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Abstract
Semantic processing of multimedia content focuses in principle on the analysis of digital audiovisual 
content according to its high-level characteristics or entities to be derived in an (semi-)automated 
manner by suitable computational equipment. The notion of semantics is crucial in the process, 
since a “correct” machine-processable interpretation will allow for content providers to efficiently 
manipulate content and provide meaningful services to people in accordance with their individual 
standards, tastes, and preferences. The overall goal remains, of course, to contribute to the bridg-
ing of the gap between the semantic nature of user/people’s needs and raw multimedia content. 
The herein discussed approach analyzes visual content (such as still images or video sequences) 
and its associated textual annotation, in order to extract the underlying semantics and construct a 
meaningful semantic index, based on a unified knowledge model. Content of interest may then be 
retrieved from the semantics by carrying out semantic interpretation and expansion. All described 
processes are based on a semantic processing methodology, employing fuzzy algebra and principles 
of taxonomic knowledge representation, illustrating the semantic unification. As a result, the overall 
contribution of semantic processing to the improvement of multimedia content understanding and 
retrieval effectiveness is of great importance for the entire research community.

Keywords: Content analysis; Knowledge management; Multimedia semantics; Visual context.

INTRODUCTION

The task of multimedia content indexing and retrieval has 
been influenced during the last decade by the important 
progress in numerous fields, such as digital content produc-
tion, archiving and standardization, multimedia database 
management, multimedia signal processing, analysis and 
coding, computer vision, artificial and computational intel-
ligence, human–computer interaction, and information 
retrieval. One major obstacle, though, multimedia retrieval 
systems still need to overcome in order to gain widespread 
acceptance is the so-called semantic gap [1,2] (Fig. 1).

This refers to the extraction of the semantic content 
of multimedia entities, the interpretation of user infor-
mation needs and requests, as well as to the matching 
between the two. This obstacle becomes even harder 
when attempting to access vast amounts of multimedia 
information stored in different audiovisual (a/v) archives 
and represented in different formats. Among them, digital 
photographs and video sequences are the most demanding 
and complex data structures, due to their large amounts 
of spatiotemporal interrelations; video understanding is 
a key step toward more efficient manipulation of visual 
media, presuming semantic information extraction. Cur-
rent and evolving international standardization activi-
ties, such as MPEG-4,[3] MPEG-7,[4] and MPEG-21[5] for 
video, or JPEG-2000[6] for still images, deal with aspects 

related to a/v content and metadata coding and represen-
tation. Syntactic description seems to be well in hand in 
MPEG-7, but fleshing out the semantic description has 
not yet received the required attention. It becomes clear 
among the research community dealing with image pro-
cessing and content-based retrieval, that the results to be 
obtained will be ineffective, unless major focus is given 
to the semantic information level, defining what most 
users desire to retrieve. Thus, in order to close the loop 
between the user and available content, the extraction of 
 information at a semantic level is required.

In recent years, several research activities emerged in 
the direction of knowledge acquisition and modeling, cap-
turing knowledge from raw information and multimedia 
content in distributed repositories to turn poorly structured 
information into machine-processable knowledge.[7–11] A 
second direction is knowledge sharing and use, combin-
ing semantically enriched information with context, so as 
to provide inferencing for decision support and collabora-
tive use of trusted knowledge between organizations.[12,13] 
Finally, in the intelligent content vision, multimedia objects 
integrate content with metadata and intelligence and learn 
to interact with devices and networks.[14] It is becoming 
apparent in all the above research fields that integration 
of diverse, heterogeneous, and distributed— preexisting—
multimedia content will only be feasible through the 
design of mediator systems. In Biskup et al.,[15] for 
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2 Semantic Processing

instance, a multimedia mediator is designed to provide a 
well-structured and controlled gateway to multimedia sys-
tems, focusing on schemas for semi-structured multimedia 
items and object-oriented concepts, while Altenschmidt 
et al. [16] focuses on security requirements of such medi-
ated information systems. On the other hand, Brink et al.[17] 
deals with media abstraction and heterogeneous reasoning 
through the use of a unified query language for manually 
generated annotation, again without dealing with content 
or annotation semantics. A semantically rich retrieval 
model is suggested in the work of Glöckner and Knoll,[18] 
based on fuzzy set theory with domain-specific methods 
for content analysis and allowing natural language queries. 
Finally, Cruz and James[19] focus on the design of a single 
intuitive interface supporting visual query languages to 
access distributed multimedia databases.

In principle, the term semantic processing refers to a 
standalone, integrated approach, offering user-friendly and 
highly informative access to heterogeneous, distributed 
multimedia (audiovisual) pieces of information (archives). 
Focusing on a unified semantic analysis of digital multi-
media information, as well as of their user-related needs, 
queries, and profiles, it contributes toward bridging of the 
gap between the semantic nature of initial user needs and 
raw multimedia content. As a result, it serves as a mediator 
between users and audiovisual archives, providing access 
to a/v content characterized by semantic phrasing of the 
request, unified handling, and personalized response. 
The core contribution of this task relies on the fact that it 
provides the missing link between low-level a/v features 
and high-level semantics that underlie in video and still 
images, on the one hand, and the purely semantic needs of 
users, on the other hand. To achieve this within the frame-
work of semantic processing, we typically retrieve a/v con-
tent and associated textual annotation from participating 
a/v archives and perform visual and textual analysis to 
extract the underlying semantics and construct a semantic 
index, based on a unified knowledge model. We may then 
accept user queries, and, carrying out semantic interpre-
tation and expansion, retrieve a/v content from the index, 
similarly to traditional text retrieval. Personalized ranking 
may be also supported, while user profiles are automati-
cally generated and updated by monitoring and analyzing 
usage history. All above processes are typically based on 

a common semantic processing methodology, employing 
fuzzy algebra and principles of novel taxonomic  knowledge 
representations.

OVERVIEW

Architecture

The general system architecture of a semantic processing 
framework is briefly depicted in Fig. 2. Connections between 
its main subsystems are to be identified, that is, a single user 
interface provides a user-friendly access to all participating 
archives, whereas the a/v archive interfaces are responsible 
for the communication between the main system and each 
a/v archive. A suitably constructed database is typically used 
to store the knowledge of the system, the semantic index, 
and the user profiles. The main framework consists typically 
of three subsystems: (a) semantic unification, (b) searching, 
and (c) personalization. The semantic unification subsystem 
constructs and updates the semantic index, whereas the per-
sonalization subsystem updates potential user profiles. The 
searching subsystem typically analyzes user queries, carries 
out matching with the semantic index, and returns retrieved 
content to the end users.

Data Models

Since the above framework is aimed to operate as a medi-
ator between the end user and diverse a/v archives, the 
mapping of archive content to a uniform data model is of 
crucial importance. The specification of the model itself is 
a challenging issue, as it needs to be descriptive enough, to 
adequately and meaningfully serve user queries, and at the 
same time, abstract and general enough, to accommodate 
the mapping of the content of any a/v archive at a seman-
tic level. In the following, we provide the overview of such 
a data model, consisting mainly out of two components: 
(a) the knowledge model and (b) the semantic index (Fig. 3).

