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Abstract: Deep Learning has dramatically advanced the state of the art in vision, speech and many
other areas. Recently, numerous deep learning algorithms have been proposed to solve traditional
artificial intelligence problems. In this paper, in order to detect the version that can provide the
best trade-off in terms of time and accuracy, convolutional networks of various depths have been
implemented. Batch normalization is also considered since it acts as a regularizer and achieves the
same accuracy with fewer training steps. For maximizing the yield of the complexity by diminishing,
as well as minimizing the loss of accuracy, LSTM neural net layers are utilized in the process.
The image sequences are proven to be classified by the LSTM in a more accelerated manner, while
managing better precision. Concretely, the more complex the CNN, the higher the percentages of
exactitude; in addition, but for the high-rank increase in accuracy, the time was significantly decreased,
which eventually rendered the trade-off optimal. The average improvement of performance for all
models regarding both datasets used amounted to 42%.

Keywords: batch normalization; convolutional neural networks; deep learning; image classification;
knowledge extraction; LSTM neural networks; recommendation systems

1. Introduction

Nowadays, the quantity of available data keeps increasing on a daily basis, mainly because of
the vast production that an average user can provide. This multimedia type of information has made
possible new ways of processing data and understanding how to restructure them for our daily needs.
However, still, we are not taking full advantage of the meta-information that the data present to us,
mainly because of the lack of our ability to pinpoint their inherent visual representation. In order to
fulfil this ever-growing need, the creation of systems that can explain a visual piece of information
through semantic and algebraic features is deemed highly integral.

In most cases, dividing the procedure of representing and deducting the content of an image can
be arranged just as in the work of [1]. In the beginning, the features that are to be produced must consist
of a low-level representation, before advancing to more perplexing stages. Most common of these
are color-related features, the texture of an image or even its shape. This low-level representation of
characteristics can be easily approximated with a single vector representation as a flattened version of
the image matrix. In order to reduce their sensitivities to potential information loss and ambiguity, it is
attempted to provide them with more context-specific descriptors, since the aforementioned features
are further developed. Such attempts were introduced in the works of SIFT [2], SURF [3] and HoG [4].
These newly-found descriptors appear to have a more robust behavior on homography distortions,
especially when it comes to a comparison with the global features. To summarize the extracted
knowledge of such procedures, the spatial features are rearranged with bag of visual words [5].
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Another work heavily based on descriptor extraction was produced by [6]. The L2 norm was
utilized in this work, during the training and testing steps, mainly to create the multi-dimensional
feature maps. These descriptors were easily adapted to Siamese networks with non-corresponding
patches, thus enabling its utility in every algorithm pertaining to the logic of SIFT.

Studies have recently indicated that there does not exist a single procedure to characterize all
datasets with the same features accordingly. However, the pure unprocessed data can often provide
the most beneficial routes to extract the desired features of the available data, in contrast to the ability
of a human to manually assign labels according to his/her general observations. This human-machine
contradiction and comparison is also seen in the work of [7]. Despite the obvious ability of humans to
correctly label faces, especially widely-known people that can rarely be misunderstood, their proposed
network conglomerate of layers achieved almost identical accuracy, as well as false positive rates along
with the manual human labeling. Of course, the time that the algorithm consumed to rank each face
image, in comparison to the human labeling, was negligible, as the computer processing the images
needed 0.33 seconds per image for the complete assignment of a label to a face.

Currently, the breakthrough of deep learning as a subfield of machine learning [8] has introduced
a new idea that consists of translating the pixels of a matrix to an applicable form through
iterative algorithmic learning. Most algorithms that pertain to the deep learning field pursue a
high-level generalization of the available data at hand, through a hierarchical stack of processing
layers. Each paralleled layer can produce a milestone output that has concluded a partial analysis
on the starting image. Many state-of-the-art deep neural networks have peaked at substantial
performances through an abundant layer depth analysis on the corresponding datasets. As the
depth of the stack increases, so does the complexity. The two metrics are not always analogous, and in
particular situations, a bigger neural network may be deemed detrimental in comparison to a smaller,
more compact and, thus, more sufficient in terms of algorithmic time needed.

Taking a step further in the logical continuum of deep learning, the computational power of the
current technology can be utilized to a great extent in order to detect the desired feature descriptors
for input images. Deep learning algorithms in their nature are able to train themselves through the
incoming input data in order to create the high level abstraction that describes the data. The most
appropriate kind of architecture for such tasks is comprised by Convolutional Neural Networks
(CNNs). The CNNs posses a layer stack that convolves the input image against a number of filters
before they present the final result. These filters are an inextricable part of the CNN and contribute
immensely to the simple convolution.

The primary contribution of this article consists of the following aspects. Initially, a framework
capable of generating hierarchical labels, by integrating the powerful Convolutional Neural Networks
(CNN), used to generate discriminative features, is introduced. Secondly, batch normalization is
utilized so as to allow the use of much higher learning rates and be less careful about initialization.
Specifically, it acts as a regularizer, whereas when applied to a state-of-the-art image classification
model, batch normalization achieves the same accuracy with fewer training steps and beats the
original model by a significant margin. In the following, the LSTM neural net layers, which frame
the CNN schema, are properly introduced. Following the convolution feature extraction procedure,
the long short-term memory NNs tackle a variation of a min-max problem; this neural layer attempts
to maximize the yield of the complexity tendency to diminish, while simultaneously minimizing
the loss of accuracy in the process. The input data feature maps, as generated by the CNNs,
are considered a sequential streamline of images. Such image sequences can be classified by the
LSTM in a more accelerated manner, as well as accomplish appealing amounts of approximately
indistinguishable accuracy.

