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Abstract: The ability to learn robust, resizable feature representations from unlabeled data has
potential applications in a wide variety of machine learning tasks. One way to create such
representations is to train deep generative models that can learn to capture the complex distribution
of real-world data. Generative adversarial network (GAN) approaches have shown impressive results
in producing generative models of images, but relatively little work has been done on evaluating the
performance of these methods for the learning representation of natural language, both in supervised
and unsupervised settings at the document, sentence, and aspect level. Extensive research validation
experiments were performed by leveraging the 20 Newsgroups corpus, the Movie Review (MR)
Dataset, and the Finegrained Sentiment Dataset (FSD). Our experimental analysis suggests that GANs
can successfully learn representations of natural language texts at all three aforementioned levels.

Keywords: natural language texts; representation learning; deep learning; generative adversarial
networks (GANs); adversarial training; document; sentence; aspect-level text analysis; information
retrieval

1. Introduction

The performance of machine learning (ML) methods is heavily dependent on the choice of data or
feature representation to which they are applied. For that reason, much of the actual effort in deploying
ML algorithms goes into the design of preprocessing the pipelines and data transformations that result
in a representation of the data that can support effective ML. Such feature engineering is important
but labor-intensive, which highlights the weakness of current learning algorithms. Even though there
are a large variety of approaches to representation learning in general, the underlying concept is to
learn some set of features from data, and then use these features to solve, for example, a separate
(possibly unrelated) task for which we have a large number of labeled examples. As a result, the
emergence of large-scale datasets, such as ImageNet [1], which contains 14,197,122 manually labeled
images, has allowed the wider-spread use and popularity of convolutional neural networks (CNNs)
even in the unrelated task of medical imaging. Currently, the majority of existing classifiers cannot
perform as expected when the size of the training dataset is small. Constructing a large labeled dataset,
however, is time-consuming and usually requires domain knowledge, making it even more costly.
Therefore, there is a gap between the potential benefits of having a large dataset and the difficulty
in obtaining labeled data. In order to expand the scope and ease of applicability of ML, it would be
highly desirable to make learning algorithms less dependent on feature engineering, so that novel
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applications can be constructed faster. This could be possible by learning representations (LRs) of the
data that make it easier to extract useful information when building classifiers or other predictors. A
good representation is one that is also useful as input to a supervised predictor. Among the various
methods of LR, this paper focuses on deep learning methods: those that are formed by the composition
of multiple nonlinear transformations, with the goal of yielding more abstract—and, ultimately, more
useful—representations.

Among the effective approaches that have emerged to train deep generative models, the one that
is based on the variational autoencoder (VAE) [2,3] and the approach that uses generative adversarial
networks (GANs) have dominated in recent years. In the former one, the observed data x is assumed
to be generated from a set of stochastic latent variables z. The VAE introduces an inference network
(implemented using a deep neural network) to approximate the intractable distributions over z, and
then maximizes a lower bound on the log-likelihood of p(x). The latter approach uses GANs [4].
In the original GAN formulation, a generator deep neural network learns to map samples from an
arbitrary distribution to the observed data distribution. A second deep neural network called the
discriminator is trained to distinguish between samples from the empirical distribution and samples
that are produced by the generator. The generator is trained to create samples that will fool the
discriminator, and so an adversarial game is played between the two networks, converging on a saddle
point that is a local minimum for the discriminator and a local maximum for the generator. Both VAE
and GAN approaches have shown impressive results in producing generative models of images [5,6],
but relatively little work has been done on evaluating the performance of these models for learning
representations of natural language. GANs for natural language processing (NLP) are considered
powerful methods, as they deal with generating sentences: specifically, they produce sentences with
certain characteristics (sentiment and questions) and take advantage of the unsupervised nature of
these deep neural network (DNN) models. One reason that GANs cannot be directly applied to natural
language is the fact that the space in which sentences are present is not continuous and therefore
not differentiable. On the contrary, text is represented atomically in terms of discrete tokens (like
“man”, “girl”, etc). So, when we want to update the generated sentence slightly according to the
discriminator’s behavior, we may not get a sentence. In the computer vision (CV) domain, the output
of the generator is an image (a matrix consisting of real valued numbers) which can undergo small
updates to make it more difficult for the discriminator to differentiate between the real and fake
image. Recently, however, VAEs have been used successfully to create language models [7], to model
documents, and to perform question answering [8]. This paper attempts to shed light on whether
GANs can be used to learn representations of natural language in an unsupervised setting.

Particularly, in our work, we formulate the ML problem as follows. We propose a novel extension
of GANs that replaces the traditional binary classifier discriminator with one that assigns a scalar
energy to each point in the generator’s output domain. The discriminator minimizes the hinge loss
function used for training “maximum-margin” classifiers, while the generator attempts to generate
samples with low energy under the discriminator. We show that a Nash equilibrium [9] under
these conditions yields a generator that matches the data distribution (assuming infinite capacity).
We conducted experiments with the discriminator in the form of a denoising autoencoder (DAE),
optionally including a regularizer that penalizes generated samples having a high cosine similarity to
other samples in the mini-batch. Our proposed neural network architecture is based on a variation
of the recently proposed energy-based GAN [10] that has been proven to be suitable for the task of
generating high-resolution MNIST digit images [11], providing a qualitative evaluation of the learned
representations. Additionally, we decided to replace the standard probabilistic GAN that we cast
into the energy model (using Gibbs distributions [12]), as has been proposed by the work of Kim and
Bengio [13], and we decided to present the same Nash equilibrium as a standard GAN, but through a
different and more generalized class of loss functionals, such as hinge loss. This experimental design
selection is based on our attempt in get the pair of models to converge [14] and to exhibit more stable
behavior than regular GANs during training [15].
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Our main contributions are summarized as follows:

• We investigate whether GANs can be used to learn representations of natural language in an
unsupervised setting at the document, sentence, and aspect level.

• Among the various methods of learning representations, we focus on deep learning methods to
yield more abstract—and, ultimately, more useful—representations.

• We bridge the unsupervised learning approach with GANs and denoising autoencoders.
• We revisit the traditional GAN framework from an alternative energy-based perspective.
• We propose a neural network architecture that is based on a variation of the energy-based GAN

formulation [10] for generative adversarial training. Our contribution is based on the use of a
simple hinge loss, at the point when the system reaches convergence, so that the generator of the
energy-based GAN produces points that follow the underlying data distribution.

• We propose to use an autoencoder architecture as a discriminator in which the energy is a
reconstruction error.

• We focus on the unsupervised benefit of GANs to process a large amount of unlabeled data and
not on its ability to generate new data.

• We conducted extensive experiments by leveraging data of different in types, lengths, and genres:
the 20 Newsgroups corpus, the Movie Review (MR) Dataset, and the Finegrained Sentiment
Dataset (FSD).