Knowledge Model

The knowledge model contains all semantic informa-
tion used in the system. It supports structured storage of 
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Semantic Processing 3

semantic entities and relations that experts have defined for 
indexing and retrieval purposes. Among other actions, it 
allows expanding a user query by looking for synonyms 
or related concepts. Three main types of information are 
introduced in the model:

 1. Semantic entities: Entities such as thematic catego-
ries, objects, events, concepts, agents, and semantic 
places and times.

 2. Semantic relations: Relations linking semantic 
 entities, for example, “part of,” “specialization of,” 
and so on.

 3. A quasi-taxonomic relation: A taxonomic knowl-
edge representation to interpret the meaning of a 
multimedia item, composed of several elementary 
relations, also referred to as a taxonomy.

The knowledge model is manually constructed for a 
limited application set of specific multimedia content 
 categories using the experts’ assessment.

Semantic Index

The semantic index is used to collect the results of multi-
media content analysis in order to support unified access 
to archives. The index contains sets of information loca-
tors for each semantic entities, identifying which semantic 
entities have been associated to each available multimedia 
item. It is used for fast and uniform retrieval of content 
related to the semantic entities specified in, or implied by, 
the query and the user profile. Content locators associated 
to index entities may link to complete a/v content, objects, 
still images, or other video decomposition units that may 
be contained in the a/v databases.

KNOWLEDGE REPRESENTATION

The theoretical basis on top of which the framework under 
discussion is constructed derives from careful selection 
and definition of an appropriate knowledge model. A typ-
ical model contains a set of semantic entities and seman-
tic relations between them, which form the basic elements 
toward semantic interpretation. Through this knowledge 
representation, a detailed content description of all poten-
tial multimedia archives, such as still images, is estab-
lished in a unified manner. Due to the fact that relations 
among real-life entities are always a matter of degree, and 
are, therefore, best modeled using fuzzy relations instead 
of crisp ones, the best approach followed is based on a for-
mal methodology founded on fuzzy relational algebra and 
the exploitation of contextual information.[20]

The Notion of Context

It is common knowledge that the term context can take on 
many meanings and there is, in general, no solid definition 
that satisfies and covers the many aspects the term is used. 
The long history of the term appearance and usage varies 
from diverse areas of computer science to even philosoph-
ical and medical approaches.[21] In the field of computer 
science, the interest in contextual information is of great 
importance in artificial intelligence, information retrieval, 
and image and video analysis.[22] The nature of the applica-
tions in these fields is the one that signifies context, mostly 
dominated by rapid changes in the user’s context. An 
indicative example is formed by handheld and ubiquitous 
computing.[24] Still, effective use of available contextual 
information within multimedia applications remains an 
open and challenging problem, although several research-
ers have tried to categorize context-aware applications in 
general according to subjective criteria, thus resulting in 
classes of applications.[25]
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4 Semantic Processing

A fundamental problem tackled via access to and pro-
cessing of contextual information is the bridging of two 
fundamental gaps in the literature: the semantic and the 
sensory gaps.[22] As already mentioned earlier, the semantic 
gap forms an issue inherent in most developments of multi-
media systems and applications and may be described as the 
gap between the high-level semantic descriptions humans 
ascribe to images and the low-level features that machines 
can automatically parse. Given, for instance, the raw digital 
image of a wolf (Fig. 4), image analysis may extract fea-
ture or vectors (so-called descriptors) that focus on the seg-
mented particles, salient regions, color histograms, etc.[23] 
Still, semantic processing of multimedia content includes 
and may advance research toward steps including (Fig. 5) 
a prototypical combination of image descriptors, extraction 
of semantic concepts, and assignment of symbolic names to 
them, as well as the utilization and exploitation of metadata 
information and/or identification of higher level entities 
inter- and intra-relations.[23] 

As broader as the image domain gets, the wider the gap 
between the feature description and the semantic inter-
pretation is. Narrowing down the domain to a specialized 
image one results into a smaller gap between features 
and their semantic, so domain-specific models may help 
in tackling the problem. However, the latter are not suffi-
cient, but are considered as the first step toward an efficient 

approach to the problem. To illustrate all of the above, con-
sider, for example, a picture of a man tossing a blue ball 
to a dog on the beach (Fig. 6a), which would be “seen” by 
a vision system as a series of moving color regions or the 
analysis of a medical image, which would be tackled only 
as raw numerical medical data (Fig. 6b). Contextual infor-
mation, such as the relationships between the man, the dog, 
the location where the ball is being thrown and the signif-
icance of this event to the person taking the picture, in the 
first case, or qualitative information, such as the perspec-
tive of the image, or even the age of the associated patient, 
in the second case, are all gone.

The sensory gap is described as the gap between an 
object and the computer’s ability to sense and describe that 
object. For example, for some computational systems, a car 
ceases to be a car if there is a tree in front of it, effectively 
dividing the car in two parts from the machine’s perspec-
tive. Characteristics different in nature and texture may 
determine the demands of the search and retrieval meth-
ods, for example, possible presence or absence of occlu-
sion, illumination, and clutter. In other words, the sensory 
gap can be thought as the gap between the object in the 
world and the information in a computational description 
derived from a recording of the particular scene. The lat-
ter clearly yields uncertainty in what is known about the 
state of the object and is particularly poignant when a 
precise knowledge of the capturing conditions is missing. 
For instance, considering the famous Mona Lisa painting, 
there might be a sensory gap in the sense of the inability to 
record the scene due to, for example, too few colors or pix-
els, too low light conditions, too small memory, or too few 
frames per second imposed by the hardware (sensor) that 
attempts the video capture (Fig. 7) prior to the depiction of 
the captured content to its end user.[26]

All in all, whenever there is a gap between an object 
and a computer’s ability to sense and describe the object, 
the sensory gap is present. And this is also the case when 
an infinite number of different “signals” can be produced 
by the same object and different objects can produce sim-
ilar signals, like it is the case of an image of the same 
object taken from different viewpoints (Fig. 8). Human 
perceptual machinery excels at recognizing when differ-
ent “signal patterns” are the same object or when similar 
patterns are different ones, but the problem is difficult for 
computers and clearly lies in their ability to “understand” 
this process.[27]

Still, it is contextual knowledge that may enable compu-
tational systems to bridge these semantic and sensory gaps. 
With the advent of all kind of new multimedia-enabled 
devices and multimedia-based systems, new opportunities 
arise to infer the media semantics. Contextual metadata 
are capable of playing the important role of a “semantic 
mediator.” Toward that scope, two aspects of context seem 
to have special salience in most multimedia applications: 
where and when, that is, spatial and temporal context. By 
taking into account the spatial and to lesser extend the 
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Semantic Processing 5

temporal context, we are able to gather and incorporate 
user interaction to adjust and add the extra information 
needed for interpretation. It is common knowledge though 
that context itself appears in various forms and modifica-
tions and researchers commonly emphasize distinctions 
between different types of context. Each context type illus-
trates different aspects of it and consequently has very little 
in common with the others.[28] Depending on the specific 
objectives of the task at hand, different formalizations of 

what is meant by context have been developed. For modern 
knowledge-based multimedia systems, context has a rather 
precise meaning and usage. In this framework, a constant 
enhancement of offered capabilities and functionalities 
is introduced, based on the always increasing  contextual 
aspect of information provided by their end users. Con-
text is exploited in pursue of a more efficient personal-
ized approach, bringing the end user in the center of the 
 application’s interest.
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Fig. 6 Human versus machine vision interpretation: (a) a man tossing a ball to a dog; (b) a medical image of a human skull

Fig. 7 The sensory gap—limitations imposed by sensors

Fig. 8 The sensory gap—limitations imposed by different viewpoints
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6 Semantic Processing

Visual Context Identification

In general, the task of suitable visual context definition and 
identification is very important in the integration of a mul-
timedia content-based semantic processing system. This is 
mainly due to the fact that all knowledge required for mul-
timedia content analysis is thought to be context-sensitive, 
resulting in a specific need for formal definitions of context 
structures, prior to any static or dynamic context detection 
and analysis. The first objective formed within this task is 
the definition of the suitable aspect of context at hand, pro-
viding conceptual and audiovisual information. The latter 
will be used for context tailoring in several stages through 
the life cycle of the system’s content, such as creation and 
analysis, consumption, and user interaction.