In initial efforts, such as [9], the authors used more modern CNNs for encoding, and thus, they
replaced feed-forward networks with recurrent neural networks [10]. In particular, the LSTM cell has
been utilized, as it outperforms other competing methods and also learns to solve complex, artificial
tasks that no other recurrent net algorithm has solved [11]. The common theme of these works is
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that they represented images as the top layer of a large CNN (hence, the name “top-down”, as no
individual objects are detected) and produced models that were end-to-end trainable. Furthermore,
a multiplicative input gate unit is introduced in order to protect the memory contents stored in a linear
unit from perturbation by irrelevant inputs. The resulting, more complex unit is called a memory cell,
where its cell is built around a central linear unit with a fixed self-connection [12]. We differentiate our
proposed work from the one in [12], as optimization techniques and different metrics for validating
the improvement of the proposed architecture are incorporated.

The remainder of the paper is structured as follows: Section 2 overviews related work. Section 3
presents in detail the techniques, modules and sub-modules of our model that have been chosen, while
in Section 4, our proposed system architecture is presented, as well as details of the implementation
and the evaluation conducted in Section 4. Ultimately, Section 5 presents conclusions and draws
directions for future opus that may extend the current version and performance of this work.

2. Related Work

One of the most critical branches of machine learning consists of deep learning; a thorough
procedure that attempts to classify given data through a hierarchical structuring of their
meta-information. The currently proposed work is widely based on an applied domain of artificial
intelligence, such as computer vision [13,14]. The main reasons behind the steep escalation of deep
learning are divided into the following partitions: the current processing power of GPU technology,
the ever diminishing retail cost of hardware and, of course, the breakthrough of the related machine
learning science in general.

Regarding the Convolutional Neural Networks (CNN) in particular, they constitute a classification
procedure where a stack of layers is fitted on a specific set of data [15]. CNNs find great use in
computer vision specifically, as they have been considered the most effective approach of the related
field. They can tackle issues that have been until recently deemed unsolvable, as they can rapidly
provide descriptions for numerous images at once [16–18]. Flexible as they are, in depth, as well as
their layer stack width, they possess the capability of refining said image descriptions and fine-tuning
their statistics. Hence, CNNs in comparison to the classic neural nets are vastly more advanced and
rapid, as a consequence of their lower parameter and connection complexity. Their predominant
disadvantage lies in the dataset that is needed to train the model. In contradiction to the classic Bayesian
NNs, where over-fitting is easily avoided, the classic datasets are susceptible to this phenomenon
when the data available are not big enough.

In [19], the authors attempted to create new and more specific descriptors for the images; outlines
that stem from a local proximity effect of the given training data. The combination of the locally
connected descriptors provides a great reduction in the problem’s dimensionality, as well as new
ground truths for the available data.

An attempt to normalize CNN input has been done by [20], in order to address the issue of the
internal covariate shift. During a deep neural network training, many issues emerge due to image
abnormalities of the specific information distribution. Each fitted node of the layer changes with
every iteration, thus significantly delaying the model learning rate, as well as its total convergence.
Such input irregularities cause the model training to be exponentially harder. Therefore, in order
to avoid such complications, we implement a layer of batch normalization in the proposed schema,
thus reducing the issue of the internal covariate shift and rendering the need for immediate dropout
layers optional.

In contrast, the authors in [21], present a Bayesian CNN, which can efficiently provide a robust
algorithmic behavior when it comes to the over-fitting of smaller datasets, compared to the previously
elaborated CNNs. Their main difference is the probabilistic concept that is introduced in the Bayesian
CNNs, where a distribution is scattered on the kernels, and this theoretically supports the idea of
inference in the Bayesian neural networks in lieu of classic dropout training.
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Furthermore, works in [22], [23] propose a probabilistic network scheme, e.g. inference network.
This probabilistic model consists of four component levels, which takes as input the belief of the user for
each query (initially, all entities are equivalent) and produces a new ranking for the entities as output.
In [22], authors propose a semantically driven Bayesian Inference Network, incorporating semantic
concepts so as to improve the ranking quality of documents. Similarly, in [23], authors consider the
emotions associated to brand love appearing in the form of terms in users’ Twitter posts. Building on
existing work that identifies seven dimensions in brand love, they propose a probabilistic network
scheme that employs a topic identification method so as to identify the aspects of the brand name.

Moreover, in [24], the authors captured a compelling dataset of human movement and motion
that characterized the labeled movements. Then, a framework of the deep learning field was created,
which was applied on the dataset and managed to predict successfully a high percentage of queries
regarding future human movements in immediate succession.