The rest of this paper is organized as follows. Section 2 discusses previous work on ML approaches
that have been used in text analysis, with emphasis on deep neural network approaches at the
document, sentence, and aspect level. Section 3 sets the problem on the scene, providing the motivation
and the details of our proposed adversarial neural network architecture. Section 4 presents the
experimental validation, including the datasets, the implementation we followed, and the experimental
results. Section 5 discusses the analysis of the main findings, suggesting future research directions,
and Section 6 finalizes the study by drawing a couple of meaningful conclusions.

2. Related Work

ML for NLP can be performed with a wide range of text formats, from multi-sentence reviews
and comments, to single-word expressions of opinion. The most frequent approach is document-level
classification. Another approach, sentence-level classification, limits the analysis to single sentences
instead of whole documents. It is typically a harder problem to solve since there is not much
information that can be used by the classifier, with sentences being usually much shorter than
documents. Compared with document- and sentence-level analysis, aspect-level analysis is more
Finegrained. Its task is to extract and summarize people’s opinions expressed on the aspects of entities,
which are also called targets.

2.1. Machine Learning Approaches for NLP Tasks

Document- or sentence-level classification is often implemented by using supervised ML
methods. This involves the training of a model using a large body of annotated data which is
topic-specific. Any existing supervised ML method can be applied to document-level classification,
such as support vector machines (SVMs) or hidden Markov models. Particularly, Pang et al. [16]
compared many ML methods on a movie review classifier, concluding that SVMs and Naive Bayes
had the best performance overall. Document- or sentence-level regression has also received much
attention since many problems cannot be solved with a positive–negative classification, which is
frequently used for product reviews, where a 1–5-star rating is prevalent. Pang et al. [17] compared
various regression methods, such as SVM regression, SVM multiclass classification, and one-versus-all.
Qu et al. [18] extended the bag-of-words representation by exploiting negation and sentiment
modifiers, which are more influential in regression than in classification problems. Mejova et al. [19]
reviewed feature selection strategies, such as stemming, term frequency, n-grams, point-of-speech, and
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negation-enriched features. They concluded that a smaller set of features outperformed a larger set for
big datasets.

On the other hand, unsupervised ML for NLP relies on the dominating influence of sentiment
words and phrases to perform the classification without the use of costly annotated data. This has
been achieved either by extracting the syntactic patterns of the sentences or by using sentiment
lexicons. Both approaches rely on the measurement of the sentiment orientation (SO) of phrases
and eventually of the whole document. Lexicon-based analysis calculates the SO values of words
and phrases, summing up to the polarity of the whole document. Such classifiers can incorporate
negation and intensification since such operations can be easily identified by lexicons. In general,
lexicon-based sentiment classifiers show a positive bias, which can be fixed by adjusting the value of
the rarer negative expressions [20]. One of their deficits is that lexicon-based methods do not perform
well on domain-dependent data, making them less efficient when used for domains that are more
challenging for sentiment analysis (SA), such as politics. This issue was partially addressed in [21], but
supervised methods still outperform lexicon-based methods for domain-specific problems.

Recently, neural networks (NNs) have started expanding to the field of NLP in the form of
both supervised and unsupervised representation learning methods. In terms of unsupervised
representation learning [22], much of the early research into modern deep learning was developed
and validated via this approach [23–26]. Unsupervised learning is promising due to its ability to
scale beyond only the subsets and domains of data that can be cleaned and labeled given resources,
privacy, or other constraints. This advantage is also its difficulty. While supervised approaches
have clear objectives that can be directly optimized, unsupervised approaches rely on proxy tasks,
such as reconstruction, density estimation, or generation, which do not directly encourage useful
representations for specific tasks. As a result, much work has gone into designing objectives, priors,
and architectures meant to encourage the learning of useful representations.

Despite these difficulties, there are notable applications of unsupervised learning. Pretrained
word vectors are a vital part of many modern NLP systems [27]. These representations, learned by
modeling word co-occurrences, increase the data efficiency and generalization capability of NLP
systems [28,29]. How to learn representations of phrases, sentences, and documents is an open area
of research. Inspired by the success of word vectors, Kiros et al. [30] proposed skip-thought vectors,
a method of training a sentence encoder by predicting the preceding and the following sentence.
The representation learned by this objective performs competitively on a broad suite of evaluated
tasks. More advanced training techniques, such as layer normalization [31], further improved results.
However, skip-thought vectors are still outperformed by supervised models, which directly optimize
the desired performance metric on a specific dataset. This is the case for both text classification tasks,
which measure whether a specific concept is well encoded in a representation, and more general
semantic similarity tasks. This occurs even when the datasets are relatively small by modern standards,
often consisting of only a few thousand labeled examples.

2.2. Deep Neural Network Approaches at Document, Sentence, and Aspect Level

In this subsection, we review the latest research efforts, presented in Table 1, with respect to the
application of NNs for NLP tasks, focusing on document-, sentence-, and aspect-level analysis. We
would like to clarify at this point that we split Table 1 into three subsections to make a clear distinction
among the works conducted with respect to the three aforementioned levels of analysis.
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Table 1. Main characteristics of some of the latest published deep neural network models for sentiment
analysis (SA) tasks. The table reports the level of analysis, the type of the deep neural network that has
been applied (model), the datasets used, the type of task, and the evaluation metrics. The latter are
labeled as follows: ccuracy (Acc.), Macro-F1 measure, Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Pearson correlation coefficient (r).

Work Level of
Analysis Model Dataset Task Evaluation

Metrics

Rahman et al. [32] Docs. LSTM Large Movie Review (50,000
reviews) classification Acc.: 80%

Lai et al. [33] Docs. RCNN

20 Newsgroups;
Fudan Set;
ACL Anthology
Network;
SST

classification

Macro-F1: 96.49%
Acc.: 95.2%
Acc.: 49.19%
Acc.: 47.21%

Shen et al. [34] Docs. CNN +
BLSTM

Large Movie Review (50,000
reviews) classification Acc.: 89.7%

Yender and
Verna [35] Docs. CNN + LSTM Large Movie Review (50,000

reviews) classification Acc.: 89.5%

Liu et al. [36] Docs.
Sents. RNN

SST1 (Sents.);
SST2 (Sents.);
Movie Reviews (subj/obj.
reviews);
Large Movie Review (50,000
reviews)

classification

Acc.: 49.6%
Acc.: 87.9%
Acc.: 94.1%
Acc.: 91.3%

Chen et al. [37] Sents. BiLSTM-CRF
CNN

MPQA opinion corpus;
SST;
Movie Reviews (polarity v1.0)