We may identify two related types of context with 
respect to its usage and applicability within multime-
dia systems, namely, the context of content analysis and 
the context of use. Context of content analysis refers to 
the context during the phase of analysis, including tasks 
such as knowledge-assisted analysis and reasoning. It is 
intended to be used to aid the extraction of semantic meta-
data both at the level of simple concepts and at the level of 
composite events and higher level concepts. In this man-
ner, it forms the main employment of visual context in the 
semantic processing framework, for example, by perform-
ing scene classification to detect whether an image or video 
clip represents city or landscape content (Fig. 9), essen-
tially aiding the analysis process to detect and recognize 
specific concepts or objects in the content. On the other 
hand, context of use is related to the use of content by a 
system’s application modules, such as search/retrieval and 
personalization. In this case, given the multimedia con-
tent and metadata, contextual information from an exter-
nal source are provided, consisting mainly of information 
about the particular user, network and client device, and 
so on. Ultimately, improved design and development of 
these  applications is achieved, including retrieval, search, 
 browsing, sharing, and management of content.

In multimedia computing applications, the aspects of 
context, that are thought to be the most suitable and appro-
priate for research and progress, are the ones of visual 
context described above. Therefore, from now on they may 

be presented under a common approach, summarized in 
the notion of visual context. Visual context forms a rather 
classical approach to context, tackling it from the scope of 
environmental or physical parameters in multimedia appli-
cations. Different architectures, conceptual approaches, 
and models support dynamic and adaptive modeling of 
visual context. One of the main objectives in the field is 
the combination of context parameters extracted from low-
level visual features with higher level concepts, like fuzzy 
set theory, to support reasoning. Specifically, the context 
description supports fuzziness in order to face the uncer-
tainty introduced by content analysis or the lack of knowl-
edge. This context representation also supports audiovisual 
information (e.g., lighting conditions and information 
about the environment) and is separately handled by visual 
context models. The second objective is visual context 
analysis, that is, to take into account the extracted/recog-
nized concepts during content analysis in order to find the 
specific context, express it in a structural description form, 
and use it for improving or continuing the content analysis, 
indexing, and searching procedures, as well as for content 
personalization purposes.

In terms of knowledge-assisted content analysis and 
processing, a set of core functionalities of the multimedia 
application is defined, regarding the way such a system is 
expected to execute knowledge-assisted image analysis 
functions automatically or in a supervised mode, either to 
detect or to recognize parts of content. Additionally, it is 
thought to generate or assist end users classify their con-
tents and metadata, through suggestions or sorting being 
performed in a sophisticated way, making quite naturally 
implicit use of context analysis functionalities. For exam-
ple, in a face recognition scenario, visual clues help the 
system detect the right person. Issues relating more to the 
automatic creation of metadata even after analysis, for 
example, through inference, make use of context as dif-
ferent sources of information (different analysis modules, 
textual inputs) are also integrated.

As far as retrieval is concerned, a set of core function-
alities of a multimedia search and retrieval system may 
also be defined; there are many distinct aspects suggested 
and commented by users, regarding the way of perform-
ing searches, the type of searches they expect to have and 

Landscape

City

Fig. 9 City/landscape classification
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Semantic Processing 7

the constraints they imagine. Organizing multimedia data 
into meaningful categories marked by end users as being 
important could, for example, exploit contextual informa-
tion. Additionally, several use case scenarios illustrate a 
system’s capability of learning a user’s interest in order 
to adapt its behavior to the assumed interests, taking into 
account personalization aspects. With respect to the learn-
ing functionality, users are in general concerned about 
privacy, while the adaptive system behavior can also be 
commented in terms of controllability. Retrieval is strongly 
related to context, when tackling textual query analysis, 
search by semantic, visual, or metadata similarity, seman-
tic grouping, browsing and rendering of retrieved content, 
personalization, and relevance feedback. However, user 
browsing capabilities, together with retrieval capabili-
ties, suppose detection of common metadata, which is not 
related to visual context. Another form of context, deal-
ing mostly with the semantic part of the analysis would be 
more useful in this case.[29] In any case, search by visual 
similarity may benefit by the use of visual context infor-
mation, as in the cases of scene classification and object 
detection.

It should have been clear by now that visual context 
can be clearly exploited in multimedia content process-
ing. During the phase of image metadata generation from 
one or more content analysis application modules, scene 
classification and/or object detection techniques can be of 
use, providing the necessary contextual information, for 
example, information about indoor/outdoor scenery at the 
metadata level. The same applies to knowledge-assisted 
image/video analysis and metadata generation; techniques 
and methodologies can be helpful in implementing scene 
classification and object detection. Moreover, when clas-
sifying and sorting content, degrees of confidence can be 
obtained by taking into consideration contextual informa-
tion. The latter is useful for extraction of the semantics 
of content and detection of repeated content. It can help 
deal with identification of semantically similar content, 
as well as analyze relative metadata information stored or 
derived automatically from images. All aspects of the so 
far presented contextual information assist toward trans-
parency and automation of knowledge extraction, provid-
ing the means to gather additional meaningful information 
in ontology mapping, image/video analysis, and metadata 
generation processes.

Visual Context in Image Analysis

By visual context in the sequel, we shall refer to all infor-
mation related to the visual scene content of a still image 
(or video sequence) that may be useful for its analysis. 
Image analysis deals with a few well-known research prob-
lems shortly presented in the following, whereas visual 
context is mostly related to two of the problems in image 
analysis, namely, scene classification and object detection 
(Fig. 10). Scene classification forms a top-down approach, 

where low-level visual features are employed to globally 
analyze the scene content and classify it in one of a num-
ber of predefined categories, for example, indoor/outdoor, 
city/landscape, and so on. On the other hand, object detec-
tion/recognition is a bottom-up approach that focuses on 
local analysis to detect and recognize specific objects in 
limited regions of an image, without explicit knowledge of 
the surrounding context, for example, recognize a building 
or a tree. These two major fields of image analysis actu-
ally comprise a chicken-and-egg problem as, for instance, 
detection of a building in the middle of an image might 
imply a picture of a city with a high probability, whereas 
pre-classification of the picture as “city” would favor the 
recognition of a building versus a tree. Solution to the 
above problem can be dealt through modeling of visual 
concept descriptors in one or more domain ontologies and 
ontology learning/visual concept detection techniques.