One of the major matters of contention in the deep learning subfield consists of the neural net
converging point. There exists an analogous connection between the depth of the network layer and
model accuracy. This degradation, while relevant to the existing amount of data, is inconsequential to
overfitting, thus rendering any extra layer that may be added to the stack detrimental to the overall
performance. How [25] to tackle this issue was the introduction of a framework consisting of a deep,
residual learning with layers that fit a similar residual mapping, this reducing the probabilistic fitting
that a specific underlying mapping could provide. More specifically, this fundamental, latent mapping
H(x), as well as the non-linear layers fit another aspired mapping of F(x) := H(x)− x, where the
initial mapping is then denoted as F(x) + x.

Such difficulties were addressed also in the work of [26], where the authors experimented heavily
with the intricacies of training a deep neural network, through understanding how and when gradient
descent works more efficiently and when it does not. They experimented with non-linearities and
their influence on the model, as well as how the activation functions were initialized. Their results
concluded in a new initialization scheme to overcome the aforementioned issues.

In the work of [27], the corresponding authors made a proposal for extending a classic activation
function of deep learning, the ReLU. The main concept of this extension was called Parametric Rectified
Linear Unit (PReLU), and its main activity pertained to the adaptation of the model on learning the
rectifiers’ hyper-parameters, as well as maintaining the computational complexity, while boosting
the accuracy.

One of the biggest contribution of the field, as elaborated in the work of [14], is the ImageNet
convolutional neural net, which was used in the ILSVRC (ImageNet Large Scale Visual Recognition
Competition) competitions (http://www.imagenet.org/) of 2010 as well as 2012 and was trained
with the marginally highest results. The main contribution of this authors’ work was the paralleled
optimization of the 2D convolution on GPU units, as well as the rest of the operations taking place in
the CNNs. The newly-found features of this proposal increased the model’s performance, but also the
time consumed for the execution of the algorithm.

Concerning the recurrent layers of the schema, [28] et al. in their work implemented an empirical
evaluation and comparison of different RNNs (Recurrent Neural Networks) such as the Gated
Recurrent Units (GRUs) and the Long Short-Term Memory Units (LSTM). During their experiments
on speech signal modeling, it was evidently revealed that tanh units were mainly out-scaled in terms
of performance by the advanced GRU units. Finally, the authors in [29] analyzed a Convolutional
Long Short-Term Memory recurrent Neural Network (CNN-LSTM) aiming to successfully recognize
gestures of varying duration and complexity.

3. Material and Methods

In this section, a formal definition of all the layers that constitute our hybrid schema and a brief
description of the semantics that lie behind each case are presented.

http://www.imagenet.org/
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3.1. Convolutional Layer

The two main parts that constitute a convolutional neural net that is applied as a layer to the
input data are the following. The sequence of the input-stream is distributed to a number of d

′
filters,

whose size amounts to r, F ∈ <d
′×r:

ft = φ(F[et−(r/2)+1; . . . ; et; . . . ; et+(r/2)]) (1)

The activation function of our layer is denoted as φ. Other options, such as tanh or a rectifier unit,
exist, although a non-linear function is chosen. For every part of the sequence of inputs that the function
is applied to, a part of the resulting sequence is produced that we denote as F = ( f1, f2, . . . , fT).

The product of the convolutional layer F is then followed by a max-pool layer with a kernel of
according to size r

′
, while all the elements of the resulting vectors are processed through max, thus

producing a scalar product:

f
′
t = max( f(t−1)×r′+1, . . . , ft×r′ ) (2)

F
′
= ( f

′
1, f

′
2, . . . , f

′

T/r′
) (3)

3.2. ReLU Nonlinearity

The standard way to model a neuron’s output f as a function of its input x is with f (x) =

tanh(x) or f (x) = (1 + e−x)−1. In terms of training time with gradient descent, these saturating
nonlinearities are much slower than the non-saturating nonlinearity f (x) = max(0, x). Following the
work presented in [30], we refer to neurons with this non-linearity as Rectified Linear Units (ReLUs).
Deep convolutional neural networks with ReLUs train several times faster than their equivalents with
tanh units. Rectified linear units, compared to the sigmoid function or similar activation functions,
allow for faster and effective training of deep neural architectures on large and complex datasets.

3.3. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) constitutes an effective way of training deep networks,
similar to the ones utilized in the present manuscript. Concretely, SGD variants, like momentum
Adagrad [31,32], have been used in other studies in order to achieve state-of-the-art performance.
What is more, SGD optimizes the parameters Θ of a concrete network so as to minimize the loss,
as mentioned in the following equation:

Θ = argmin
1
N

N

∑
i=1

l(xi, Θ) (4)

where x1,...,N is the training dataset. With the use of SGD, the training phase is utilized in steps, whereas
at each step, a mini batch x1,...,m of size m is considered. Regarding mini-batch, it is commonly used
in order to approximate the gradient of the loss function with respect to the parameters. Therefore,
the following computation is considered:

1
m

∂l(xi, Θ)

∂Θ
(5)

The advantages of using mini-batches of several examples instead of using mini-batches of one
example are considered as follows. Initially, the gradient of the loss over a mini-batch is regarded an
estimate of the gradient over the training set, where its quality improves as the batch size increases.
In the following, the parallelism afforded by the modern computing platforms drives the much more
efficient computation over a batch than the m computations for different individual examples.
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On the other hand, despite the fact that stochastic gradient descent is simple and effective,
it requires careful tuning of the model hyper-parameters. These parameters include the learning rate
used in optimization, along with the initial values regarding the model parameters. More specifically,
the training phase is overly complicated since the inputs to each layer are affected by the parameters
of all preceding layers; as a result, small changes in the network parameters are amplified while the
network becomes deeper.