classification;
target
extraction

-
Acc.: up to 88.3%
Acc.: 82.3%

Wang X et al. [38] Sents. CNN + RNN
SST1;
SST2;
Movie Reviews

classification
Acc.: 51.50%
Acc.: 89.95%
Acc.: 82.28%

Conneau et al.
[39] Sents. Very Deep

CNN Product Reviews; News classification not reported

Wang J et al. [40] Sents. CNN + LSTM SST;
Chinese VA Texts

dimensional
regression

RMSE/MAE/r:
1.341/0.987/0.778
RMSE/MAE/r:
0.874/0.689/0.557

Du et al. [41] Docs. Deep CNN Amazon reviews aspect
classification Acc.: 94.38%

Wang Y et al. [42] Sents. attention
based LSTM SemEval 2014 (Task 4) aspect (binary)

classification Acc.: 89.9%

Poria et al. [43] Sents. Deep CNN SemEval 2014;
Aspect-based dataset

aspect
extraction;
classification

Acc.: up to 87.2%

Tang et al. [44] Sents. Deep Memory
Network SemEval 2014 aspect

classification Acc.: 80.95%

Rahman et al. [32] introduced a variation of long short-term memory (LSTM) and tested
it on the Large Movie Review Dataset of 50K documents. It showed that even though
accuracy was not increased compared to normal LSTM models, the stability and consistency were
improved. Moreover, [33] introduced a recurrent convolutional neural network (RCNN) which applied
a bidirectional recurrent structure to capture the contextual information of the document and then
employed a max-pooling layer to capture the key components of the text. The researchers in [34]
performed comparison tests with single CNN, single LSTM, and a combination of CNN and LSTM on
the Large Movie Review Dataset for sentiment classification, showing that the CNN + LSTM network
performed better than the respective standalone NNs. A similar research effort was conducted by [35]
by combining CNN and LSTM to produce multiple variations which achieved state-of-art performance.
Once again, the Large Movie Review Dataset was used, but the authors expressed their belief that
the proposed model has potential in both audio and video. Finally, Liu et al. [36] experimented
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with RNNs, introducing the concept of multitask learning, which connects all the related tasks into a
single system, trained jointly. They performed both document-level classification on the Large Movie
Review Dataset and sentence-level classification on the Stanford Sentiment Treebank (SST), achieving
state-of-art performance results after fine-tuning.

Moreover, NNs have been widely used for sentence-level classification as well. Particularly,
Chen et al. [37] proposed a CNN–LSTM model which first classifies the sentences into non-target,
one-target, and multi-target sentences. Their model was tested on many datasets (Stanford Sentiment
Treebank, Movie Reviews, and Amazon product reviews), and it achieved state-of-the-art performance
on some of them. Based on the fact that the combination of CNN and RNN is considered a very
popular approach, the authors of [38] proposed their variant, which achieved high accuracy on the
typical Stanford Sentiment Treebank and Movie Reviews datasets. Moreover, Conneau et al. [39] used
a very deep convolutional network that consisted of 29 layers, resulting in improved performance
and proof of the “benefit of depth” for NLP tasks as well. To be more precise, the authors evaluated
their model on eight different datasets comprising Movie Reviews and news, testing various NLP
tasks such as SA, news categorization, and topic classification. Moreover, Wang J et al. [40] proposed
a regional CNN–LSTM model which used an individual sentence as the region for the extraction
of affective information. The model was trained with the Stanford Sentiment Treebank dataset and
Chinese Valence Arousal (VA) texts using 2K sentences from social forums, and it performed better
than CNNs, RNNs, or LSTMs for valence and arousal prediction, respectively.

Finally, aspect-level analysis has been also explored. Du et al. [41] modeled both sentiment
and syntactic context under specific aspects to acquire better word embeddings, which were given
as input to a CNN for sentiment classification of Amazon product reviews. Their results showed an
improvement compared to traditional word-embedding methods. Wang et al. [42] applied LSTMs
for aspect-based sentiment classification, achieving a state-of-the-art performance of 89.9%. The
model was evaluated on the SemEval 2014 dataset while the word embeddings were initialized by
Glove (https://nlp.stanford.edu/projects/glove/), capturing the important parts of a sentence when
different aspects were given. Poria et al. [43] tested a deep CNN for aspect extraction using seven
levels of NNs. The SemEval 2014 dataset and an aspect-based SA dataset were used for the evaluation
and showed improvement in precision and recall. Deep memory networks have also been applied
to aspect-level text classification and have shown comparable results to LSTMs while being 15 times
faster at the same time [44].

After summarizing the current and previous research efforts (in Table 1) that have been conducted
within the area of deep neural networks at the document, sentence, and aspect levels of analysis,
we observed that, in most cases, networks such as CNNs or recurrent neural networks (RNNs) and
particular bidirectional long short-term memory (BLSTMs) networks have been applied; thus, very little
work has been conducted on text analysis using generative models and particular GANs. Considering
that one of our paper’s aims is to examine whether GANs can be used to learn representations of NL
texts in an unsupervised manner, in the following Section 2.3, we summarize most of the state-of-the-art
research works that have used the GAN architecture. Additionally, motivated by the fact that the GAN
neural network structure can integrate various loss functions, our proposed model was designed to
have a better degree of freedom. Moreover, it is expected to provide promising solutions for creatively
producing data that are meaningful to humans.

2.3. Generative Adversarial Networks for NLP Tasks

In this section, we review recent research on discovering rich structure in natural language with
variational autoencoders (VAEs) [3] and GANs [4]. Evaluating deep generative models has been
challenging so far. To the best of our knowledge, there are very few works on text analysis using
GANs. Zhang et al. [45] proposed a framework for employing LSTM and CNN for adversarial training
to generate realistic text. The latent code z was fed to the LSTM generator at every time step, while
CNN acted as binary sentence classifier which discriminated between real data and generated samples.

https://nlp.stanford.edu/projects/glove/
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RNN extensions, such as LSTMs or gated recurrent units (GRUs) that retain long-term memory of
tokens, have been shown to work well in practice using maximum likelihood estimation.

However, training using maximum likelihood has its downsides, like exposure bias. This refers to
the situation in which, during training, the prediction of the next word conditioned on the previous
word becomes infeasible since the previous word may not have been seen in the training data. If the
generator makes an error early on in the generation process, the generated sentence will keep diverging
further away as more words are generated. To solve this issue, a few things have been tried in the past,
like scheduled sampling [46] and having task-specific sequence scores. One problem with applying
GAN to text is that the gradients from the discriminator cannot properly back-propagate through
discrete variables. In [45], this problem was solved by making the word prediction at every time “soft”
at the word-embedding space. Moreover, Yu et al. [47] proposed bypassing this problem by modeling
the generator as a stochastic policy. The reward signal came from the GAN discriminator, judged on
a complete sequence, and was passed back to the intermediate state-action steps using Monte-Carlo
search. For text, it is possible to create oracle training data from a fixed set of grammars and then
evaluate generative models based on whether (or how well) the generated samples agree with the
predefined grammar [48]. Considering that it is hard to make a good evaluation for generating text
since there is no objective way to assess whether an artificial sentence is more plausible or realistic than
another, some works have used BLEU scores of samples on a large amount of unseen test data. The
ability to generate similar sentences to unseen real data is considered a measurement of quality [47].

