samples and a fall or a no fall situation is reported.
The protocol used for this particular task uses one sample for
testing and the rest of the set is used for training. The decision
made is binary (0 or 1) and is repeated I times where I is the
number of samples in the dataset. Performance is reported as
the ratio of successful classifications over I tests.

A. Experimental setup

In general, there are few available datasets dedicated to fall
detection as most of the published techniques have been tested
on the respective author’s own datasets. However, in order to
have a benchmark, we have evaluated our technique in two
publicly available datasets: The UR Fall Detection [26], [27]
and the Le2i Fall detection datasets [5].

The UR Fall dataset contains 60 sequences recorded with
2 Microsoft Kinect cameras and corresponding accelerometric

data. Sensor data was collected using PS Move (60Hz) and x-
IMU (256Hz) devices. The dataset contains sequences of depth
and RGB images for two differently mounted cameras (parallel
to the floor and ceiling mounted, respectively), synchronization
data, and raw accelerometer data. Each video stream, both
RGB and depth, is stored in separate folders in the form of
png image sequences. From the specific dataset we have used
the depth data provided by the ceiling mounted camera as well
as the frontal RGB videos, following the experimental protocol
given by authors in [26] and [27]. Frame samples taken from
UR fall dataset are provided in Figure 5.

Experimentation on the UR fall detection dataset was di-
vided into two phases. The first one aimed to evaluate the
ceiling mounted depth camera scenario, corresponding to the
methodology presented in [26]. More specifically, a set of
60 cropped motion sequences from the ceiling depth video
subset were used. These motion sequences contained both
unintentional falls, such as tripping and falling from a chair,
and other everyday activities, such as walking. Artificial, fall-
like activities were added to the dataset, to make the problem
more challenging. Motion sequences of persons almost falling
from chairs were hand-crafted and added to the dataset.
Background segmentation, noise reduction and thresholding
techniques were used to extract binary and depth silhouettes.
Spatio-temporal points were calculated on these silhouettes.

On the second phase, we experimented with the (newly
added at the time) frontal RGB videos, similarly to the
experiments conducted in [27]. This was an attempt to fully
evaluate the capabilities of the proposed method in envi-
ronments where background segmentation is a non-trivial,
error-prone procedure. For this reason, no human silhouette
segmentation was performed and the experiments relied only
on the spatio-temporal information from the subjects motion
inside the video. This part of the dataset was used uncropped,
i.e. with each video containing a full set of human actions such
as entering a room, walking inside and then performing an
intentional or unintentional fall. Activities closely resembling
falls (not hand-crafted) were added to this set, such as crouch-
ing under a sofa, lying on a bed, bending to tie shoelaces, etc.

The Le2i Fall dataset has been captured in realistic video
surveillance settings using a single RGB camera. The frame
rate is 25 frames/s and the resolution is 320x240 pixels. The
video data illustrates the main difficulties of realistic video
sequences that can be found at an elderly home environment,
as well as in a simple office room. The video sequences contain
variable illumination, and typical difficulties like occlusions
or cluttered and textured background. The actors performed
various normal daily activities and falls. The dataset contains
130 annotated videos, with extra information representing the
ground-truth of the fall position in the image sequence. The
database provides different locations for testing and training,
while authors in [5] have defined several protocols for the
evaluation of their method. Working with the specific dataset,
we have followed the protocol P1 given in the above paper,
where training and test sets are built with videos from ”Home”
and ”Coffee room” subsets. Samples from Le2i dataset are



Fig. 5. Frame samples taken from the UR fall dataset for two falls. Upper row
illustrates the RGB samples while the lower row provides the corresponding
depth images.

Fig. 6. Frame samples taken from the Le2i fall dataset. Upper row illustrates
samples from daily actions in ”Coffee room” while lower raw provides
samples from a fall occurred in ”Home”.

provided in Figure 6.
Both in the first experimental scenario on the UR dataset

and the Le2i dataset, extraction of feature vectors using the
proposed scheme has been preceded by human silhouette
extraction. In the UR dataset case, this was handled by com-
puting differences between depth pixels in a particular frame
and their corresponding pixels in a precalculated reference
frame. The reference frame was calculated by computing the
median value of every depth pixel in a sliding window of 9
frames, in a total of 80 frames portraying a scene lacking
human presence. Then, the mean value of every median pixel
value was calculated, forming the final reference frame and
eliminating a considerable amount of noise generated by the
depth camera.