3.4. Batch Normalization Layer

Furthermore, the nature of each layer’s parameters implies a great complication as far as the
convergence of the model is concerned. A respectable amount of deviations is observed, on the
values of the input layers with each passing feature set. Therefore, there emerges a significant need to
normalize each feature, within a given amount of previous and subsequent feature vectors, which are
denoted as batches. Thus, a multi-dimensional input, which is accepted by a layer, x = (x(1) . . . x(d)),
has each of the d dimensions normalized in terms of mean and variance:

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
(6)

Following the application of the aforementioned procedure on the input layers, the
newly-normalized values of the vectors are denoted as, x̂1,...,m, while the linear transformations
of x̂ are denoted as y1,...,m.

Therefore, the complete layer of the batch normalization is completed as presented:

BNγ,β : x1,...,m → y1,...,m (7)

The BN transform, as the batch normalizing procedure is denoted, is further elaborated with
its according functions in Table 1. The constant ε, which is utilized in the corresponding functions,
contributes to the numerical stability of the problem.

Table 1. Applying the batch normalizing layer on a given batch of inputs.

Description Function

Input Values of x over a batch: B = {x1,...,m};

Input: Parameters to be learned γ, β

Output {yi = BNγ,β(xi)}

Mini-batch mean µB ← 1
m ∑m

i=1 xi

Mini-batch variance σ2
B ←

1
m ∑m

i=1(xi − µB)
2

Normalize x̂i ←
xi−µB√

σ2
B+ε

Scale and shift yi ← γx̂i + β ≡ BNγ,β(xi)

3.5. LSTM Layer

The LSTM neural network can be coherently presented as a set of sequential functions that process
the data input layer, in between the current and the subsequent hidden states of the algorithm. The final
product pt+1 of the LSTM neural net whose input is denoted as xt, mt and ct the aforementioned
sequence of hidden states, is produced through the following equations:

it = σ(Wixxt + Wimmt−1) (8)

ft = σ(W f xxt + W f mmt−1) (9)
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ot = σ(Woxxt + Wommt−1) (10)

ct = ft � ct−1 + it � tanh(Wcxxt + Wcmmt−1) (11)

mt = ot � ct (12)

pt+1 = So f tmax(mt) (13)

What ft denotes is the “forget gates” of the network. The model’s “forget gates” have the
capability of ignoring specific past states of certain memory cells. On the other hand, the input gates it
of the model have the power to ignore certain parts of the input in contrast to the previous cell states.
The output gate is denoted by ot, whose purpose is to administer a filter to the current memory cell.
This is then taken to the final hidden state.

These gates and their conglomerate structure allow this version of recurrent neural networks to
map dependencies between specific inputs and the long-term behavior of the network, as well as to
avoid gradients whose value is exponentially surging to inconvenient peaks.

3.6. Dropout

The dropout layer [33], which is applied sequentially following the previous stack of filters, acts
as a regularizing tool of the input data when deep neural networks are concerned. Let the output
product of a neural network, which is L layers deep, be denoted as ŷ, initialized with an according
loss function E(· , · ) with the softmax loss function as a potential loss function or the Euclidean loss
function, which is also often called square loss. Then, all weights of each dimension of the neural
network are initialized, through a corresponding matrix, which will contain Wi, Ki × Ki−1, as well as
bi, which denotes the bias, is applied with each parsing of the network, where the dimensions are Ki
and each layer i = 1, . . . , L.

The optimization of the neural network often requires another variable that acts as a regularizer of
the input. This variable is frequently the L2 norm, reduced by a certain λ decay rate, before achieving
its latter goal of minimization [21,34]:

Ldropout :=
1
N

N

∑
i=1

E(yi, ŷi) + λ
L

∑
i=1

(‖Wi‖2
2 + ‖bi‖2

2) (14)

What a dropout makes possible is the sampling of the binary variables of the network, for every
input and layer accordingly. These variables are initialized with a certain value of one. The probability
for their initialization is pi, where i denotes the specific current layer. If this value is not one, but
is initialized with zero, then it is decided that this specific unit is dropped. This procedure and its
variables are then utilized during the backward pass propagation of the model’s parameters.