Notably, in terms of sequential data generation with GANs, an alternative approach based on
reinforcement learning was used to train the GAN. We are aware of only one preliminary work using
GANs to generate continuous-valued sequences, and it aimed to produce polyphonic music using
a GAN with an LSTM generator and discriminator [49]. A work with respect to controllable text
generation [50] applied the variable autoencoder (VAE) together with controllable information to
generate category sentences. Finally, Zhang et al. [45] and Semeniuta et al. [51] used GANs for text
generation and achieved state-of-the-art results. Finally, another category of approach is the conditional
GANs [52] that condition the model on additional information and, therefore, allow us to direct the data
generation process. This approach has been mainly used for image generation tasks [5,53]. Recently,
conditional GAN architectures have been also used in NLP, including translation [47] and dialogue
generation [54].

After summarizing the work conducted in the area of GANs for NLP tasks, we can observe
that even though the research effort has been shifted to GAN approaches for NLP tasks, whose
discriminator and generator models are mainly CNNs and/or RNNs (BLSTMs), still a number of
limitations and development trends remain unsolved.

With this in mind, our attempt in this paper, presented in the following Section 3, is to investigate
whether GANs are a suitable model selection to learn representations of natural language in an
unsupervised setting at the document, sentence, and aspect level. Additionally, we revisit the
traditional GAN framework from an alternative energy-based perspective. Particularly, we propose a
neural network architecture that is based on a variation of the energy-based GAN formulation [10] for
generative adversarial training. Our contribution is based on the use of a simple hinge loss, at the point
when the system reaches convergence, so that the generator of the energy-based GAN produces points
that follow the underlying data distribution. We propose to use a denoising autoencoder architecture
as a discriminator in which the energy is a reconstruction error. Our experimental design selection is
based on our attempt to get the pair of models to converge [14] and to exhibit more stable behavior
than regular GANs during training [15].

3. Proposed Approach

In this section, we attempt to set the scene of our proposed approach by highlighting the
limitations of the current energy-based models and discuss the advantages of GANs. GANs have
great significance to the development of generative models. As a powerful class of generative
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methods, GANs solve the problem of generating data that can be naturally interpreted. Especially
for the generation of high-dimensional data, the adopted neural network structure does not limit
the generation dimension, which greatly broadens the scope of the generated samples. Moreover,
the neural network structure can integrate various loss functions, thereby increasing the degree of
freedom of the model design. As far as the energy-based models are concerned, they have been
used to capture dependencies over variables by defining an energy function. The energy function
associates each configuration of the variables with a scalar energy value. Lower energy values should
be assigned to more likely or plausible configurations and, conversely, higher energy values should
go to others. This has been used, for example, to estimate the probability distribution based on a
Boltzmann distribution defined by an energy function and an appropriate normalization factor. In
this case, the energy function is defined to assign a probability value that is not normalized. The
normalization factor plays an important role by constraining the energy function to properly estimate
the probability distribution. However, it introduces difficulties during the learning procedure, which
requires an appropriate number of samples and makes the learning progress slow and noisy or requires
certain model structures to get the samples. To overcome these limitations, we present in the following
subsection our proposed neural network architecture.

3.1. Problem Formulation

We propose a model whose discriminator is viewed as an energy function that attributes low
energies to the regions near the data manifold and higher energies to other regions, while its generator is
seen as being trained to produce contrastive samples with minimal energies. With the term contrastive
samples, we refer to a data point that causes an energy pull-up, such as an incorrect label in supervised
learning and points from low data density regions in unsupervised learning. Our aim is to train
the discriminator to assign high energies to these generated samples. Viewing the discriminator as
an energy function, our proposed system allows us to use a wide variety of architectures and loss
functionals—in addition to the usual binary classifier with logistic output—that have been introduced
in the recently proposed “Energy-Based Generative Adversarial Network” model (EBGAN) [10].
However, our proposed model is a modified version of the EBGAN framework since we propose the
use of an autoencoder architecture, with the energy being the reconstruction error, in place of the
discriminator. Particularly, we suggest that rather than using a single bit of target information to train
the model, the reconstruction-based output offers diverse targets for the discriminator. With the binary
logistic loss, only two targets are possible, so, within a mini-batch, the gradients corresponding to
different samples are most likely far from orthogonal. This leads to inefficient training, and reducing
the mini-batch sizes is often not an option on current hardware. On the other hand, the reconstruction
loss will likely produce very different gradient directions within the mini-batch, allowing for a larger
mini-batch size without a loss of efficiency. Moreover, we decided to use the autoencoders since they
have traditionally been used to represent energy-based models and arise naturally. When trained
with some regularization terms, autoencoders have the ability to learn an energy manifold without
supervision or negative examples. This means that even when an energy-based autoencoding model is
trained to reconstruct a real sample, the discriminator contributes to discovering the data manifold by
itself. To the contrary, without the presence of negative examples from the generator, a discriminator
trained with binary logistic loss becomes pointless.

Our proposed work is also inspired by the work of Kim and Bengio [13]. However, it differs
in the following way. Their approach uses a standard probabilistic GAN cast into an energy model
(using Gibbs distributions), allowing them to learn a discriminator that models the distribution when
Nash equilibrium is reached, but it still has mixing problems, especially with deep models that slow
the learning. On the contrary, our approach gets rid of the probabilistic setting, while presenting
the same Nash equilibrium as a standard GAN, but through a different and more generalized class
of loss functionals.
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The computational procedure and structure of our proposed GAN model are depicted in Figure 1.
We use differentiable functions D and G to represent the discriminator and the generator, respectively.
Their inputs are real data x and random variables z, respectively. G(z) represents the sample generated
by G according to the distribution pdata of real data, and x′ corresponds to the novel synthetic data
samples. If the input of discriminator D is from the real data x, D should classify it to be true.
If the input is from G(z), D should classify it to be false. The purpose of D is to achieve the correct
classification of the data source, while the purpose of G is to approximate the performance of the
generated data G(z) on D (i.e., D(G(z))) with the performance of real data x on D (i.e., D(x)). The
adversarial optimization process improves the performance of D and G gradually. Eventually, when
the discrimination ability of D has been improved to a high level but cannot discriminate the data
source correctly, it is thought that the generator G has captured the distribution of real data.

