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Abstract—Structural resilience is an inherent, paramount prop-
erty of real world, massive, scale free graphs such as those
typically encountered in brain networks, protein-to-protein
interaction diagrams, logistics and supply chains, as well as
social media among others. This means that in case a small
fraction of edges or even vertices with their incident edges are
deleted, then alternative, although possibly longer, paths can be
found such that the overall graph connectivity remains intact.
This durability, which is constantly exhibited in nature, can be
attributed to three main reasons. First, almost by construction,
scale free graphs have a relatively high density. Moreover, they
have a short diameter or at least an effective diameter. Finally,
scale free graphs are recursively built on communities. As a
consequence, the effect of a few edge or even vertex deletions
inside a community remains isolated there as a rule and the
effects of deletion are thus negated. Ultimately these properties
stem from the degree distribution. In this conference paper is
proposed a new, generic, and scalable graph resilience metric
which relies on the weighted sum of the number of paths
crossing certain vertices of great communication and structural
value. Finally, the CUDA implementation is discussed and
compared to a serial one in mex. The metric performance is
assessed in terms of total computational time and parallelism.

Index Terms—Graph mining, large graph analytics, graph re-
silience, recursive community structure, triangles, graph diam-
eter, degree distribution, higher order analytics, path analytics,
GPU computing, CUDA, mex, bitmap, data structures

1. Introduction

Graph resilience or structural integrity is vital in a broad
spectrum of applications including but not limited to brain
connectivity, social networks, geolocation services, digital
multimedia content generation and delivery, argument gra-
phs, logistics and supply chain management, computer and
data communication networks, and chemical engineering. It
consists of the ability of finding alternative, though generally
more costly, paths when edges or vertices with their incident

edges are deleted from the graph. In this work the cost of a
path is defined as the number of its edges. Note, however,
that in general this is not the only way to define path cost.
For instance, for path cost in fuzzy graphs see [1] and [2].

Factors contributing to graph resilience in the case of
scale free graphs are the high density, the short diameter, and
the recursive community structure. The first factor ensures
that there are enough hub or authority vertices, namely
vertices with high out- or in-degrees respectively. Thus,
there are many vertices connecting various graph segments.
Moreover, the small diameter ensures that relatively low cost
alternative paths are availble. Finally, the nested community
structure implies that, besides certain critical edges connect-
ing remote and maybe isolated communities, the loss of an
edge or even of a vertex and its adjacent edges will likely
result in no serious loss of structural integrity. Recall that
a scale free graph is described by a vertex growth function
g(·) with the property that for any positive scaling β0

g(β0s) = h(β0) g(s) (1)

where h(·) is a function independent of the argument s.
From a structural point of view, resilience as a graph

problem bears some similarity with vertex centrality and
graph partitioning. Concerning the former, the more resilient
a graph is, then the fewer weak points is expected to have,
namely at the very least few, if any, articulation points and
simultaneously few low degree vertices. Regarding the latter,
a graph with high structural integrity is expected to yield
partitions of mixed quality because of the many alternative
paths interconnecting the different graph segments.

The primary contribution of this conference paper is a
new graph structural integrity metric based on the weighted
sum of the number of paths crossing each vertex. Moreover,
the CUDA implementation of this metric is algorithmically
described and certain aspects of this implementation are
discussed, especially concerning parallelism and memory
footprint. The analysis will be based on the following three
assumptions.
Assumption 1. The graph is undirected.

Assumption 2. The graph has a single component.



Assumption 3. Resilience has a structural meaning.

Although it is fairly easy to extend the proposed metric
in a way that one of the first two assumptions or both are
waived, the third assumption must be carefully taken into
consideration. The reason is that, if functional aspects are
to be added to the definition of resilience, then the role of
these functions and which conditions can lead to the loss
thereof must be throroughly examined and algorithmically
expressed.

The remaining of this work is structured as follows.
Section 2 provides an overview of edge fuzzy graphs. The
proposed graph resilience metric is described in section
3 along with a general comment regarding the mandatory
higher order nature of such metrics. Finally, section 4 out-
lines the datasets and the associated results, whereas section
5 recapitulates the findings and explores future research
directions.

Capital boldface are reserved for matrices, small bold-
face signifies a vector, capital letters represent sets or met-
rics, and small letters indicate constants or functions. Table
1 contains the notation of this work.

TABLE 1. PAPER NOTATION.