The application of the dropout layer often takes place following the last convolutional layer of
a given network, as well as after a recurrent type of layer, such as LSTMs or GRUs, if existent. Below,
the inputs xt of the recurrent layers are presented, before the application of said dropout layer, where
f
′
t denotes the output, which the last convolutional layer of the stack has produced:

xt = f
′
t (15)

With the addition of the dropout technique, the following are presented:

ri
t ∼ Bernoulli(p) (16)

xt = rt � f
′
t (17)

The variable p denotes the dropout probability. This is often set to 0.5; thus, Equation (16) notes
that the dropout vectors are produced through the binary nature of the probability density function of

Bernoulli. As for ri
t, this denotes the i-th element of the binary rt ∈ <d

′
vectors.
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3.7. Input Representation

As has been introduced in the literature of recurrent neural networks, the information contained
in the sequence of words S0, S1, . . . , St at a certain time t + 1 is represented by a fixed length hidden
state ht. The following hidden state constitutes a non-linear function of the past hidden state,
as well as the current input, which produces an updated memory that can capture, through time,
non-linear dependencies:

ht+1 = f (ht, xt+1) (18)

Regarding the non-linear function f , it is of utmost importance to efficiently represent the
corresponding inputs x of our model. Specifically, the non-linear function that is implemented in the
present manuscript is the LSTM one. As mentioned above, the LSTM cell [11] has increasingly become
popular in recent years due to the fact that it has the potential to capture long-term dependencies in
sequence prediction problems. Moreover, LSTM has the ability to cope with the vanishing/exploding
gradient problems in recurrent neural networks.

As it is already known, deep convolutional neural networks have achieved state-of-the-art
performances regarding the field of image classification in recent years. Therefore, the use of a
convolutional neural network for mapping images I to fixed length vector representations is considered
in order to represent images strategically. Specifically, the architecture of GoogleNet [35], which
employs an innovative batch normalization technique, is used. In the following, x = CNN(I) is
considered as a Di × 1 vector, where Di is the fixed dimension of any input that is given to the LSTM.

4. Experiments and Results

4.1. Dataset Description

The dataset used in the experiments was the MNIST database (http://yann.lecun.com/exdb/
mnist/) [15]. MNIST consists of a collection of 60,000 hand written digits in image-oriented matrix
format. Each image is associated with a specific label, which signifies the expected digit prediction
according to the digit intention of the writer. This labeled dataset can be easily adapted to classification
algorithms; regarding the current work, the labeled images iteratively trained our proposed neural
network. Additionally, our model was also trained on another dataset, CIFAR10, in order to
further evaluate the contribution of our work. CIFAR10, just like MNIST, is a collection of images,
correspondingly labeled with a number to represent ten different classes.

4.2. Implementation

As presented in Figure 1 and Table 2, the flow of information starts with the layer of the input
image. The abbreviations for the different methods utilized in the present manuscript are introduced
in Table 3. As provided by the MNIST dataset, all images of the experiments were of a rectangular
shape and of 28× 28 dimensions exactly. In the case of the CIFAR10 dataset, the initial dimensions
were 32× 32. Each image of the corresponding batch was then proceeded in a series of convolutional
layers where the first part consisted of a 32-channel decomposition of the image. The initial kernel
size was 5× 5, and although the dimensions of the image remained the same, the number of channels
constituted units that were easily adapted to the ReLU (Rectified Linear Units) activation function.
The following layer consisted of a max pooling procedure where all 32 channels were directly fed
to a sample-based discretization process of max pooling. There, the dimensionality of the input
representation was reduced, according to the decided kernel size. Since the pooling’s kernel was 2× 2,
our new dimensions for the channels, known as feature maps, were 14× 14 (16× 16 for CIFAR10
dataset). To conclude the initial set of layers, the batch normalization technique was performed.
Concretely, the gradients of the batch were less vulnerable to outliers, and a normalized range was
created within the mini-batch, thus accelerating the learning process by allowing a faster convergence

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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for the model. Please note that the aforementioned process was repeated two and three times for the
two different proposed models, respectively.

IMAGE

Convolutional Layer 1

FM1 FM2 FMn

Pooling Layer 1

P1 P2 Pn

Convolutional Layer 2

FM2
1 FM2

2 FM2
3 FM2

n

Pooling Layer 2

P2
1 P2

2 P2
3 P2

n

LSTM Layers

Restack To Flatten

LSTM1 LSTMn

Fully-Connected Layer

So f tmax Layer

Figure 1. Network infrastructure (where FMi is the i-th feature map and Pi is the i-th pooling layer).
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Thus, the first step of our proposed schema consisted of this particular set of layers and could
be replicated in matters of iterations and variable initialization. The second step of our process
consisted of the restructuring of the LSTM units’ layer in order to accelerate the process accordingly.
As elaborated in the Introduction, in our proposed schema, a number of LSTM units was interposed
between the convolutional and the dense layers. A separate LSTM layer was assigned for each
feature map produced by the convolutional layers. Their output was directly relevant to the selected
number of output units, which was initialized as 1 in our schema, and was constructed together
through a recompositioning step, arranging all output vectors as a 2-dimensional single output. Before
completing the schema with the dense and logit layers, the constructed LSTM output was flattened in
a single long vector, in order to adapt to the inputs of the conclusive fully-connected layer and produce
the probabilities of the ten-digit classifier.

Table 2. Abbreviations for different methods utilized.