Figure 1. The architecture of a generative adversarial network (GAN) model, consisting of a
discriminator D and a generator G model which are learned during the training process of a GAN.

3.2. Adversarial Document-Level Neural Network Architecture

The original GAN formulation [4], presented in Figure 1, consists of a min-max adversarial game
between a generative model G and a discriminative model D. G(z) is a neural network that is trained
to map samples z from a prior noise distribution p(z) to the data space. D(x) is another neural network
that takes a data sample x as input and outputs a single scalar value representing the probability that x
came from the data distribution instead of G(z). D is trained to maximize the probability of assigning
the correct label to the input x, while G is trained to maximally confuse D, using the gradient of D(x)
with respect to x to update its parameters. This min-max game can be optimized by the following
risk, given by Equation (1), and is typically implemented with neural network models; however,
these models could be implemented by any form of differentiable system that maps data from one
space to another.

φ = minGmaxDEx∼p(data)[logD(x)] + Ez∼p(z)[log(1− D(G(z)))] (1)

One shortcoming of this model is that there are no explicit means for inference, and so it is
unclear how GANs could be applied to unsupervised representation learning. In [4], two possible
solutions were suggested and have been explored by the research community in subsequent works.
The first approach is to train another network to do inference, learning a mapping from x back to z [55],
with a variation of this method being to instead use the adversarial training process to regularize
an autoencoder’s representation layer [56]. The second idea is to use internal components of the
discriminator network as a representation [5]. Nevertheless, both approaches fail to result in an
architecture with stable training across a range of datasets and model hyperparameters when using a
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probabilistic discriminator network. Thus, our approach to improving GAN training is to assess the
empirical symptoms that are experienced during training [5] by switching to use the energy-based
GAN architecture, where the discriminator is an autoencoder [10]. Document representations can then
be formed from the encoded representation of the discriminator.

Particularly, our proposed model’s architecture is formulated as follows: Let xi ∈ {0, 1}V be the
binary bag-of-words representations of a document, where V is the vocabulary size and xi is a binary
value indicating whether the ith word is present in the document or not. We define a feedforward
generator network G(z) that takes a vector z ∈ Rhg as input and produces a vector x̂ ∈ RV , with hg

being the number of dimensions in the input noise vector (sampled from N(0, 1)). We also define a
discriminator network D(x), seen as an energy function, that takes vectors x ∈ RV and produces an
energy estimate E ∈ R.

One main difference compared to the work of [10] is that we used a denoising autoencoder (DAE)
as our energy function, as the DAE has been found to produce superior representations to the standard
autoencoder [57]. In this work, we used single encoding and decoding layers, so the encoding process
is given in Equation (2):

h = f (Wexc + be) (2)

where We is a set of learned parameters referring to a deterministic mapping from a data space into the
latent/representation space, be is a learned bias term, f is a nonlinearity, xc is a corrupted version of x,
and h ∈ Rhd is the hidden representation of size hd, with hd being the size of the denoising autoencoder
(DAE) hidden state. The decoding process is then given by:

y = Wdh + bd (3)

where Wd and bd are another learned set of weights and bias terms. The final energy value is the mean
squared reconstruction error:

E =
1
V

V

∑
i=1

(xi − yi)
2 (4)

Our proposed GAN model’s architecture is presented in Figure 2. The energy function is trained
to push down on the energy of the real samples x, and to push up on the energy of the generated
samples x̂ [10]. This is given by Equation (5), where fD is the value to be minimized at each iteration
and m is a margin between positive and negative energies. In other words, the energy function outputs
low values on the data manifold and higher values everywhere else.

fD(x, z) = D(x) + max(0, m− D(G(z))) (5)

At each iteration, the generator G is trained adversarially against D to minimize fG. In other words,
the generator G learns to pick points where the energy should be increased, while the discriminator D
is viewed as a learned objective function. Aligned with the generator’s role, the latter model is trained
to create samples that will fool the discriminator, so that the adversarial game that is played between
the two networks will converge on a saddle point that is a local minimum for the discriminator and a
local maximum for the generator.

fG(z) = D(G(z)) (6)

In a similar way, sentence and aspect representations can be formed from the encoded
representation of the discriminator, and their network’s structure is built in a manner similar to
the adversarial document’s structure. In particular, the energy function for sentence and aspect
representations are trained to push down the energy of real samples xsent and xasp, and to push up on
the energy of generated samples x̂sent and x̂asp, respectively [10]. This is given by Equations (7) and (8),
respectively, where fDsent and fDasp are the values to be minimized at each iteration and m is a margin
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between positive and negative energies. Thus, the energy function outputs low values on the data
manifold and higher values everywhere else.

fDsent(xsent, zsent) = D(xsent) + max(0, m− Dsent(G(z)sent)) (7)

fDasp(xasp, zasp) = D(xasp) + max(0, m− Dasp(G(z)asp)) (8)

Finally, as we explain above, at each iteration, regarding the adversarial min-max game between
the generator and the discriminator for the sentence and the aspect representations, the generators
Gsent and Gasp are trained adversarially against Dsent and Dasp to minimize fGsent and fGasp , respectively.
In other words, the generators Gsent and Gasp learn to pick points where the energy should be
increased, while the discriminators Dsent and Dasp are viewed as learned objective functions, depicted
in Equations (9) and (10), respectively.

fGsent(zsent) = Dsent(Gsent(zsent)) (9)

fGasp(zasp) = Dasp(Gasp(zasp)) (10)

Figure 2. Architecture of the proposed GAN for learning representation at the document, sentence,
and aspect level. The network has the following parts: generator G, denoising autoencoder (DAE)
encoder Enc, and decoder Dec, a corruption process C, and a discriminator D.

4. Experimental Validation

This section describes the document-, sentence-, and aspect-level datasets (Section 4.1), the
implementation design decisions and the parameters’ actual selection of our proposed GAN
architecture model (Section 4.3) used in the experimental evaluation, and, finally, the experimental
results (Section 4.4).

4.1. Datasets

Selecting appropriate datasets is important for the evaluation of NLP models. There are many
publicly available datasets that have been used extensively in academia and come from the SA subfield
of NLP; the use of such datasets is fueled by an unprecedented flood of social network activity over
the last decade and an interest in processing the social media enhanced with sentiment. Among them,
the most popular are those datasets provided by the Stanford University, the SST1 and SST2, the Large
Movie Review Dataset, the MPQA opinion corpus [37], a dataset of Amazon reviews [41], the ACL
Anthology, and the 20 Newsgroups [33]. Below, we give a detailed description of the three benchmarks
we used to perform document, sentence and aspect analysis.