Another topic in the field of image processing is the 
automatic detection of important or interesting regions 
in an image; topic that has been tackled by a number of 
researchers over the past 20 years.[30,31] An example meth-
odology is illustrated in the work of Milanese,[32] where 
a computational model of visual attention by combining 
knowledge about the human visual system with computer 
vision techniques is developed. The notion of region seg-
mentation is aimed at generating regions of homogeneous 
properties such as color and texture, which are the basic 
units and also an efficient intermediate representation of 
the scene, for higher level reasoning and interpretation. 
This topic is considered in general as something that a 
human observer performs with relative ease, but at the 
same time it is difficult for an automated system to under-
stand and make higher level analysis tractable. More-
over, region-based segmentation aids significantly in the 
process of reasoning on spatial relationships; a task that 
becomes meaningful and useful this way. Of course, the 
segmented regions need further processing in order to be 
able to provide semantically meaningful information. In 
this scope they need to be classified, if applicable, into 
semantic object classes that are encountered frequently in 

Test image

Scene:
Open-country

Event: Polo

Object detection

Fig. 10 Scene classification versus object detection tasks: A 
single test image is being used to either identify an open-country 
scene and a polo event or to detect interesting objects like the 
human rider and the horses
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8 Semantic Processing

images, such as sky, cloud, grass, and tree. The purpose is 
to provide information about the existence of a few typi-
cal semantic object classes, which tend to belong either to 
the foreground or background, as well as an estimate of 
the scene category. The latter proves to be very useful for 
 triggering top-down reasoning.

In content-based image search and retrieval, more and 
more researchers are looking beyond low-level color, tex-
ture, and shape features in pursuit of more effective search-
ing methods. Natural object detection in indoor or outdoor 
scenes, that is, identifying key object types such as sky, 
grass, foliage, water, and snow, can facilitate content-based 
applications, ranging from image enhancement to coding 
or other multimedia applications. However, a significant 
number of misclassifications usually occur because of the 
similarities in color and texture characteristics of various 
object types and the lack of context information, which is 
a major limitation of individual object detectors. Toward 
the solution to the latter problem, an interesting approach 
is the one presented in the work of Luo et al.[33] A spa-
tial context-aware object-detection system is proposed, 
initially combining the output of individual object detec-
tors in order to produce a composite belief vector for the 
objects potentially present in an image. Subsequently, spa-
tial context constraints, in the form of probability density 
functions obtained by learning, are used to reduce mis-
classification by constraining the beliefs to conform to the 
spatial context models.

Other attempts in the area include the one proposed in 
the work of Naphade and Huang,[34] where a list of seman-
tic objects, including sky, snow, rock, water, and forest, is 
used in a framework for semantic indexing and retrieval of 
video. As already expected, color has been one of the cen-
tral features of existing work on natural object detection. 
For example, in the work of Saber et al.,[35] color classifica-
tion is utilized in order to detect sky. In the context of con-
tent-based image retrieval, Smith and Li[36] assumed that a 
blue extended patch at the top of an image is likely to rep-
resent clear sky. An exemplar-based approach is presented 
more recently that uses a combination of color and tex-
ture features to classify subblocks in an outdoor scene as 
sky or vegetation, assuming correct image orientation.[38] 
The  latter brings up the issue of utilizing context orien-
tation information in object class detection algorithms, a 
task that is generally avoided due to the fact that such con-
textual information is not always available and the perfor-
mance of the algorithms is more than adequate despite this 
shortcoming.

So far, none of the above methods and techniques utilize 
context in any form. This tends to be the main drawback of 
these individual object detectors, since they only examine 
isolated strips of pure object materials, without taking into 
consideration the context of the scene or individual objects 
themselves. This is very important and also extremely 
challenging even for human observers. The notion of visual 
context is able to aid in the direction of natural object 

detection methodologies, simulating the human approach 
to similar problems. Many object materials can have the 
same appearance in terms of color and texture, while the 
same object may have different appearances under dif-
ferent imaging conditions (e.g., lighting, magnification). 
However, one important trait of humans is that they exam-
ine all the objects in the scene before making a final deci-
sion on the identity of individual objects. The use of visual 
context forms the key for this unambiguous recognition 
process, as it refers to the relationships among the location 
of different objects in the scene. In this manner, it is useful 
in many cases to reduce the ambiguity among conflicting 
detectors and eliminate improbable spatial configurations 
in object detection. As already discussed, visual context 
may be either spatial or temporal; spatial context is asso-
ciated with spatial relationships between objects or regions 
in a still image or video sequence, whereas temporal con-
text is associated with temporal relationships between 
objects, regions, or scenes in the case of a video sequence. 
In the sequel, discussion will be restricted to spatial con-
text. One can identify two types of spatial contextual rela-
tionships that exist in natural images: (a) relationships that 
exist between co-occurrence of objects in natural images 
and (b) relationships that exist between spatial locations of 
certain objects in an image (Fig. 11).[37]

The definition of spatial context is an important issue 
for the notion of visual context in general. In order to be 
able to use context in applications, a mechanism to sense 
the current context—when thought as location, identities 
of nearby people or objects and changes to those objects—
and deliver it to the application is crucial and must be 
present. A significant distinction exists between methods 
trying to determine location in computing applications 
and research fields. Most of the existing approaches tend 
to restrict themselves, trying to infer the location where 
the image was taken (i.e., camera location); inferring 
the location of what the image was taken of (i.e., image 
content location) is a rather difficult and more complex 
task tackled by much less approaches.[39] In the work of 
Davis,[22] this challenge is addressed by leveraging reg-
ularities in a given user’s and in a community of users’ 
photo-taking behaviors. Suitable weights, based on past 
experience and intuition, are chosen in order to assist in 
the process of location-determining features and then 
adjusted through a process of trial and error. An exam-
ple describing the notion behind the method considers 
the following: it seems rather intuitive that if two pictures 
are being taken in the same location within a certain time 
frame (e.g., a few minutes for pedestrian users), they are 
probably in or around the same location.

Another factor to be considered is the intersection of 
spatial (and temporal) metadata in determining the loca-
tion of image content. For example, patterns of being in 
certain locations at certain times with certain people will 
help determine the probability of which building in an area 
a user might be in. Information on whether this particular 
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building is the place he/she works in can also be derived in 
such a case. Rule-based constraint and inference engines 
can also be used to aid reasoning, as well as machine 
learning algorithms to learn from past performance to 
optimize and adjust the relative importance of the various 
location-determining features. Taking the process a step 
further into the field of context modeling transforms the 
problem into how to represent contextual information in 
a way that can help bridging the gap between applications 
using contextual information and the deployment of con-
text-aware services. The development of such applications 
requires tools that are based on clearly defined context 
models. A simple approach is to use a plain model with 
context being maintained by a set of environment vari-
ables. Of course, visual context information can also come 
from an overall description of the whole scene. In that case, 
we are referring to the so-called scene context. In a num-
ber of studies, the context provided by a real-world scene 
has been claimed to have a mandatory, perceptual effect 
on the identification of individual objects in such a scene. 
This claim has provided a basis for challenging widely 
accepted data-driven models of visual perception. The so 
far discussed visual context, defined by the normal rela-
tionships among the locations of different materials in the 
scene without knowing exactly what the scene type is, is 
referred to as spatial context, and it is the one that is going 
to be used mostly in a multimedia system application. In 
the sequel, visual context analysis is discussed in relation 
to the problems of scene classification and object detec-
tion. With the increase in the number and size of digital 
archives and libraries, there is a need for automated, flex-
ible, and reliable image search and retrieval algorithms, 
as well as for image and video database indexing. Scene 
classification provides solutions in the means of suitable 
applications for the problem. The ultimate goal is to clas-
sify scenes based on their content. However, scene clas-
sification remains a major open challenge. Most solutions 

proposed so far, such as those based on color histograms 
and local texture statistics,[40,41] lack the ability to capture a 
scene’s global configuration, which is critical in perceptual 
judgments of scene similarity.