Layer Dimensions Channels Kernel Size

Input Image 28 × 28 1
Convolutional/ReLU 28 × 28 32 5 × 5

Max Pooling Layer 14 × 14 32 2 × 2
Batch Normalization 14 × 14 32
Convolutional/ReLU 14 × 14 64 3 × 3

Max Pooling Layer 7 × 7 64 2 × 2
Batch Normalization 7 × 7 64

LSTM Layer 7 × 1 64
Fully-Connected/Dense 1000

Dropout Layer
Fully-Connected/Softmax 10

4.3. Evaluation

Regarding the results as presented in Tables 4–7, as well as Figures 2 and 3, a safe assumption
can be extracted concerning the fluctuations in accuracy of the concerned methods. More specifically,
the performance of the proposed schemes in terms of accuracy, loss (cross-entropy), in accordance
with execution time (in seconds) has been measured. All results are comprised of the average out of
five different runs in order to avoid outliers.

As expected, the baseline approach that contained a regular convolutional scheme maintained a
steady and linear progression in its accuracy, as well as in the time needed for the completion of the
experiments. In the event of including a batch normalization layer after the convolutional net, the total
completion time of the corresponding experiments marginally increased. That chronic increment
amounts to the sum of computations applied during the reduction of the covariate shift.

Making the convolutional network deeper, thus more complex in dimensionality, will affect
the model’s performance. In the present work, convolutional networks of various depths were
implemented in order to detect the version that could provide the better time-accuracy trade-off.
Indeed, the more complex CNN managed to achieve higher percentages of accuracy. Despite the time
needed, accuracy was increased in high ranks, which made the trade-off suboptimal.

The conglomerate structure of the previous baseline network, in sequence with our additional
LSTM neural net logic, yielded results within our expected range of values. The precision of our novel
approach scaled increasingly as the model was trained with additional epochs. In comparison with
the baseline methods, similar results were achieved with a standard deviation of 2× 10−3, while also
occasionally yielding surpassing accuracy scores. However, on the contrary, in terms of the experiment
completion time, the results highlighted our approach as importantly more rapid in execution. While
maintaining similar amounts of accuracy, our novel CNN-LSTM technique managed to reduce the
execution time by 30% during the first unstable epochs and by approximately 42% after convergence.
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More specifically, after 50 epochs of training on the MNIST dataset, our model achieved a 36% and
44% improvement on its results on the 2-CNN model and 3-CNN model, respectively; that is, regarding
the comparison of the model that contained our contribution with the CNN-LSTM architecture against
the model that achieved the highest accuracy. With the gradual increase of the data that were supplied
for the training step of the models, their percentages were scaled to 42% and 40%, again, respectively.
Regarding the experiments on the CIFAR10 database, our model provided similar results in terms
of accuracy and execution time, as expected. The first results of the execution time comparison
presented a 42% improvement on both the 2-CNN, as well as 3-CNN layer models. Providing a bigger
amount of data, just like the previous experiment with MNIST, yielded an improvement of 41% and
43% accordingly.

Table 3. Abbreviations for different methods utilized.

Abbreviation Description

C1 First Convolutional Layer
C2 Second Convolutional Layer
C3 Third Convolutional Layer

B_N Batch Normalization
LSTM Long Short-Term Memory Neural Layer

Table 4. Accuracy, loss and time for different numbers of epochs (10% sample) for the MNIST dataset.

Methods Accuracy (Percentage) Loss (Cross-Entropy) Time (s)

Epoch = 1

C1 + C2 87.7 0.43 104
C1 + C2 + B_N 92.8 0.2 107
C1 + C2 + B_N + LSTM 90.8 0.314 78
C1 + C2 + C3 87.7 0.38 149
C1 + C2 + C3 + B_N 95 0.16 149
C1 + C2 + C3 + B_N + LSTM 87.1 0.41 111

Epoch = 5

C1 + C2 94.3 0.15 448
C1 + C2 + B_N 97.1 0.097 519
C1 + C2 + B_N + LSTM 95.8 0.137 278
C1 + C2 + C3 95.6 0.145 595
C1 + C2 + C3 + B_N 97.2 0.084 768
C1 + C2 + C3 + B_N + LSTM 96 0.11 467

Epoch = 10

C1 + C2 95.3 0.15 956
C1 + C2 + B_N 97.1 0.097 1048
C1 + C2 + B_N + LSTM 95.8 0.137 756
C1 + C2 + C3 96.2 0.13 1262
C1 + C2 + C3 + B_N 97.5 0.095 1356
C1 + C2 + C3 + B_N + LSTM 97.3 0.09 810

Epoch = 20

C1 + C2 96.1 0.101 1961
C1 + C2 + B_N 97.2 0.085 2174
C1 + C2 + B_N + LSTM 97.3 0.081 1378
C1 + C2 + C3 97 0.12 2510
C1 + C2 + C3 + B_N 97.6 0.092 2741
C1 + C2 + C3 + B_N + LSTM 97.4 0.09 1696

Epoch = 40

C1 + C2 97 0.101 3866
C1 + C2 + B_N 97.7 0.098 3887
C1 + C2 + B_N + LSTM 97.5 0.088 2484
C1 + C2 + C3 97.3 0.13 5080
C1 + C2 + C3 + B_N 97.8 0.097 5395
C1 + C2 + C3 + B_N + LSTM 97.6 0.09 3007
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Table 4. Cont.