(1) The 20 Newsgroups dataset (https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups):
The 20 Newsgroups dataset is a collection of approximately 20,000 newsgroup documents. It
is considered a popular dataset for experiments in text applications of ML techniques, such as
text classification and text clustering. The data are organized into 20 different newsgroups, each

https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
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corresponding to a different topic. Some of the newsgroups are very closely related to each
other (e.g., comp.sys.ibm.pc.hardware/comp.sys.mac.hardware), while others are highly unrelated
(e.g., misc.forsale/soc.religion.christian). The split between the training (50%), the validation (10%),
and the test (40%) set is based upon messages posted before and after a specific date, while cross-posts
(duplicates) and newsgroup-identifying headers (Xref, Newsgroups, Path, Followup-To, Date) are
excluded. The 20news-bydate.tar.gz version of the 20 Newsgroups dataset consists of 18,786 documents
(postings); however, after additional preprocessing (i.e., excluding a number of duplicates and
removing some headers) the final number of documents is 18.821. We further split the data into
10.163 for training, 1.130 as the validation set, and 7.528 test documents.

(2) Movie Review Dataset (subjectivity dataset v1.0) (https://www.cs.cornell.edu/people/pabo/
movie-review-data/): This dataset includes 5000 subjective and 5000 objective processed sentences.
With respect to the level of analysis, each line in these two files (subjective and objective) corresponds
to a single sentence or snippet; all sentences (or snippets) are down-cased. Only sentences or snippets
containing at least 10 tokens were included. The sentences and snippets are labeled automatically.
From our point of view, it seems adequate to use the Movie Review Dataset provided by Pang and Lee
that is freely available. The fact that many articles in SA discuss this dataset and have used it to validate
their own methods and approaches makes it an ideal candidate from the benchmarking angle. Finally,
for our experimental setting, we randomly split each collection into a training and a test set of 75% and
25%, respectively. In this dataset, the validation set refers to 10% of the training set. We decided to split
the training data into initial training data and a validation test set to further avoid gradual overfitting
on the test data and to avoid getting unrealistically good results on our final test set.

(3) Finegrained Sentiment Dataset (https://github.com/oscartackstrom/sentence-sentiment-data):
The Finegrained Sentiment Dataset contains 294 product reviews from various online sources that
are manually annotated with sentence-level sentiment. The data are approximately balanced with
respect to the domain (books, DVDs, electronics, music, video games) and overall review sentiment
(positive, negative, neutral), and the sentiment labels are assigned to sentences by two annotators.
With respect to the Finegrained Dataset’s product reviews, the sentiment labels refer to positive and
negative opinions on the different aspects of the product, although the general sentiment on the
product could be positive or negative. The FSD collection includes a total of 2243 polar sentences: 923
positive sentences and 1320 negative sentences. Once again, we randomly split each collection into a
training and a test set of 75% and 25%, respectively. In this dataset, the validation set refers to 10% of
the training set. The experimental setup for the three dataset collections is reported in Table 2.

Table 2. Test collections for experiments on the use of generative adversarial networks to learn
distributed representations of natural language at the document, sentence, and aspect level.

Datasets Training Validation Test

20 Newsgroup (http://qwone.com/~jason/20Newsgroups/) 10.163 1130 7528
Movie Reviews [58] 7424 76 2500

Finegrained Dataset (FSD) [59] 2582 287 956

4.2. Baseline System

We established a simple GAN model consisting of a three-layer feedforward generator and
discriminator networks as our baseline. The parameters of the networks were optimized using the
development set. The baseline was implemented with similar architecture, serving as a fair comparison
with the proposed method (e.g., number of layers). The key difference with our proposed model is
that the proposed model’s discriminator is a denoising autoencoder.

4.3. Implementation

We further preprocessed all three datasets in order to clean them of any noisy data to further
reduce the complexity of our datasets. We decided to remove irrelevant features, such as common

https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://github.com/oscartackstrom/sentence-sentiment-data
http://qwone.com/~jason/20Newsgroups/


Algorithms 2018, 11, 164 13 of 22

stop words (such as I or and); we tokenized the datasets to split up their words into terms of tokens;
and we stemmed the latter to reduce the tokens into a single type, normally a root word. As such,
the stemming process reduced redundant words in our datasets. Our aim is to create a vocabulary of
approximately 40,000 different word stems. From these, approximately 2000 of the most popular ones
were kept in the training datasets. As a result, each posting is represented as a vector containing a 2000
word count.

Even though word embedding is currently the-state-of-art of the NLP field in resolving text-related
problems, due to a number of limitations that presented, we decided to use bag-of-words (BoW).
Particularly, one limitation of individual word embeddings is their inability to represent phrases
where the combination of two or more words does not represent the combination of the meanings
of the individual words [60]. Another limitation comes from learning embeddings based only a
small window of surrounding words: sometimes words, such as good and bad, share almost the same
embedding [61], which is problematic if used in tasks such as SA [62]. Moreover, a general caveat for
word embeddings is that they are highly dependent on the applications in which they are used [63];
as such, BoW works better than the current word-embedding models (Word2Vec, GloVe) for our
examined scenario.

We trained our networks using Keras [64] with Tensorflow as the back-end [65]. Following [66],
to make a direct comparison, we set our representation size hd (the size of the denoising autoencoder
(DAE) hidden state) to 50. The generator input noise vector hg was also set to be the same size. The
generator is a three-layer feedforward network, with rectified linear unit (ReLU) activations in the first
two layers, and a sigmoid nonlinearity in the output layer. Layers 1 and 2 are both of size 300, with
the final layer being the same size as the vocabulary. Layers 1 and 2 use batch normalization [15]. We
decided to use the latter, as it has been recommended for use in both networks in order to stabilize
training in deeper models. The discriminator encoder consists of a single linear layer followed by a
leaky ReLU nonlinearity function (with a leak of 0.02). We decided to do so, as it has been shown that
using a leaky ReLU activation functions between the intermediate layers of the discriminator, giving a
superior performance to that when using regular ReLUs [5]. The decoder is a linear transformation
back to the vocabulary size. We optimized both G and D using the first-order gradient-based Adam
optimizer [67] with an initial learning rate of 0.0001. Our denoising autoencoder (DAE) corruption
process was to randomly set to zero 40% of the input values, and we used a margin size m of 5% of the
vocabulary size.