One can correlate the human presence in a particular frame
with the occasions when the difference between depth pixel
values of that frame and the reference exceeds a predefined
threshold. In the case of the UR dataset, a total of four
thesholds were used, to add robustness. The first two were
used to filter out noisy and invalid pixels. For a pixel value to
be valid (i.e. possible to be part of a human silhouette), it was
required to be between 1100 and 3620 millimeters. It should be
reminded that this represents distance from a ceiling mounted
depth camera, such as Kinect, whose depth map values are
measured in millimeters, in the [800, 4000] range. Afterwards,
to indicate human movement, the difference between a pixel
of the current frame and a reference pixel was required to be
between 50 and 2200 millimeters. These values were found to
offer maximum tolerance against random noise.

Given the fact that it consisted of RGB video files of low
resolution, the Le2i dataset was handled in a different way.
Furthermore, light conditions in most of the cases (especially
in the ”Home” subset) rendered the use of the difference

between frames unreliable. In order to segment the human
silhouette, the background-foreground segmentation approach
proposed by Zivkovic in [28] and [29] was utilized. In this
technique, a subtraction between the current frame and a
background model is performed. This model is constantly
updated in a per-pixel fashion, using a gaussian mixture-based
approach, to contain what is considered the static part of the
scene, adapting in scene changes in the video sequences.

In our experiments, sequences of both datasets have been
scaled down to the spatial resolution of 320*240 pixels and
have a temporal length of 26 and 12 frames on average for the
UR and the Le2i dataset respectively. For the ceiling mounted
camera scenario on the UR dataset and the Le2i dataset,
training and testing samples were constructed by manually
cropping the motion sequences to contain only the fall or fall-
like activity part. The feature vector extraction pipeline used
in all fall detection scenarios is described in Figure 4.

At this point, we should mention that there is no unified
standard to follow for the evaluation of fall detection algo-
rithms. In the experiments conducted in this study, a simple
leave-one-out protocol was used to evaluate performance. Lack
of different activity samples performed by distinguishable per-
sons led to adapting the original leave-one-person-out protocol
to a simplistic leave-one-sample-out protocol, as mentioned
earlier. In every iteration, a different activity sample, regardless
of whether it depicts a fall or not, is used for testing a system
that is previously trained using the rest of the dataset. The
results of this experimental procedure can be found in the
next subsection (III-B).

B. Results

As can be seen in Table I, the proposed pipeline achieves
results comparable to the state of the art techniques tested on
the UR and Le2i datasets. These methods, especially the ones
presented in [26] and [5], seem to be quite domain specific
and rely on certain attributes of the human silhouette shape and
bounding box, with a strong relation to the camera placement.
This is in contrast with the 3D CTT based pipeline, which is a
generalized feature extraction method that operates regardless
of sensor position.

The property of time-sensitivity is showcased in these
results, especially in the UR dataset [27], where there are
many cases of fall-like activities that generated similar spatio-
temporal volumes with actual falls. The key discriminating
factors in such actions are the temporal interlinking between
various stages of the action, the abruptness of position change
and the speed. The proposed scheme appears to make use of
these attributes.

What is also noteworthy is the ability of the 3D CTT based
pipeline to assert the existence of an unintentional fall in RGB
videos that contain other activities. The accuracy reached on
this task is 95.71% and is achieved based solely on image
data. In comparison, the technique proposed in [27] achieves
90% accuracy. When accelerometric data is utilized, this score
rises to 98.33%. Another notable fact is the potential of the
proposed pipeline to classify an event as a fall on automatically



segmented human silhouettes, in arbitrarily positioned camera
systems. In this task, the 3D CTT based pipeline scores
96.34% accuracy. In the same setup, the method presented in
[5] achieves 95.06% accuracy, possibly minimizing the global
error to 2.5%, by manually annotating the human bounding
box in the scene.

TABLE I
CLASSIFICATION ACCURACY (%) ACHIEVED BY THE PROPOSED SCHEME

AND OTHER PUBLISHED METHODS ON THE FALL DETECTION TASK.

UR Le2iCeiling mounted RGB frontal
Our pipeline on binary shil. 100 - 96,34
Our pipeline on depth shil. 95.92 - -
Our pipeline on RGB data - 95.71 -
Kepski and Kwolek [26] 100 - -
Kepski and Kwolek [27] - 90 -
Charfi et al. [5] - - 95.06

IV. CONCLUSION

In this paper, we propose the use of a newly formulated
extension of the Trace transform to the 3D space, the so-called
3D Cylindrical Trace Transform, and a novel feature extraction
scheme from spatio-temporal interest points, for the task of
unintentional human fall detection. Using this pipeline, action
videos can be transformed into vectors of small length, which
represent distortion and occlusion invariant, as well as time-
sensitive features. Experimental results on two different and
challenging datasets, on a variety of conditions (input data,
camera placement, etc.) indicated that the method has great
potential. The features created appear to be very robust in
noise, illumination variation, occlusion, translation and scaling
issues while at the same time the method provides the ability
of adaptation to various assistive environment settings.
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