Methods Accuracy (Percentage) Loss (Cross-Entropy) Time (s)

Epoch = 50

C1 + C2 96.9 0.102 4790
C1 + C2 + B_N 97.7 0.097 4794
C1 + C2 + B_N + LSTM 97.6 0.082 3045
C1 + C2 + C3 97.4 0.12 6351
C1 + C2 + C3 + B_N 97.8 0.097 6809
C1 + C2 + C3 + B_N + LSTM 97.8 0.091 3812

Table 5. Accuracy, loss and time for different numbers of epochs (20% sample) for the MNIST dataset.

Methods Accuracy (Percentage) Loss (Cross-Entropy) Time (s)

Epoch = 1

C1 + C2 91 0.28 185
C1 + C2 + B_N 95.9 0.123 186
C1 + C2 + B_N + LSTM 93.9 0.205 113
C1 + C2 + C3 94 0.208 228
C1 + C2 + C3 + B_N 96.5 0.12 256
C1 + C2 + C3 + B_N + LSTM 95.4 0.15 167

Epoch = 5

C1 + C2 96.5 0.086 902
C1 + C2 + B_N 97.5 0.07 903
C1 + C2 + B_N + LSTM 97.4 0.081 640
C1 + C2 + C3 96 0.106 982
C1 + C2 + C3 + B_N 97.7 0.068 1027
C1 + C2 + C3 + B_N + LSTM 97.4 0.076 677

Epoch = 10

C1 + C2 97.4 0.083 1805
C1 + C2 + B_N 97.5 0.067 1814
C1 + C2 + B_N + LSTM 97.7 0.076 1222
C1 + C2 + C3 97.5 0.084 2001
C1 + C2 + C3 + B_N 98 0.061 2076
C1 + C2 + C3 + B_N + LSTM 97.9 0.068 1272

Epoch = 20

C1 + C2 97.9 0.069 3635
C1 + C2 + B_N 98.3 0.063 3708
C1 + C2 + B_N + LSTM 97.7 0.075 2354
C1 + C2 + C3 97.7 0.083 4017
C1 + C2 + C3 + B_N 98.1 0.061 4152
C1 + C2 + C3 + B_N + LSTM 98 0.066 2576

Epoch = 40

C1 + C2 98.1 0.076 7572
C1 + C2 + B_N 98.2 0.059 7657
C1 + C2 + B_N + LSTM 97.8 0.074 4688
C1 + C2 + C3 97.9 0.098 8103
C1 + C2 + C3 + B_N 98.3 0.068 8296
C1 + C2 + C3 + B_N + LSTM 98 0.065 5152

Epoch = 50

C1 + C2 98.1 0.075 9477
C1 + C2 + B_N 98.2 0.059 10,058
C1 + C2 + B_N + LSTM 98 0.075 5811
C1 + C2 + C3 97.9 0.098 10,113
C1 + C2 + C3 + B_N 98.3 0.07 10,384
C1 + C2 + C3 + B_N + LSTM 98.1 0.066 6312
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Table 6. Accuracy, loss and time for different numbers of epochs (10% sample) for the CIFAR10dataset.

Methods Accuracy (Percentage) Loss (Cross-Entropy) Time (s)

Epoch = 1

C1 + C2 20 2.3 160
C1 + C2 + B_N 32 2.43 121
C1 + C2 + B_N + LSTM 24 2.49 70
C1 + C2 + C3 23 2.21 150
C1 + C2 + C3 + B_N 38 2.11 163
C1 + C2 + C3 + B_N + LSTM 26 2.08 80

Epoch = 5

C1 + C2 31 2.28 720
C1 + C2 + B_N 42 1.52 553
C1 + C2 + B_N + LSTM 38 1.83 357
C1 + C2 + C3 31 1.82 726
C1 + C2 + C3 + B_N 45 1.51 754
C1 + C2 + C3 + B_N + LSTM 39 1.59 371

Epoch = 10

C1 + C2 39 2.29 1239
C1 + C2 + B_N 49 1.7 1171
C1 + C2 + B_N + LSTM 42 1.71 562
C1 + C2 + C3 43 1.82 1451
C1 + C2 + C3 + B_N 48 1.71 1432
C1 + C2 + C3 + B_N + LSTM 46 1.73 820

Epoch = 20

C1 + C2 40 2.29 2240
C1 + C2 + B_N 55 2.01 2302
C1 + C2 + B_N + LSTM 52 2.1 1213
C1 + C2 + C3 44 1.81 2581
C1 + C2 + C3 + B_N 49 2.03 2766
C1 + C2 + C3 + B_N + LSTM 46 2.03 1687

Epoch = 40

C1 + C2 44 2.27 4476
C1 + C2 + B_N 61 1.81 4595
C1 + C2 + B_N + LSTM 58 1.96 2528
C1 + C2 + C3 47 1.85 5171
C1 + C2 + C3 + B_N 52 1.94 5662
C1 + C2 + C3 + B_N + LSTM 50 1.89 3259

Epoch = 50

C1 + C2 47 2.26 5712
C1 + C2 + B_N 63 1.84 5772
C1 + C2 + B_N + LSTM 62 1.91 3093
C1 + C2 + C3 51 1.82 6662
C1 + C2 + C3 + B_N 58 1.87 7107
C1 + C2 + C3 + B_N + LSTM 54 1.79 4065



Algorithms 2018, 11, 157 14 of 19

Table 7. Accuracy, loss and time for different numbers of epochs (20% sample) for the CIFAR10 dataset.