We followed the same validation procedure as Salakhutdinov and Hinton [66], and we set the
validation set to perform model selection of other hyperparameters, such as the learning rate and the
number of learning passes over the training set (based on early stopping). We also tested the use of
a hidden layer hyperbolic tangent nonlinearity, given in Equation (11), instead of the sigmoid, and
always used the best option based on the validation set performance. Finally, our proposed GAN
model was trained with a learning rate of 0.01 and using the tanh activation function.

tanh(x) = (exp(x)− exp(−x))/(exp(x) + exp(−x)) (11)

4.4. Experimental Results

In order to conduct a comprehensive evaluation of our proposed method, we used three types of
datasets from different domains. It is also important to note that the evaluated datasets, as described
in Section 4.1, vary greatly in length of the analyzed preprocessed text, ranging from 18.821 and 10.000
to 3.825 documents and sentences, respectively. This diversity enabled us to evaluate the robustness of
our proposed approach in multiple experimental settings. As of yet, there is no consensus regarding
the best evaluation metric with respect to the GAN’s performance [68].

Different metrics assess, both qualitatively and quantitatively, various aspects of the generation
process, and it is unlikely that a single metric can cover all aspects. Currently, two widely accepted
scores, Inception Score [15] and Frechet Inception Distance, rely on pretrained deep networks to
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represent and statistically compare original and generated samples. However, these scores have been
applied and tested only on the CV domain and not on SA tasks. As far as the SA tasks are concerned,
accuracy is the most commonly used measure, taking into account the latest published works presented
in Table 1, mainly when CNNs and/or RNNs are examined. Thus, we maintain that there is good
reason to consider the other measures as well.

Taking into account that our proposed GAN architecture is based on a variation of the
energy-based GAN [10] and to further make a direct comparison with the latter work, we decided to
use the precision/recall curves measure to evaluate the performance of the proposed model used in
our study. Precision is defined as the percentage of relevant items out of the “top X” items retrieved by
our algorithm, while recall is the percentage of retrieved relevant items of all the relevant items in the
dataset [69].

For completeness, we further decided to use the F-measure metric to evaluate our proposed
system’s performance. The F-measure enables factoring both precision and recall into a single value,
thus representing their harmonic mean [70]. This measure is calculated using the following formula:

F−measure =
(1 + β2)× recall × precision
(β2 × precision) + recall

(12)

In our experiments, we used β = 1, thus giving equal weight to the two measures.
Although accuracy is the most commonly used measure for SA tasks, an additional reason to

consider the above-presented measures is the issue of dataset imbalance [71–73]. To be more precise,
in many cases, SA datasets suffer from imbalances in class distribution, where the number of instances
belonging to one class significantly outnumbers that which belongs to another. With respect to the
datasets we used to evaluate our system, the 20 Newsgroup dataset and the Finegrained Sentiment
Analysis datasets contain such significant imbalances in class distributions.

As such, the advantage of our selected evaluation measure is that it enables the evaluation of
our performance on the top X instances that are relevant, sorted by their probability of belonging to a
certain class of relevant instances. This measure is often used in information retrieval when measuring
the performance of a query: as the user is not likely to review thousands of documents/sentences
with respect to an aspect, the top ranking documents/sentences are more important and thus receive
greater weight. This measure enables us to analyze the performance of the evaluated algorithm from
multiple perspectives. Finally, it is also particularly useful for real-world applications, where often
only the top X items are used in the evaluation process.

Table 3 presents the performance in terms of the precision, recall, and F-measure metrics for the
models trained with a three-layer feedforward generator and the discriminator networks, consisting
of a single linear layer (encoder) and a linear transformation back to the vocabulary size (decoder),
respectively. We observe that the sentence-level Movie Reviews Dataset performs better, while the
document-level 20 Newsgroups dataset provides slightly better precision results compared to the
Finegrained sentences.
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Table 3. Our proposed GAN model’s performance as a generative model when using various amounts
and types of data at the document, sentence, and aspect level, compared with a simple GAN, which
serves as our baseline.

Baseline Proposed GAN

Dataset Precision Recall F-measure Precision Recall F-measure

20 Newsgroups
0.2521 0.0001 0.996 × 10−4 0.4188 0.0001 1.999 × 10−4

0.2099 0.0002 3.996 × 10−4 0.4012 0.0002 3.996 × 10−4

0.1005 0.0005 9 × 10−4 0.3648 0.0005 9.986 × 10−4

Movie Reviews
0.3637 0.0001 1.999 × 10−4 0.6376 0.0001 1.999 × 10−4

0.3637 0.0002 3.978 × 10−4 0.6376 0.0002 3.998 × 10−4

0.3901 0.0005 9.871 × 10−4 0.6202 0.0005 9.991 × 10−4

Finegrained Dataset (FSD)
0.1022 0.0001 2.101 × 10−4 0.3522 0.0001 2 × 10−4

0.1152 0.0002 3.993 × 10−4 0.3483 0.0002 3.997 × 10−4

0.3185 0.0005 9 × 10−4 0.3483 0.0005 9.985 × 10−4

To visualize our produced results, we further created the precision–recall curves and we treated
our model’s performance as a retrieval task on the 20 Newsgroups Dataset, on the Movie Reviews
Dataset, and on the FSD. The precision–recall curves for the recall values given in Table 3 are presented
in Figure 3.

Figure 4 shows the visualizations of the learned representations created using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) toolkit [74]. We used this toolkit and created 2D projections
of the data distribution. Particularly, Figure 4a–c show the distributions of the test document-,
sentence-, and aspect-level test data learned by our proposed adversarial model, respectively. The
documents belong to 20 different topics, the sentences of the Movie Reviews dataset belong to 2
different categories, while the sentences of the Finegrained dataset belong to 5 categories, with separate
categories corresponding to different colored points in the subfigures. By using adversarial training,
the feature distributions for the test samples from all three datasets are almost indistinguishable,
demonstrating that our proposed approach is able to find common representation.

Figure 3. Precision–recall curves of our proposed GAN model on the 20 Newsgroups, the Movie
Reviews, and the Finegrained datasets.
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(a) Document-level representation. (b) Sentence-level representation.

(c) Aspect-level representation.

Figure 4. t-Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of the document,
sentence, and aspect representations learned by our proposed adversarial model on the three test
datasets. The color indicates different class labels. (a) Document-level representation using the GAN
model; (b) Sentence-level representation using the GAN model; (c) Aspect-level representation using
the GAN model.