Symbol Meaning
4
= Definition or equality by definition
deg (vk) Degree of vertex vk
(v1, . . . , vn) Path with vertices v1, . . . , vn
|p| Path length
ζ0 Graph diameter
{s1, . . . , sn} Set containing elements s1, . . . , sn
|S| Cardinality of set S
1n Vector n× 1 of ones
‖x‖2 2-norm of vector x
⊗ Kronecker tensor product

2. Related Work

GPU computation has been long proposed as a means for
scalable graph computations ranging from parallel random
graph generation with predetermined up to an extent degree
distributions [3] [4]. Parallel graph analytics include graph
traversal [5], which can form the basis for parallel versions
of BFS or DFS, and graph coloring [6], which can be used
to efficiently estimate Jacobians in the iterative solution of
sparse linear systems.

Community structure discovery and vertex centrality are
both paramount concepts in graph mining as well as in
appliciations such as social media analysis, brain network
analysis, and protein-to-protein interaction networks. Al-
though they are discrete concepts, they are related to graph
resilience since they are factors directly influencing it. For
instance, in social network analysis digital influence was
shown to be related to smooth information diffusion over
the network [7] [8].

Resilience is an important characteristic of massive scale
free graphs allowing efficient information propagation even
in the face of temporary absence of certain edges [9] [10].

This rerouting capability which is achieved with minimal
effort ensures the continuation of communication throughout
the network [11] [12]. Applications of resilience include
communication networks [13], transportation networks [14],
brain networks [15] [16] [17], and protein networks [18] [19]
[20].

In addition to being an important problem of its own
right, graph resilience is linked to a number of fundamental
concepts of social network analysis. To begin with, re-
silience has been partly at least attributed to the modular
and recursive community structure of large graphs which
results in a combination of local communication redundancy
between communities with long range communication thr-
ough bridges connecting communities [21] [22]. Resilience
is also related to account influence [23] [24] or authority
[25] [26] in social media. Finally, reslience has connections
to the minimum cut problem which in turn is the basis for
graph partitioning algorithms [27] [28].

The latter are supported in the NetworkX library in
the Python ecosystem, massive graph processing systems
such as Google Pregel [29], deep learning frameworks such
as GraphLab [30], and persistent data structures like the
one proposed in [31]. Additionally, schemas for linked data
such as JSON4LD can be extended to include fuzzy graphs.
Finally, graph computations with GPU can be conducted
with Theano [32] [33].

3. Graph Resilience

3.1. Degree Distribution

Degree distribution in scale free graphs is a crucial
parameter for any kind of graph ranging from Erdös-Rényi
graphs to hyperbolic geometric and scale-free ones. For the
latter category, a number of distributions have been recently
proposed [34]. The first is the binomial distribution which
states for a graph G = (V,E) the probability that the degree
of a vertex v equals k is

prob {deg (v) = k; q0} =

(
|V |
k

)
qk0 (1− q0)

|V |−k (2)

where 0 ≤ q0 ≤ 1 is essentially a parameter controlling the
graph density compared to that of the complete graph with
the same number of vertices.

Since the empirical degree distributions are skewed and
not symmetric, the Poisson distribution has been proposed
as a model for the degree distribution for scale free graphs
where now the probability that the degree of v equals k is

prob {deg (v) = k;λ0} =
λk0
k!
e−λ0 (3)

In (3) λ0 is a positive parameter controlling the shape of the
distribution through the height and the width of its curve.
Thus, it also defines the decay rate or the tail height of the
distribution.

However, the Poisson distribution has two main draw-
backs concerning the modelling of scale free graphs. First,



it models two event classes, namely the common and the
uncommon ones1. Second, it has a relatively thin tail for
most values of λ0. On the contrary, empirical studies have
shown there are three degree classes and none of them is
uncommon as defined by the Poisson distribution. Moreover,
the actual degree distribution has a heavy tail. Therefore, the
power law distribution has been proposed where

prob {deg (v) = k; γ0} = α0k
−γ0 (4)

In (4) α0 is a normalizing constant such that

α0 =

|V |−1∑
k=1

1

kγ0

≈
∫ x2

x1

x−γ0dx+ ξ0

=


ln
(
x2
x1

)
+ ξ′0, γ0 = 1

x−γ0+1
2 − x−γ0+1

1
−γ0 + 1 + ξ′0, γ0 6= 1

(5)

where x1 and x2 are integration bounds strictly between 1
and |V | − 1 selected by appropriate approximation criteria
such as large set cardinality estimation [35], whereas ξ0 and
ξ′0 are correction factors. The exponent γ0 characterizes an
entire class of graphs and usually but not necessarily lies
between 2 and 3. The first value implies that the mean value
of the degree distribution is bounded, while the second value
means that the variance is also bounded.