Initiatives have been taken in the field, whose main 
features can be summarized in the use of qualitative 
spatial and photometric relationships within and across 
regions. The emphasis on such qualitative measures leads 
to enhanced generalization abilities that are critical in 
achieving better coherence and efficiency for the final out-
put/application. However, these similarity measures are 
rather inadequate for the problem at hand, if not combined 
together with additional information from other sources. 
And that is so, mainly because the previously defined sim-
ilarity measures often produce results incongruent with 
human expectations, if the goal is to find images from a 
given object/scene class, such as snowy mountains or 
waterfalls. For example (Fig. 12), using color histograms 
to find the most similar images to a water scene at sunset 
could possibly return pictures of money, molten liquids, 
or even a watermelon! Obviously, all these images have 
the same overall gold color, although they differ in great 
degree in their semantic content.

Common standard approaches to object detection 
usually look at local pieces of the image in isolation 
when deciding if the object is present or not at a par-
ticular location. Of course, this is suboptimal and can 
be easily illustrated in the following example: consider 
the problem of finding a table in an office. A table is 
typically covered with other objects; indeed almost none 
of the table itself may be visible, and the parts that may 
be visible, such as its edge, are fairly generic features 
that may occur in many images. However, the table can 
be identified using contextual cues of various kinds. Of 
course, this problem is not restricted to tables or occluded 
objects: almost any object, when seen at a large enough 
distance, becomes impossible to recognize without using 

Fig. 11 Utilization of spatial context in semantic processing
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10 Semantic Processing

context. Without doubt, there is a large amount of work 
in the field of object detection and recognition as well. 
However, techniques utilized in the field have usually 
positive results only in case of objects that have well-de-
fined boundaries. Consequently, such strategies are not 
well suited for complex scenes, especially those that 
consist mostly of natural objects. The main difference 
between scene classification and object recognition tech-
niques relies in the latter statement. Given these diffi-
culties inherent in individual object recognition, scene 
classification approaches usually classify scenes without 
first attempting to recognize their components. This kind 
of strategy is also supported by psychophysical evidence 
showing that humans may holistically classify visual 
stimuli before recognizing the individual parts.[42] Also, 
efforts have been made in using scene classification to 
facilitate object detection and vice versa.[43] In general, 
scene classification methodology is characterized by the 
following three principles:

• The significance of the global scene configuration
• The use of qualitative measurements
• The sufficiency of low spatial frequency information

Of course, careful work has to be done to define what 
images might be indoor, what images might be outdoor, 

and what kind of images might not be classified, notably 
close-up scenes, portraits, faces, animals, flowers, etc. 
The most addressed semantic image classification prob-
lem in the literature is the one of indoor/outdoor classifi-
cation. One domain where automatic image classification 
is viable is personal photo collections, where specific 
 categories of indoor or outdoor scenes can be identified 
(e.g., see Fig. 13). 

The main features which are important in scene classi-
fication are color and texture and to a lesser extent, shape. 
Taking color into consideration, local color descriptors 
are in general detected in a straightforward manner. Clues 
such as blue sky, green plants, or red-tinted indoor scenes 
are the most commonly used.[44] Furthermore, faster and 
more efficient global color histograms are also utilized 
toward that goal.[45] In addition to color, texture and shape 
features are also of great importance. These features are 
capable of detecting regions with typical high frequencies 
in outdoor images, such as grass, leaves, sky, and water, 
and with typical vertical structures in indoor scenes, like 
wall corners or furniture, respectively. City/landscape 
classification (Fig. 9) is stated to be easier than indoor/
outdoor classification.[44] And that is so because city 
images are mainly characterized by continuous vertical 
and horizontal edges, whereas outdoor images are typi-
cally dominated by short edges in all directions. Usually, 

Fig. 12 All five images share a similar color histogram

Indoor

Outdoor

Fig. 13 Indoor/outdoor classification
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either polygonized edges of minimal length or direction 
coherence measures are used in order to take into account 
the presence of line-shaped, straight, continuous edges in 
city images.

Now, as already discussed in this section, several 
approaches of analyzing the content of images exist in 
the literature and many aspects of context are identified 
aiding in the process of image analysis. The main task of 
related research work and one of the main goals in the field 
is the effective combination of local and global informa-
tion, toward implementing robust methods to use in typical 
image processing problems and techniques. It should be 
clear by now that visual context can play a key role in the 
procedure of combining this information; context should 
actually stand in the middle, being able to handle both 
types of information and providing the means to achieve 
better coherence and reliable research results. In order 
to achieve the latter, appropriate visual context models 
should be selected and designed in a straightforward and 
productive manner, utilizing the variations of the particu-
lar aspects of visual context; in the following sections we 
shall focus on such a model.

Fuzzy Taxonomic Relations

It is common knowledge that retrieval systems based on 
terms suffer from the problematic mapping of terms to 
semantic entities.[46] Specifically, as more than one term 
may be associated to the same entity and more than one 
entity may be associated to the same term, the processing 
of query and index information is not trivial. In order to 
overcome such problems, one should work directly with 
semantic entities, rather than terms. In the sequel, we will 
denote by S = {s

1,
 s

2
, … , s

n
}, the set of semantic entities 

that are known. A knowledge representation model may 
consist of the definitions of these semantic entities, together 
with their textual descriptions, that is, their corresponding 
terms, as well as a set of relations among the semantic 
entities. The objective is to construct a model in which the 
context determines the intended meaning of each word, 
and a word used in different context may have different 
meanings. An initial formal definition of such a model may 
be given as follows:

{ }{ }= = …M S R i n, , 1
i

{ }× → =R S S i n: 0,1 , 1
i

where M is the knowledge model and R
i
 is the ith relation 

among the semantic entities. Although any type of relation 
may be included, the two main categories are taxonomic 
(i.e., ordering) and compatibility (i.e., symmetric) rela-
tions. Compatibility relations fail to assist in the determina-
tion of the context of a query; the use of ordering relations 

is necessary for such tasks.[1] Thus, a main challenge is 
the meaningful exploitation of information  contained in 
 taxonomic relations.

