
Noname manuscript No.
(will be inserted by the editor)

Apache Spark Implementations for String Patterns in
DNA Sequences

Andreas Kanavos · Ioannis Livieris ·
Phivos Mylonas · Spyros Sioutas ·
Gerasimos Vonitsanos

the date of receipt and acceptance should be inserted later

Abstract The availability of numerical data grows from one day to another in a
remarkable way. New technologies of high-throughput Next Generation Sequenc-
ing (NGS) are producing DNA sequences. Next Generation Sequencing describes a
DNA sequencing technology which has revolutionised genomic research. In this pa-
per, we perform some experiments using a cloud infrastructure framework, namely
Apache Spark, in some sequences derived from the National Center for Biotechnol-
ogy Information (NCBI). The problems we examine are some of the most popular
ones, namely, Longest Common Prefix, Longest Common Substring, and Longest
Common Subsequence.

Keywords DNA Sequencing · Longest Common Prefix (LCP) · Longest Common
Substring · Longest Common Subsequence (LCS)

1 Introduction

Current scientific advancements in both biological as well as computer sciences
have brought new opportunities to intra-disciplinary research topics. On the one
hand, the advancement in molecular biological experiments is producing huge
amounts of data related to genome and RNA sequences, protein and metabo-
lite abundance, protein-protein interactions, gene expression, and so on. On the
other hand, computers and big-data analytics along with cloud software tools are

A. Kanavos and S. Sioutas and G. Vonitsanos
Computer Engineering and Informatics Department
University of Patras, Patras 26504, Greece
E-mail: {kanavos, sioutas, mvonitsanos}@ceid.upatras.gr

I.E. Livieris
Department of Mathematics
University of Patras, Patras 26504, Greece
E-mail: livieris@gmail.com

P. Mylonas
Department of Informatics
Ionian University, Corfu 49100, Greece
E-mail: fmylonas@ionio.gr



2 Kanavos, Livieris, Mylonas, Sioutas, Vonitsanos

being developed and thus, the capability of processing from terabyte data sets to
petabytes and beyond has been rapidly increased. As a result, the development of
computer science methods and models used to describe these problems in a formal
way arised in bioinformatics. The available algorithmic approaches used to solve
them are of great interest among researchers.

Regarding the majority of these problems, biological data are forming big, ver-
satile and complex networks. More to the point, in recent years, sequencing has
faced major scientific progress and in following has leveraged the development
of novel bioinformatic applications. It is not surprising why bioinformatics and
life sciences applications, in general, are facing a rapidly increasing demand for
data-handling capacity. In many cases, from low-level applications (such as sys-
tems biology) to high-level integrated applications (such as systems medicine), the
amounts of data to be stored, transferred, and finally processed, meet congestion
in many current technologies.

The advances in the fields of bioinformatics and systems biology furtherly
require improved computational methods for analyzing data, while the ongoing
progress in the field of molecular biology is evident and thus influences the devel-
opment of computer science methods. Authors in [8] introduce some key problems
in bioinformatics, in following discuss the models used to formally describe these
problems, and finally analyze the algorithmic approaches used to solve them.

A Deoxyribonucleic Acid (DNA) macromolecule can be coded by a sequence
over a four-letter alphabet. The four letters are A, C, G, and T, and code the
bases Adenine, Cytosine, Guanine, and Thymine, respectively. More specifically,
DNA Sequencing consists in determining the exact order of these bases in a DNA
macromolecule. As a result, DNA sequencing technology constitutes a vital role in
the advancement of molecular biology. Compared to previous sequencing aspects,
Next-Generation Sequencing (NGS) perform swifter, with significantly lower pro-
duction costs and much higher throughput in the form of short reads, i.e., short
sequences coding portions of DNA macromolecules.

The remainder of the paper is organized as follows. Section 2 summarizes the
history of NGS and provides an overview of the three corresponding problems.
Section 3 discusses Longest Common Prefix along with four different algorithms.
Likewise, Sections 4 and 5 present Longest Common Substring and Longest Com-
mon Subsequence respectively. In addition, Sections 6 and 7 introduce the details
of the implementation of the system (and the respective cloud infrastructure uti-
lized) as well as the experimental results. Finally, in Section 8 our concluding
remarks, open problems, and future work are introduced.

2 Related Work

In our days, there is a need for more effective algorithms regarding DNA sequence
processing as the acquisition of DNA information is no longer a bottleneck in ge-
netics. This processing includes searching for selected parts of a sequence, analysis
of similarities, differences, or even repetitive fragments. Therefore, sequence align-
ment methods are gaining much attention in terms of the research in biology and
medicine. The sequences are, in many cases, expected to be matched despite the
existing minute differences, as they may be caused by acquisition errors; hence



Apache Spark Implementations for String Patterns in DNA Sequences 3

the searching procedure should accept a controlled number of mismatches. Heuris-
tic methods, implemented in Basic Local Alignment Search Tool (BLAST)1, a
program commonly used for sequence alignment, can manage searching sequence
fragments in large databases.

Researchers in the field of computer science consider the fact that biologically
meaningful results could come from considering DNA as a one-dimensional charac-
ter string, abstracting the reality of DNA as a flexible three-dimensional molecule.
Thus, interaction in a dynamic environment with protein and RNA, and repetition
of a life-cycle in which even the classic linear chromosome exists for only a frac-
tion of time can take place [17]. Significant contributions to computational biology
might be made by extending or adapting algorithms from computer science, even
when the original algorithm has no clear utility in biology. This is illustrated by
several recent sublinear-time approximate matching methods for database search-
ing that rely on an interplay between exact matching methods from computer
science and dynamic programming methods already utilized in molecular biology.
Certain string algorithms that were generally deemed to be irrelevant to biology
just a few years ago have become adopted by practicing biologists in both large-
scale projects and in narrower technical problems.