3.2. Triangles

Conceptually it is fairly easy to understand the recursive
nature of communities. For instance a cultural group in
social media can be further subvided to literature, theater,
dance, and motion picture subgroups which in turn can be
further split recursively until some small and quite compact
communities are reached. However, in practice it is not
trivial to algorithmically distinguish two communities and
so far a number of criteria have been proposed.

On the contrary, closed triangles, namely the elementary
communities upon larger ones are recursively built, are
tracked easily. Furthermore, their number in a graph can
be computed using the graph adjacency matrix. Recall that
the latter, denoted by A, is defined elementwise as

A[i, j]
4
=

{
1, (vi, vj) ∈ E
0, (vi, vj) 6∈ E

∈ {0, 1}|V |×|V | (6)

Then, the number of triangles ∆ is

∆ =
1

3
tr
(
A3
) 4

=
1

3

|V |∑
i=1

A3[i, i] (7)

1. It is worth mentioning that Poisson used this distribution to study
deaths caused from horse kicks in the Prussian cavalry. Such deaths are
typically considered rare. It was used as a device of irony in Márquez’s
One hundred years of solitude.

Equation (7) holds as each entry of A`[i, j] by construction
holds the number of paths of length ` from vi to vj . And
a triangle is a closed path of length 3 from a vertex to
itself. Thus, the number of triangles each vertex participates
to is readily available. The only subtle point is that the
trace counts each triangle three times, one for each of its
vertices. Therefore, dividing each trace by three yields the
total number of triangles in the given graph.

As a sidenote, there is an manifestation of the connec-
tion between structural graph resilience and higher order
analytics. The former cannot be expressed in terms of first
or second order analytics as the combinatorial properties of
single vertices or single edges respectively are insufficient
to describe the global property of structural integrity. On the
other hand, third order analytics such as triangles can and
probably higher order patterns such as stars, lines, circles,
and cliques of variable sizes can be used to gain insight
to the inner workings of large graphs. This is attributed
primarily to the fact that a graph is by construction a
distributed combinatorial object. In a scale free graph small
world effects like a small diameter ζ0 of O (log log |V |)
or a large number of high degree vertices reinforce the
interplay between graph segments. Thus, local properties
tend to be similar to global ones, which implies that even
third, fourth, or fifth analytics may be able to capture global
graph properties. The ability to deduce global properties
from local ones in scale free graphs relies heavily besides
the nature of the analytics on the graph topology and, thus,
on the degree distribution.

3.3. Resilience Metric

Since each concept necessary to understand the proposed
metric intuitively has been explained, it is high time for the
metric to be explained algorithmically.

First, the number of both open and closed paths

P =
(
vj1 , vj2 , . . . , vjp

)
(8)

of length |P | = p are computed, where p ranges from 3
to p0. For open paths, vj1 6= vjp , while for closed paths,
namely cycles, vj1 = vjp . The intermediate vertices are all
distinct, implying that

vj2 6= vj3 6= . . . 6= vjp−1
6= vjp (9)

Note that since each path contains p vertrices, it also has
p− 1 distinct edges as no vertex repetition is allowed, save
for the last place. The length upper limit p0 is Θ (ζ0) where
ζ0 is the graph diameter. Although ζ0 may not be available,
for scale free graphs it is known to be O (log log |V |), which
is suffices for building the proposed metric as p0 simply
needs to be O (log log |V |) too.

Also, define the following sets

Σp
4
=
{
P =

(
vj1 , vj2 , . . . , vjp

)
; |P | = p

}
Σp(s)

4
= {P ∈ Σp ∩ s ∈ P} (10)



The first set Σp consists of all paths of length p, whereas the
second set Σp(s) comprises of all paths of length p which
also have s.

Second, the number of triangles ∆ is computed as
mentioned in equation (7). This is tantamount to computing
paths of the form

P ′ = (vj1 , vj2 , vj3 , vj1) (11)

Define the number of triangles which contain vertex vk as

∆(vk)
4
= A3[k, k] (12)

For each vertex vk the following weighted sum is formed

σ(vk;µ0)
4
= µ0

p0∑
p=3

1

p− 2
|Σp(vk)|

p0∑
p=3

1

p− 2
|Σp|

+ (1− µ0)
∆(vk)

∆
(13)

The interpretation of (13) is that it consists of the convex
combination of two factors. The first is the of the fraction of
the number of paths which contain vk to the total number of
paths of length up to p0. The second factor is the fraction of
the number of triangles containing vk to the total number of
triangles. The parameter µ0 lies inclusively between 0 and
1. Also, σ(vk;µ0) by construction lies in the same interval.