In addition, a knowledge model, in order to be highly 
descriptive, needs to contain a large number of distinct and 
diverse in relations among semantic entities. As a result, 
available information will be divided among them, mak-
ing each one of them inadequate to fully describe a con-
text. Thus, more than one such relation may need to be 
combined to provide a view of the knowledge that suffices 
for context definition and estimation. In order to overcome 
such problems, fuzzy semantic relations have been pro-
posed for the modeling of real life information.[1] In par-
ticular, several commonly encountered relations that can 
be modeled as fuzzy ordering relations can be combined 
for the generation of a meaningful, fuzzy, quasi-taxonomic 
relation. More formally, a new knowledge model M

F
 is 

thus constructed, denoting the fuzziness in the approach in 
comparison to the knowledge model presented above and 
summarized in the following:

{ }{ }= =M S R i n, , 1
iF

( ) [ ]= × → =r R S S i n: 0,1 , 1
i i

F

where F denotes the fuzzification of the relations R
i
. The 

existence of many relations has led to the need for utiliza-
tion of more relations for the generation of an adequate tax-
onomic relation T. Based on the relations r

i
, we  construct 

the following relation:

∪ …= ∈ − =T Tr r p i n( ), { 1,1}, 1t

i
i
pi

i

where Trt (A) is the sup-t transitive closure of some 
relation A, and the role of p

i
 is depicted by the specific 

definition of each relation used in the construction of T. 
Depending on the semantics of the relation definition 
(e.g., order of arguments a, b in Table 1), some relations 
may need to be inversed before being used in the con-
struction of T. The transitivity of relation T, a required 
property in order for it to be taxonomic, was not implied 
by the above definition as the union of transitive relations 
is not necessarily transitive. For the purpose of analyz-
ing multimedia content descriptions, relation T may be 
generated with the use of the following fuzzy taxonomic 
relations, whose semantics are defined in MPEG-7 and 
summarized in Table 1.

Based on the above fuzzy relations, T is a new semantic 
relation that is calculated as follows:[47]

     ( )= − −T Tr Sp P Ins Pat L ExPrt 1 1

Based on the semantics of the participating relations, 
it is easy to see that T is ideal for the determination of the 
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12 Semantic Processing

topics that an entity may be related to, as well as for the 
estimation of the common meaning, that is, the context, 
of a set of entities. All relations used for the generation of 
T are partial ordering relations. Still, there is no evidence 
that their union is also antisymmetric, a property which 
is required for it to be taxonomic. Quite the contrary, T 
may vary from being a partial ordering to being an equiv-
alence relation. This is an important observation, as true 
semantic relations also fit in this range (total symmet-
ricity, as well as total antisymmetricity often have to be 
abandoned when modeling real life). Still, the semantics 
of the used relations indicate that T is very close to anti-
symmetric. Therefore, we categorize it as quasi-ordering 
or quasi-taxonomic.

Taxonomic Context Model

When using a taxonomic knowledge representation to 
interpret the meaning of a multimedia entity, it is the 
context of a term that provides its truly intended mean-
ing. In other words, the true source of information is the 
co-occurrence of certain entities and not each one inde-
pendently. Thus, the common meaning of terms should be 
used in order to best determine the entities to which they 
should be mapped. We will refer to this as their taxonomic 
context; in general, term context refers to whatever is com-
mon among a set of entities. Relation T will be used for the 
detection of the context of a set of entities, as explained in 
the remaining of this subsection.

The fact that relation T is (almost) an ordering rela-
tion allows us to use it in order to define, extract, and use 
the context of a set of entities in general. Relying on the 
semantics of relation T, we define the context K(s) of a sin-
gle entity s∈S as the set of its antecedents in relation T, 
where S is the set of all entities. More formally, K(s) = T(s), 
following the standard superset/subset notation from fuzzy 
relational algebra. Assuming that a set of entities A⊆S is 
crisp, that is, that all considered entities belong to the set 

with degree one, the context of the set, which is again a 
set of entities, can be defined simply as the set of their 
 common antecedents:

 ( )( ) = ∈K A K s s A,
i i

Obviously, as more entities are considered, the con-
text becomes narrower, that is, it contains less enti-
ties and to smaller degrees, as illustrated in Fig. 14: 

⊃ → ⊆A B K A K B( ) ( ).
When the definition of context is extended to the case of 

fuzzy sets of entities, this property must still hold. More-
over, we demand that the following are satisfied as well, 
basically because of the nature of fuzzy sets:

• A(s) = 0 ⇒ K(A) = K (A − {s}), that is, no narrowing of 
context.

• A(s) = 1 ⇒ K(A) ⊆ K(s), that is, full narrowing of 
context.

• K(A) decreases monotonically with respect to A(s). 

Taking this into consideration, we demand that, when A 
is a normal fuzzy set, the “considered” context Ҡ(s) of s, 
that is, the entity’s context when taking its degree of par-
ticipation to the set into account, is low when the degree of 
participation A(s) is high or when the context of the crisp 
entity K(s) is low.

Therefore, cp(Ҡ(s)) = cp(K(s)) ∩ (S·A(s)), where cp 
is an involutive fuzzy complement and S·A(s) is a fuzzy 
set defined as ⋅ = ∀ ∈S A s A s x S[ ( )] ( )

x( )
. By applying De 

 Morgan’s law, we obtain the following:

κ = ⋅s K s cp S A s( ) ( ) ( ( ))

Then the set’s context is easily calculated as follows:

κ= ∈K A s s A( ) ( ),
i

i i

COMP: Please 
set the symbol 
“k” as per MS.

Table 1 Fuzzy taxonomic relations used for generation of T

Name Symbol Meaning Example

a b

Part P(a, b) b is a part of a Human 
body

Hand

Specialization Sp(a, b) a is a 
generalization of b

Vehicle Car

Example Ex(a, b) b is an example 
of a

Player Jordan

Instrument Ins(a, b) b is an instrument 
of a

Music Drums

Location L(a, b) b is the location 
of a

Concert Stage

Patient Pat(a, b) b is a patient of a Course Student

Property Pr(a, b) b is a property of a Jordan Star

Q

P

BA C D

Fig. 14 As more entities are considered, the context it contains 
less entities and to smaller degrees: Considering only the first 
two leaves from the left (A, B), the context contains two entities 
(P, Q), whereas considering all the leaves (A, B, C) narrows the 
context to just one common ascendant (P)
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Considering the semantics of the T relation and the 
process of context determination, it is easy to realize that 
when the entities in a set are highly related to a common 
meaning, the context will have high degrees of member-
ship for the entities that represent this common meaning. 
Therefore, the height of the context h(K(A)) may be used 
as a measure of the semantic correlation of entities in set 
A. We refer to this measure as intensity of the context. 
The intensity of the context also represents the degree of 
 relevance of the entities in the set.

SEMANTIC INDEXING

One of the main aspects of semantic processing tasks 
relies in the achievement of unified access to a/v con-
tent. The latter is accomplished through mapping of all 
a/v content and metadata to a semantically unified index, 
which is then used to serve user queries. In principle, 
the semantic index is constantly enriched and adapted to 
archive content changes. The main novelty introduced by 
this process is the fact that it allows an integrated detec-
tion of concepts both in multimedia content (i.e., images 
and videos) and text (i.e., in the form of metadata). Addi-
tionally, it sets the basis for efficient, intelligent clustering 
methods, for example, for the materialization of automatic 
thematic categorization of multimedia entities, using an 
appropriate knowledge model and the notions of semantic 
entities/relations and hierarchical contextual taxonomy. 
Thus, visual content analysis directly maps raw multime-
dia video to high-level semantic entities, integrating sev-
eral algorithms and techniques toward an efficient image 
processing.

Detection of Semantic Entities

Very different strategies may be followed in order to 
detect the sought semantic entities. In general, techniques 
for semantic entities detection can be divided into two 
major fields: detection of semantic entities when dealing 
with multimedia content and textual semantic entities 
extraction when tackling text documents. In both cases, 
different content (e.g., digital images vs. text) is considered 
and as a result different analysis techniques are required, 
however, a uniform approach to their semantic handling is 
followed and same representations are obtained. The role 
of this semantic unification is to correlate the multimedia 
content descriptions provided by the a/v archives with the 
semantic entities stored in the knowledge base, so that user 
queries can be issued and handled at a semantic level. The 
result contains the correlations between multimedia con-
tent items and semantic entities. The built-in knowledge 
about entities permits robustness and uncertainty han-
dling, whereas updating of knowledge ensures adaptation 
to environmental changes.