5. Discussion

The current section discusses the results of the analysis carried out from an experimental design
point of view. With respect to the number of hidden layers for feature representation, we first studied
the effect of the number of hidden layers in both the generator and the discriminator. We varied the
number of hidden layers, ranging from one to four first at the generator only, then at the discriminator,
and, finally, at both networks simultaneously, and observed how the changes in feature representation
affect the classification performance. This evaluation is conducted exclusively on the validation set of
all three examined dataset collections. In most cases, two or three layers provide the best performance.
Despite the theoretical existence of unique solutions, GAN training is challenging and often unstable
for several reasons, as reported in [5,15,75]. One approach to improve GAN training is to assess
the empirical “symptoms” that might be experienced during training. These symptoms include:
difficulties in getting the pair of models to converge [5], the generative model collapsing to generate



Algorithms 2018, 11, 164 17 of 22

very similar samples for different inputs [15], and, finally, the discriminator loss converging quickly to
zero [75], providing a non-reliable path for gradient updates to the generator. Based on our extensive
experiments, we did not notice any significant performance increase due to the increase in the number
of hidden layers in our proposed network (neither in the generator nor in the discriminator model
for all three different types of datasets). Our initial aim was to select for each type of dataset the ideal
“capacity” of hidden layers for both models of our network. However, our results are aligned with
the work of [76], according to which even if providing successful solutions to the above-presented
challenging issues when training GANs, building the GAN network still depends highly on the
examined task/application.

To investigate the performance results achieved by our proposed model, we used all of the test
data from the three datasets as queries, and we compared them to a fraction of the closest type of text
of the examined dataset in the three training sets, from which we calculated the similarity based on
the cosine similarity between the vector representations. The average number of returned documents
and sentences having the same label as the query document (precision) were recorded. As far as
the selected evaluation metric are concerned, we maintain that there is a good reason to consider
precision–recall due to the issue of dataset imbalance. For information retrieval, precision is a measure
of result relevancy, while recall is a measure of how many truly relevant results are returned. Thus,
the precision–recall curves presented in Figure 3 show the trade-off between precision and recall
for different thresholds. We observed that we achieved high scores for both precision and recall for
the Movie Reviews Dataset (sentence level), suggesting that our proposed GAN architecture returns
accurate results (high precision), as well as returning a majority of all positive results (high recall).
Additionally, we observed that our aspect-level GAN system for the same recall value has 0.2% higher
precision results compared to the document-level GAN system. Apart from that, our results suggest
that considering that our proposed document-level GAN model achieves high precision but low
recall, it returns very few results, but most of its generated documents are correct when compared
to the training ones. Finally, after comparing our proposed model performance with the baseline
performance, we observed that, in all cases, all three different benchmarks for the same recall values
given in Table 3 outperform our GAN baseline. Overall, the most ideal system among the three,
achieving both high precision and high recall while return many results generated correctly, is the
sentence-level GAN model based on the Movie Reviews Dataset. Moreover, our selection of one
evaluation metric to examine the performance of our GAN model is aligned with the work of [76],
according to which attempting to evaluate GANs using different measures may lead to conflicting
conclusions about the quality of the synthesized samples; the decision to select one measure over
another depends on the application examined.

We also explored the feature representation when the GAN model is trained using the t-SNE
toolkit. The objective of this evaluation is to visualize the distribution of the sparse matrices from the
test data of the three datasets. This evaluation was implemented using the vector models using the 20
Newsgroups, the Movie Reviews, and the Finegrained corpora. For high-dimensional sparse data, it is
helpful to first reduce the dimensions to 50 dimensions with truncated singular value decomposition
(TruncatedSVD) and then perform t-SNE. This usually improves the visualization.

With respect to the hyperparameters’ selection, it has been suggested by van der Maaten and
Hinton [74] that perplexity values should range between 5 and 50. After experimenting in the range of
2–100, we observed that with too small perplexity values, local variations dominate, while with an
image perplexity of 100, pitfalls are illustrated. Thus, we conclude that for our adversarial training
to operate properly, the perplexity really should be smaller than the number of points. As such, for
the needs of our experiments, we set the perplexity value to 40 instead of 30, the latter being the
default value suggested. Moreover, each of the plots illustrated in Figure 4a–c was made with 1000
iterations with a learning rate (often called “epsilon”) of 10, and reached a point of stability by step
1000. Keeping the perplexity value constant at 40, we experimented with the numbers of 10, 20, 60, 120,
and 1000 steps, producing images for five different runs at a perplexity of 40. We observed that the first
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four were stopped before stability was reached, while the produced layouts seemed one-dimensional
instead of two-dimensional with strange “pinched” shapes, indicating that the process was stopped
too early. As a result, we conclude that there is no fixed number of steps that yields a stable result. In
other words, different datasets can require different numbers of iterations to converge.

One challenging aspect in using the proposed approach is the difficulty of training adversarial
networks. For example, Zhao et al. [10] noted that in NLP problems, the improvements of EBGANs
were large for some types of noises, but less effective for others. They suggested that tuning the
parameters could lead to better results. We also observed that the framework failed to converge for
certain parameters, which is common in min-max problems. When properly trained, however, this
powerful framework can satisfactory/elegantly solve one of the most important problems in NLP.

6. Conclusions

Adversarial networks have enjoyed much success in the CV domain [4,77], but to our best
knowledge, they have not yet achieved comparably successful results when applied to SA tasks. This
study proposes an elegant solution to the problem of learning representations at the document,
sentence, and aspect level based on generative adversarial training in an unsupervised way.
Particularly, this paper proposes a novel extension of generative adversarial networks that replaces the
traditional binary classifier discriminator with one that assigns a scalar energy to each point in the
generator’s output domain. The discriminator minimizes a hinge loss, while the generator attempts to
generate samples with low energy under the discriminator. We show that a Nash equilibrium under
these conditions yields a generator that matches the data distribution (assuming infinite capacity).
Experiments were conducted with the discriminator taking the form of an autoencoder, optionally
including a regularizer that penalizes generated samples having a high cosine similarity to other
samples in the mini-batch. Finally, we visualized the data representation of all three architectures
by projecting the features into the layers of the proposed adversarial document-, sentence-, and
aspect-level neural network architectures for SA, respectively.

There are several promising directions for future work highlighted by our proposed adversarial
document-, sentence-, and aspect-level neural network architectures for SA. Considering that, in
general, the neural network structure of our GAN models can integrate various loss functions, we
do intend to increase the degree of freedom of the model design. Particularly, since our proposed
approach is an alternative energy-based perspective of the GAN framework, it would be interesting
to incorporate the family of energy-based loss functionals presented in [78] into the energy-based
GAN models. Thus, the conditional setting presented in [79] is a promising setup to explore, and we
expect that will attract more attention to a broader view of GANs from the energy-based perspective.
Additionally, taking into account that GANs are also meaningful and instructive for semi-supervised
learning, we do intend to use the training process of GANs to achieve pretrained data using unlabeled
data. To be more precise, we aim first to use a large amount of unlabeled data to train our proposed
GAN models, and, based on the understanding of the trained GANs over the unlabeled data, we
intend then to use a small amount of labeled data to train the discriminative model for classification
and regression tasks. Finally, our future plans include gaining an understanding of why the denoising
autoencoder in the GAN discriminator appears to produce significantly better representations than a
standard autoencoder, a result demonstrated by the experimental evaluation.
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