The final step in order to obtain the proposed metric J(·)
is to take the ratio between the maximum and the minimum
values in order to assess the gap between the most and the
less structurally important vertex of the graph

J(µ0)
4
=


max {σ(s;µ0)}
min {σ(s;µ0)} , min {σ(s;µ0)} 6= 0

0, min {σ(s;µ0)} = 0
(14)

The inspiration for (14) was the condition number κ2
of a matrix, where the ratio of the largest to the smallest
singular value determines the numerical condition of that
matrix. In a similar manner, J(µ0) is the relative distace
between the maximum communication value a vertex can
have to the minimum one. This depends on the parameter
µ0 as well as on the topology of the given graph. Thus, (14)
achieves its objective as it is roughly inversely proportional
to the structural graph resilience. The reason is that a large
gap indicates that there is a vertex whose communication
value is low. By the power law properties, the number of
vertices with low communication value is relatively high,
and, thus, there is a non-negligible fraction of vertices which
contribute little to the overall graph coherence.

Some comments regarding (13) are in order. Notice that
the contribution of paths are weighted by a factor which is
approximately inversely proportional to their length. This is
in accordance to the principle behind a large class of vertex
centrality metrics which rely on matrix series such as the
resolvent series r(·) proposed in [36]

r(s)
4
= (A− sI)−1 =

+∞∑
k=0

1

sk
Ak (15)

The resolvent series reveal important information about the
spectral properties of A and in general of bounded operators
in Hilbert spaces. Among others, the resolvent series can be
used to solve the inhomogeneous Fredholm integral equation

u(x) = g(x) + λ

∫ τ2

τ1

K(x, τ)u(τ)dτ (16)

The rationale behind indirectly penalizing long paths
through weights is that shorter paths typically contribute
more to graph resilience. This follows from the small world
phenomena [37], the short diameter [38], the high density
[39], and the large number of triangles in scale free graphs
[40].

Notice that the first factor of (13) is reminiscent of
the Newman metric. However, the latter is the ratio of the
shortest paths which contain a specific vertex to the total
number of shortest paths in a graph. Although the first factor
of (13) can be considered a very crude approximation of the
Newman metric, its origins are different and stem from a
rewiring principle. Additionally, that factor of (13) can be
efficiently computed in CUDA.

Additionally, the equation (13) is not a regularized equa-
tion but an ordinary convex combination as stated earlier.
Also, it does not rely on intricate quantities as other metrics
do, such as for instance the Estrada index, a resilience metric
h proposed in [41] which requires that the spectrum of A
be known. Specifically, the Estrada index is defined as

h
4
=

|V |∑
k=1

eλk (17)

where λk are the eigenvalues of the adjacency matrix.

4. Results

4.1. Comparison To Serial Implementation

In order to assess both the total execution time and
the actual parallelism gain, the proposed metric has been
implemented both in CUDA and mex. The latter is the
standard way to link and run C code inside MATLAB in
order to create programs which combine the rich MATLAB
native library collection with custom code which makes the
most out of the underlying hardware.

The computation of |Σp| is straightforward, since all is
needed is the sum of all entries of Ap. Furthermore, this
sum can be efficiently computed in a parallel environment.
However, the computation of |Σp(vk)| is quite different.
Although the straightforward approach of explicitly con-
structing each Σp(vk) induces a significant overhead, this
is compensated by the availability of multiple processing
units. Additionally, the following three simple conditions
which describe the incremental construction of Σp(vk) help
identify the paths of interest. Empirically, for most scale free
graphs, as the path length p increases, the number of paths
of length p initially increase, then they reach a critical point,
and then they start decreasing. Thus, it is relatively easy for



a GPU to count these paths, as, besides the part where each
processor is assigned a set of paths to check for a specific
vertex, the task is completely parallelizable.

The GPU in our disposal was a top end NVIDIA Titan
Xp PG611-C00 with 12GB of GDDRX5 memory. Since this
GPU yields 3840 CUDA cores and 240 texture units, the
Titan Xp offers massive parallelism.