Visual Content Analysis

In a text document, the topic and semantics of the content 
are most often explicitly specified or at least contained 
within the document in a textual form. In a digital image, 
on the other hand, the entities to be indexed are not directly 
encountered in the image; recognizable features must be 
extracted and matched to the ones found in the knowledge 
base. Furthermore, abstract concepts, such as “sports” or 
“arts,” are not directly encountered and must be inferred 
from concrete objects and events, as well as features that 
are not attributed to a particular object or event, such as 
light.[48] There are several options to implement this, even 
in the more complex case of video sequences, such as shot 
detection, key-frame extraction, and object localization and 
tracking techniques, so as to prepare a meaningful syn-
tactic description of multimedia content.[49] In this case, 
following such video preprocessing techniques, we may 
achieve a hierarchical, spatiotemporal partition of the video 
sequence into meaningful time entities or shots. Thus, 
detected objects are then linked together to form adjacency 
graphs, that are then matched to the so-called description 
graphs, that model, in principal, a complex semantic entity 
in a combination of simpler ones[50] and are stored among 
objects, events, and other entities in the knowledge of the 
system. In this entry, we shall not examine more closely 
these problems encountered in visual content analysis, since 
it is not focusing on image processing and is more oriented 
toward the semantic interpretation of multimedia content.

Semantic Annotation Interpretation

The result of all (pre-)processing techniques mentioned 
in the previous section, including shot partitioning, key-
frame extraction, and object detection and tracking, may 
be extended and integrated in a useful digital content anno-
tation application; its annotation will have been semanti-
cally interpreted, that is, mapped to semantic entities and 
will be stored again within the semantic index. During this 
process, a query may be issued to each a/v archive for all 
content items that have not been indexed or whose descrip-
tion has been updated. The textual annotation contained 
in the MPEG-7 compliant description of each such item 
may be analyzed and semantic entities may be identified 
through matching with their definitions in the knowledge 
model. Links between detected semantic entities and the 
item in question may then be added to the index; weights 
may also be added depending on the location of each entity 
in the description and the degree of entity’s matching.

CONCLUSIONS

The core contribution of semantic processing in image 
processing tasks is the provision of uniform access to 
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heterogeneous a/v archives. This is accomplished by map-
ping all a/v content and metadata to a semantic index 
used to serve user queries, based on a common underlying 
knowledge model. A key aspect in these developments has 
been the exploitation of semantic metadata. In the follow-
ing years, multimedia content management tasks are going 
to become even more complex. As it becomes obvious day 
by day, multimedia content itself will soon be a commod-
ity, making the use of semantic metadata essential. Con-
tent providers will have to understand the benefits obtained 
from the systematic generation and exploitation of semantic 
information; service providers will have to accept them as 
the basis on which to build new services; and the producers 
of software tools for end users will redirect their imagi-
nation toward more appropriate integration of application 
software with content, taking advantage of semantic meta-
data. These developments clearly present some challenging 
prospects in technological, economic, standardization, and 
business terms and constitute semantic interpretation of 
multimedia content a key aspect of the conducted research 
activities.

REFERENCES

 1. Dorai, C.; Venkatesh, S. Computational media aesthetics: 
Finding meaning beautiful. IEEE Multimedia 2001, 8 (4), 
10–12.

 2. Smeulders, A.W.M.; Worring, M.; Santini, S.; Gupta, A.; 
Jain, R. Content-based image retrieval at the end of the 
early years. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 
22, 1349–1380.

 3. Battista, S.; Casalino, F.; Lande, C. MPEG-4: A multime-
dia standard for the third millenium Part 2. IEEE Multime-
dia 2000, 7 (1), 76–84.

 4. Sikora, T. The MPEG-7 visual standard for content descrip-
tion—An overview. IEEE Trans. Circuits Syst. Video 
Technol. Special issue on MPEG-7, 2001, 11 (6), 696–702.

 5. MPEG-21 Overview v.3, ISO/IEC JTC1/SC29/WG11 
N4511, December 2001.

 6. ISO/IEC JTC1/SC29/WG1 N1646R: JPEG 2000 Part I 
Final Committee Draft Version 1.0, 2000.

 7. Ramesh Naphade, M.; Kozintsev, I.V.; Huang, T.S. A factor 
graph framework for semantic video indexing. IEEE Trans. 
Circuits Syst. Video Technol. 2002, 12 (1), 40–52.

 8. Mich, O.; Brunelli, R.; Modena, C.M. A survey on video 
indexing. J. Visual Commun. Image Represent. 1999, 10, 
78–112.

 9. Yang, Y.; Zha, Z.-J.; Gao, Y.; Zhu, X.; Chua, T.-S. Exploit-
ing web images for semantic video indexing via robust 
sample-specific loss. IEEE Trans. Multimedia 2014, 16 (6), 
1677–1689.

 10. Naphide, H.R.; Huang, T.S. A probabilistic framework 
for semantic video indexing, filtering, and retrieval. IEEE 
Trans. Multimedia 2001, 3 (1), 141–151.

 11. Jun, W.; Worring, M. Efficient genre-specific semantic 
video indexing. IEEE Trans. Multimedia 2012, 14 (2), 
291–302.

 12. Euzenat, J.; Fensel, D.; Lara, R.; Gómez-Pérez, A. Knowl-
edge web: Realising the semantic web, all the way to 
knowledge enhanced multimedia documents. In Proceed-
ings of European Workshop on the Integration of Knowl-
edge; Semantics and Digital Media Technology (EWIMT): 
London, UK, 2004, 25–26.

 13. Nikolopoulos, S. Semantic Multimedia Analysis Using 
Knowledge and Context. PhD Thesis, Queen Mary Univer-
sity of London, 2012. Available at http://qmro.qmul.ac.uk/
jspui/handle/123456789/3148.

 14. Kompatsiaris, I.; Avrithis, Y.; Hobson, P; Strinzis, M.G. Inte-
grating knowledge, semantics and content for user-centred 
intelligent media services: The aceMedia project. In Proceed-
ings of Workshop on Image Analysis for Multimedia Interac-
tive Services (WIAMIS); Lisboa, Portugal, 2004, 21–23.

 15. Biskup, J.; Freitag, Y.; Karabulut; Sprick, B. A mediator 
for multimedia systems. In Proceedings 3rd International 
Workshop on Multimedia Information Systems; Como, 
Italy, 1997.

 16. Altenschmidt, C.; Biskup, J.; Flegel, U.; Karabulut, Y. 
Secure mediation: Requirements, design, and architecture. 
J. Comput. Secur. 2003, 11 (3), 365–398.

 17. Brink, A.; Marcus, S.; Subrahmanian, V. Heterogeneous 
multimedia reasoning. IEEE Comput. 1995, 28 (9), 33–39.

 18. Glöckner, I.; Knoll, A. Natural language navigation in mul-
timedia archives: An integrated approach. In Proceedings 
of the 7th ACM International Conference on Multimedia; 
Orlando, FL, 1999, 313–322.