Methods Accuracy (Percentage) Loss (Cross-Entropy) Time (s)

Epoch = 1

C1 + C2 21 2.29 211
C1 + C2 + B_N 40 1.85 201
C1 + C2 + B_N + LSTM 31 1.81 122
C1 + C2 + C3 14 2.27 257
C1 + C2 + C3 + B_N 38 1.91 225
C1 + C2 + C3 + B_N + LSTM 36 1.85 132

Epoch = 5

C1 + C2 25 2.28 1037
C1 + C2 + B_N 52 1.54 1051
C1 + C2 + B_N + LSTM 43 1.53 582
C1 + C2 + C3 31 2.29 1291
C1 + C2 + C3 + B_N 53 1.37 1311
C1 + C2 + C3 + B_N + LSTM 52 1.36 652

Epoch = 10

C1 + C2 25 2.28 2035
C1 + C2 + B_N 59 1.64 2152
C1 + C2 + B_N + LSTM 53 1.44 1205
C1 + C2 + C3 50 2.18 2415
C1 + C2 + C3 + B_N 57 1.9 2407
C1 + C2 + C3 + B_N + LSTM 60 1.24 1335

Epoch = 20

C1 + C2 27 2.27 4107
C1 + C2 + B_N 64 1.65 4318
C1 + C2 + B_N + LSTM 63 1.4 2594
C1 + C2 + C3 55 2.15 5003
C1 + C2 + C3 + B_N 66 1.81 4995
C1 + C2 + C3 + B_N + LSTM 63 1.22 2809

Epoch = 40

C1 + C2 30 2.19 8265
C1 + C2 + B_N 69 1.53 8719
C1 + C2 + B_N + LSTM 67 1.38 5187
C1 + C2 + C3 59 2.11 10,089
C1 + C2 + C3 + B_N 72 1.51 10,105
C1 + C2 + C3 + B_N + LSTM 70 1.19 5817

Epoch = 50

C1 + C2 33 2.19 10,320
C1 + C2 + B_N 72 1.5 10,952
C1 + C2 + B_N + LSTM 70 1.33 6404
C1 + C2 + C3 65 2.09 12,631
C1 + C2 + C3 + B_N 76 1.38 12,708
C1 + C2 + C3 + B_N + LSTM 73 1.07 7158
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(a) CIFAR10 (10% sample) (b) CIFAR10 (20% sample)

(c) MNIST (10% sample) (d) MNIST (20% sample)

Figure 2. Accuracy (percentage) for different numbers of epochs for CIFAR10 and MNIST.



Algorithms 2018, 11, 157 16 of 19

(a) CIFAR10 (10% sample) (b) CIFAR10 (20% sample)

(c) MNIST (10% sample) (d) MNIST (20% sample)

Figure 3. Time (s) for different numbers of epochs for CIFAR10 and MNIST.
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5. Conclusions and Future Work

In the proposed work, a methodology utilizing convolutional networks as well as batch
normalization and LSTM neural net layers for achieving the best trade-off in terms of time and
accuracy regarding the image classification problem, have been presented. In addition, Rectified Linear
Units (ReLUs) nonlinearity is introduced for faster training of deep convolutional neural networks
than their equivalents with the sigmoid function or similar activation functions on large and complex
datasets. On the other hand, dropout is an effective way, aiming at regularizing deep neural networks;
with this process, binary variables for every input point and for every network unit in each layer
are sampled.

The baseline approach, which contained a regular convolutional scheme, maintained a steady
and linear progression in its accuracy, as well as in the time needed for completion of the experiments,
whereas after the import of the batch normalization layer, the overall time of the corresponding
experiments marginally increased. As the convolutional network deepens, thus becoming more
complex in dimensionality, the model’s performance becomes affected. The more complex the CNN,
the higher the percentages of accuracy it managed to achieve, and despite the time needed, accuracy
was increased to high ranks, which made the trade-off suboptimal. Furthermore, the accuracy of
our novel approach scaled increasingly as the model was trained with additional epochs. While
maintaining similar amounts of accuracy, our novel CNN-LSTM technique was successful at
reducing the execution time by 30% during the first unstable epochs and by approximately 42%
after convergence.

As future work, we plan to design more comprehensive CNN models as these models have
achieved significant success in various computer vision tasks, including image classification, object
detection, image retrieval and image captioning. It is our thought that artificial intelligence should be
capable of tackling a broad set of computer vision problems. Therefore, a future plan deals with the
revisiting of the vast amount of hyper parameters that such deep architectures present. The fine-tuning
of the proposed model could highlight a new set of latent patterns whose appearance could not be
previously detected. Furthermore, regarding the theoretical background of the work, a potential
approach could be implemented concerning the complexity of the architecture. As a model deepens in
terms of layers, and simultaneously in the size of its graph, there emerge new ways for defining the
optimal connection within this stack of layers, and algorithmic schemes are still to be introduced.
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