In order to assess the correctness and the speed of the
proposed graph resilience metric, three families of synthetic
graphs were examined. These families were generated by the
Kronecker model, which leads to synthetic scale free graphs
whose properties are almost identical to that of real ones.
This model handles directly algebraically a given adjacency
matrix A, termed a generator matrix, in order to construct
a series of related, self-similar adjacency matrices through
the sequence

Ak+1 = Ak⊗A, k ≥ 1 (18)

where A0 = A. For the purposes of this work, three
generators were used, shown in figure 1. From left to right,
the generators 1a, 1b, and 1c have an increasing density,
namely low, middle, and high.

The density ρ0, namely the ratio of the number of
edges to vertices, is a basic graph feature which nonetheless
plays a significant role as it can be thought of as a crude
approximation to average vertex degree.

ρ0
4
=
|E|
|V |
≈ 1

|V |
∑
s∈V

deg (s) (19)

Notice that (19) is not the only graph density metric.
For instance, the log-density ρ′0 is defined as the logarithm
of the number of edges to the logarithm of the number of
vertices

ρ′0
4
=

ln |E|
ln |V |

=
ln (ρ0|V |)

ln |V |
= 1 +

ln ρ0
ln |V |

(20)

In the important special case when |E| = |V |c, then
(19) and (20) respectively reduce to

ρ0 = |V |c−1 = |E|1−
1
c

ρ′0 = c

In order to understand the nature of the three graph fam-
ilies which will serve as benchmarks, ρ0 and ρ′0 are shown.
Figure 2 shows the actual density values ρ0 for the first seven
Kronecker graphs for each of the three sequence. Although
in every case ρ0 scales up linearly with |V |, the growth
rate varies considerably. Thus, the three graph families are
expected to exhibit different resilience properties, since the
wiring in sparser graphs will be more likely to be severed
from edge removals.

Additionally, in figure 3 the actual logdensity values ρ′0
versus the logarithm (base 4) of |V | for the same graphs
are depicted. The similar lines indicate that the same graph
growth mechanism is in effect, including the log-density
pivot points. Thus, the graphs may be parameterized by
density or other factors of the generator graphs, but the
underlying mechanism is the same. Therefore, they are not

too dissimilar, at least as far as scaling is concerned, to
prevent any meaningful conclusions to be drawn.

Given that information regarding the benchmark graphs,
their resilience can be evaluated with the proposed metric
and the results can be analyzed under that prism. Figure
4 depicts the normalized values of J(µ0), meaning that
the each resilience value in all three graph families has
been divided by the smallest of them. This was done on
purpose, as a common scale, defined by the smallest attained
resilience value, would indicate similarities and differences
not only among the same graph family but also among
families. At the same plot the metric values for µ0 = 0.5
and µ0 = 0.75 are shown. Notice that in figure 4 the x-axis
is the same as in figure 3. This was done on purpose to
avoid the plot being overstretched. However, please keep in
mind that x-axis is essentially logarithmically scaled.

Regarding the relative resilience values, the results are
in general aligned to intuition as sparser graphs tend to be
considered less resistant to edge or vertex removals than
denser ones. However, this gap tends to become somewhat
smaller when the graphs grow larger. This can be attributed
to the small world phenomena that appear in larger free scale
graphs. This interpretation is supported by the fact that for
µ0 = 0.5, which gives to triangles equal importance with
nearly all other paths, the gap is even smaller. On the other
hand, for µ0 = 0.75, which considers vertex paths three
times more significant than the triangles, the gap between
the more and the less resilient graphs opens up about 1.2
and 1.5, roughly the half value of µ0. Again, gaps tend to
decrease with the number of vertices.

Now the question of scalability can be properly ad-
dressed. Figure 5 shows the relative speedup in total ex-
ecution time, namely the execution time of the serial im-
plementation divided by the time of the parallel one for the
same number of vertices. Please notice that again the x-
axis is logarithmically scaled. The adjacency matrices were
small enough fit at the GPU memory and most of the code
was written with that crucial fact in mind. As expected, the
speedup is big for small and sparse graphs as there are fewer
and shorter paths to count. On the contrary, the larger the
graph grows or the denser it becomes, the gap between the
two implementations closes. Nevertheless, the speedup was
significant even in these cases. Notice that the value of µ0

does not affect the computational time of these experiments.