 19. Cruz, I.; James, K. A user-centered interface for querying 
distributed multimedia databases. In Proceedings of the 
1999 ACM SIGMOD International Conference on Man-
agement of Data; Philadelphia, PA, 1999, 590–592.

 20. Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic, Theory and 
Applications; Prentice Hall: Upper Saddle River, NJ, 1995.

 21. Winograd, T. Architectures for context. Hum.-Comput. 
Interact. 2001, 16 (2), 401–419.

 22. Davis, M.; Good, N.; Sarvas, R. From context to content: 
Leveraging context for mobile media metadata. In Work-
shop on Context Awareness at the Second International 
Conference on Mobile Systems, Applications, and Services 
(MobiSys 2004), Boston, MA, 2004.

 23. Raieli, R. Multimedia Information Retrieval: Theory and 
Techniques, Chandos Information Professional Series; 
Chandos Publishing: New Delhi, India, 2013.

 24. Weiser, M. Some computer science issues in ubiquitous 
computing. Special Issue, Comput.-Augmented Environ. 
CACM 1993, 36 (7), 74–83.

 25. Schilit, B.; Adams, N.; Want, R. Context-aware computing 
applications. In Proceedings of IEEE Workshop on Mobile 
Computing Systems and Applications, Palo Alto Research 
Center: Santa Cruz, CA, 1994.

 26. Lux, M. Visual Information Retrieval. Klagenfurt Univer-
sity, Graz, Austria, May 2009.

 27. Glushko, R, Information Organization & Retrieval. School 
of Information, University of California, Berkeley, October 
6, 2014.

 28. Edmonds, B. The pragmatic roots of context 119–132. 
In Proceedings of the 2nd International and Interdis-
ciplinary Conference on Modeling and Using Context 
(CONTEXT-99); Bouquet, P.; Serafini, L.; Brézillon, P.; 

CH_052-140000375.indd   14 08/08/18   4:20 AM



Semantic Processing 15

Benerecetti, M.; Castellani, F.; Eds.; LNAI; Springer: 
 Berlin, Germany, 1999, Vol. 1688.

 29. Wallace, M.; Akrivas, G.; Mylonas, Ph.; Avrithis, Y.; 
Kollias, S. Using context and fuzzy relations to inter-
pret multimedia content. In Proceedings of 3rd Interna-
tional Workshop on Content-Based Multimedia Indexing 
(CBMI); IRISA, Rennes, France, 2003.

 30. Zhao, J.; Shimazu, Y.; Ohta, K.; Hayasaka, R.; Matsushita, 
Y. An outstandingness oriented image segmentation and 
its applications. In Proceedings of 4th International Sym-
posium on Signal Processing and Its Applications; Gold 
Coast, QLD, 1996.

 31. Osberger, W.; Maeder, A.J. Automatic identification of per-
ceptually important regions in an image. In Proceedings 
of IEEE International Conference on Pattern Recognition, 
Brisbane, QLD, 1998.

 32. Milanese, R. Detecting salient regions in an image: From 
biology to implementation. PhD Thesis, University of 
Geneva, Switzerland, 1993.

 33. Luo, J.; Singhal, A.; Zhu, W. Natural object detection in 
outdoor scenes based on probabilistic spatial context mod-
els. In Proceedings of IEEE International Conference on 
Multimedia and Expo; Baltimore, MD, 2002.

 34. Naphade, M.; Huang, T.S. A factor graph framework for 
semantic indexing and retrieval in video. In CVPR Work-
shop on Content-based Image and Video Retrieval, 2000.

 35. Saber, E.; Tekalp, A.M.; Eschbach, R.; Knox, K. Auto-
matic image annotation using adaptive colour classifica-
tion. CVGIP: Graph. Models Image Process. 1996, 58, 
115–126.

 36. Smith, J.R.; Li, C.-S. Decoding image semantics using 
composite region templates. In Proceedings IEEE Interna-
tional Workshop on Content-based Access of Image and 
Video Database, Santa Barbara, CA, 1998.

 37. Galleguillos, C.; Rabinovich, A.; Belongie, S. Object Cat-
egorization using Co-Occurrence, Location and Appear-
ance. In IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Αnchorage, AK, 23–28, 2008.

 38. Vailaya, A.; Jain, A. Detecting sky and vegetation in outdoor 
images. In Proceedings of SPIE, Vol. 3972, January 2000.

 39. Kalantidis, Y.; Tolias, G.; Avrithis, Y.; Phinikettos, M.; 
Spyrou, E.; Mylonas, Ph.; Kollias, S. VIRaL: Visual Image 
Retrieval and Localization. Multimedia Tools Appl. 2011, 
51 (2), 555–592.

 40. Ashley, J.; Flickner, M.; Lee, D.; Niblack, W.; Petkovic, 
D. Query by Image Content and Its Applications. IBM 
Research Report, RJ 9947 (87906) Computer Science/
Mathematics, March, 1995.

 41. Smith, J.R.; Chang, S. Local color and texture extraction 
and spatial query. In Proceedings of IEEE International 
Conference on Image Processing, 1996.

 42. Tanaka, J.W.; Farah, M. Parts and wholes in face recogni-
tion. Q. J. Exp. Psychol. 1993, 46A (2), 225–245.

 43. Murphy, K.; Torralba, A.; Freeman, B. Using the forest to 
see the trees: A graphical model relating features, objects, 
and scenes. In Advances in Neural Information Processing 
Systems 16 (NIPS 2003).

 44. Vailaya, A.; Figueiredo, M.; Jain, A.; Zhang, H.-J. Con-
tent-based hierarchical classification of vacation images. 
In Proceedings IEEE International Conference on Mul-
timedia Computing and Systems; Florence, Italy, 1999, 
7–11.

 45. Stauder, J.; Gouzien, G.; Chupeau, B.; Vigouroux, J.R.; 
Kijak, E. Semantic image browsing using hidden catego-
ries and confidence values. In Storage and Retrieval for 
Media Databases 2003, Santa Clara, CA, January 20–24, 
2003.

 46. Salembier, P.; Smith, J.R. MPEG-7 multimedia description 
schemes. IEEE Trans. Circuits Syst. Video Technol. 2001, 
11 (6), 748–759.

 47. Wallace, M.; Akrivas, G.; Mylonas, Ph.; Avrithis, Y.; 
Kollias, S. Using context and fuzzy relations to interpret 
multimedia content. In Proceedings of the Third Interna-
tional Workshop on Content-Based Multimedia Indexing 
(CBMI); IRISA: Rennes, France, 2003.

 48. Zhao, R.; Grosky, W.I. Narrowing the semantic gap- 
improved text-based web document retrieval using visual 
features. IEEE Trans. Multimedia, Special Issue on 
 Multimedia Database 2002, 4 (2), 189–200.

 49. Tsechpenakis, G.; Akrivas, G.; Andreou, G.; Stamou, G.; 
Kollias, S. Knowledge-assisted video analysis and object 
detection. In Proceedings of European Symposium on Intel-
ligent Technologies, Hybrid Systems and their Implementa-
tion on Smart Adaptive Systems, Albufeira, Portugal, 2002.

 50. Giro, X.; Marques, F. Semantic entity detection using 
description graphs. In Workshop on Image Analysis for 
Multimedia Application Services (WIAMIS’03), London, 
UK, 2003.

CH_052-140000375.indd   15 08/08/18   4:20 AM