Besides the advanced technology of the GPU and its
memory capacity, an important speedup factor was that the
vast majority of the task is easily subdivided to smaller
and parallel and independent tasks. Thus, the only limiting
factors are essentially the graph size, the number of threads,
and any synchronization barriers. This is in accordance to
Amdahl’s law, where the overall speedup Γ0 depends on the
percentage π0 of the task which can be actually parallelized
as well as on the speedup of that part as follows

Γ0
4
=

1

(1− π0) +
π0
Γ

(21)



(a) low (b) mid (c) high

Figure 1. The generator graphs.
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4.2. Comparison To The Estrada Index

The only question which remains to be addressed is
how well does J(·) performs compared to an established
structural graph resilience metric. Although the findings of
the previous subsections are reasonable, a comparison to
another metric can shed some light on the way the proposed
metric works. In this case the Estrada index, presented at
(17) has been selected both because of its intuitive meaning
and of the empirically verified correct results which yields.
In fact, in this subsection the approximation of equation (22)
to the Estrada index will be also used in order to assess the
performance of the proposed metric.

Although the computation of the exponential function
may be prone to numerical errors depending on the argument
and the implementation, it is assumed here that it is executed
perfectly and, thus, no such errors are present. Keeping the
g0 largest of the (signed) eigenvalues yields the approxima-
tion

h′ =

g0∑
k=1

eλ
′
k (22)

Here it is assumed that λ1 ≥ .. ≥ λg0 > 0.
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Figure 3. Log-density values ρ′0.

The scheme for computing h′ is shown in algorithm
1 which relies on the power method. Although the largest
eigenvalue of A is known to be positive from the Perron-
Frobenius theorem, this cannot be said for the remaining
eigenvalues. In fact, large scale free graphs have been in
many cases empirically shown to have negative eigenvalues
or even a segment of their spectrum alternating around
zero. Thus, although the power method does find the largest
eigenvalue, it does not guarantee to yield a positive one.
Thus, it is expected that in some cases more than g0 repe-
titions of it will be used. Nonetheless, the rank one matrix
corresponding to a negative eigenvalue must be subtracted
from A. The selection of the initial s guarantees that there
will be components from every available direction.

The relative distance between the values of J(·) and h′
when the latter serves as the reference value is defined as

d0(|V |;µ0, g0)
4
=

∣∣∣∣h′ − J(µ0)

h′

∣∣∣∣ (23)

Figure 6 shows the relative distance between the pro-
posed resilience metric and the Estrada index for the
three graph families. The Estrada index was computed for
g0 = d0.1|V |e, whereas J(·) was computed for µ0 = 0.5.
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Figure 4. Graph resilience.
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Although for small graphs there is a considerable distance,
as graphs grow bigger this gap is reduced. This is attributed
to the fact that the more paths are taken into consideration,
more information regarding the structural coherence of a
graph is revealed. Please note that also in this case the x-
axis is logarithmically numbered.

5. Conclusions and Future Work

This conference paper presents a metric balancing paths
and triangles, both fundamental elementary graph building
blocks,for assessing the structural resilience of large graphs.
Additionally, the speedup of a parallel implementation in
CUDA for an NVIDIA Titan Xp is evaluated compared
to that of a serial coding in mex, the standard way for
linking C code to MATLAB. Besides the very satisfactory

Algorithm 1 Approximation (22) to Estrada index (17)
Require: Adjacency matrix A; threshold η0; eigenvalues g0
Ensure: h′ is computed as in (22)

1: repeat
2: s[0] ← 1|V |/

√
|V |

3: repeat
4: s[j+1] ← As[j] and s[j] ← s[j+1]/

∥∥s[j+1]
∥∥
2

5: until
∥∥s[j+1] − s[j]

∥∥
2
≤ ′η0

6: λ′k ← s[j+1]TAs[j+1] and A ← A−λ′ks[j+1]s[j+1]T

7: if λ′0 > 0 then
8: h′ ← h′ + eλ

′
k

9: end if
10: until g0 positive λ′k have been found
11: return h′
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Figure 6. Relative distance to the Estrada index.

speedup, which can be attributed to the highly parallelizable
nature of the proposed metric, the relative distance from
an approximation of the Estrada index has been found to
be within acceptable bounds. Three families of Kronecker
graphs of various density were used as benchmarks in the
experiments.

This work can be extended in a number of directions.
An immediate task would be to explore the parameter space
for values of the single parameter µ0 which reveal impor-
tant information about the graph. Simultaneously, as this
work emphasizes on structural resilience, it makes sense to
search for more elementary building blocks such as stars
and squares to be included in the proposed metric. The
relationshp netween graph connectivity patterns and the
spectrum of the associated afjacency matrix must be also
investigated. Needless to say that more experiments with
larger graphs of finer granularity regarding their density are
in order.
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