A number of data structures have been designed with the aim of storing these
impressive amounts of data in an efficient way while allowing for immediate index-
ing and searching. As a result, all occurrences of any given pattern can be found
without traversing the whole sequences. In short, indexing is profitable and useful
if utilized regularly. It is evident that if sequences are available beforehand and not
periodical alteration takes place, researchers and users can enjoy full advantage of
the index. The primary goal of these corresponding data structures constitutes the
construction of an index that provides efficient answers to queries with reasonable
building and maintenance costs. Classical data structures such as Tries [9], Suffix
Trees [12, 36, 38], Suffix Arrays [30], Directed Acyclic Word Graphs (DAWG) [7]
as well as the compact version CDAWG [11] are arguably considered very popu-
lar and useful data structures for string analysis, especially when searching over
large sequence collections. Yet, these structures are full-text indexes as they re-
quire a large amount of space for a sequence to be represented. A survey of index
construction algorithms is properly introduced in [33].

Authors in [28] introduce a collection of string algorithms that lie in the crux
of a number of biological problems such as the discovery of potential drug targets,
the creation of diagnostic probes, and the universal primers or unbiased consensus
sequences. All these problems reduce to the task of identifying a pattern that, with
some flaws, occurs in one set of strings (Closest Substring Problem) and does not
appear in another (Farthest String Problem).

In addition, all NGS platforms perform sequencing of millions of small frag-
ments of DNA in parallel. The analysis in the area of bioinformatics maps each
individual read to the human reference genome with the aim of piecing together
the previous fragments. Each of the three billion bases in the human genome is
sequenced multiple times, providing thus inner depth for delivering accurate data
and an insight into unexpected DNA variation. NGS can also be used for purposes
of sequencing entire genomes, including small numbers of individual genes or even
all 22.000 coding genes (a whole exome) [5].

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi



4 Kanavos, Livieris, Mylonas, Sioutas, Vonitsanos

3 Longest Common Prefix (LCP)

The LCP array, known as the abbreviation of the phrase “Longest Common Pre-
fix”, constitutes a data structure, which is mostly used in combination with the
suffix array. More specifically, the array itself contains the length of the longest
common prefix of two lexicographically consecutive suffixes [30]. The LCP array
is mainly utilized because of its critical information regarding repetitiveness in a
given string and can be, therefore, considered as a very advantageous data struc-
ture for analysing textual data in several fields such as molecular biology, natural
language processing, or musicology. Moreover, sequence variations that may be the
result of DNA replication or DNA sequence errors, can also be identified [1, 3, 31].
Other approaches that address the specific problem with the use of LCP-array
construction algorithms are considered as well in [14, 16, 26].

Regarding the LCP array, there are numerous text search as well as indexing
applications, where the popular ones consist of the construction of the suffix tree,
as well as the efficient search of all occurrences of a search pattern in a text.

The algorithms considered in this study for the Longest Common Prefix prob-
lem are the following:

– Word by Word Matching
– Character by Character Matching
– Divide and Conquer
– Binary Search

3.1 Word by Word Matching

The Longest Common Prefix problem for the Word by Word Matching Algorithm
for n given strings can be considered as

LCP (s1 . . . sn) = LCP (LCP (LCP (s1, s2), s3), . . . sn) (1)

The Time Complexity of Word by Word Matching Algorithm is O(n ∗ m),
where n is the number of strings and m is the length of the largest string. We
iterate through all the strings and namely, for each string, we iterate through all
of its characters.

3.2 Character by Character Matching

This algorithm differs from the previous one as in the case where there is no
common prefix among the given strings, and therefore no need of searching all the
strings. Specifically, as this algorithm traverses the characters of each string, once
a string that is not common to the other strings is reached, searching stops and it
is stated that there is no prefix.

The Time Complexity of Character by Character Matching Algorithm is O(n∗
m), where n is the number of strings and m is the length of the largest string. We
evidently iterate through all the characters of all the strings.



Apache Spark Implementations for String Patterns in DNA Sequences 5

3.3 Divide and Conquer

This algorithm divides a concrete problem into several sub-problems that are sim-
ilar to the initial problem; in following it recursively solves these sub-problems,
and finally combines the solutions derived from the sub-problems in order to solve
the initial problem. Because of its recursive function, there is a limitation; each
sub-problem must be smaller than the initial problem and there must also be a
base case for all corresponding sub-problems [13, 24].

More to the point, these kinds of algorithms constitute of the following three
steps:

– Divide the problem into a number of sub-problems that are smaller instances
of the same problem.

– Conquer the sub-problems by solving them in a recursive way. If they are small
enough, then solve the sub-problems as base cases.

– Combine the solutions of the above sub-problems into the solution correspond-
ing to the initial problem.

This algorithm stems from the associative property of LCP operation. We
notice that

LCP (S1 . . . Sn) = LCP (LCP (S1 . . . Sk) (2)

LCP (Sk+1 . . . Sn))LCP (S1 . . . Sn) = LCP (LCP (S1 . . . Sk), LCP (Sk+1 . . . Sn))
(3)

where LCP (S1 . . . Sn) is the longest common prefix in a set of strings [S1 . . . Sn]
with 1 < k < n.

The Time Complexity of Divide and Conquer Algorithm is O(n ∗m), where n
is the number of strings and m is the length of the largest string. This is since we
are iterating through all the characters of all the strings.

3.4 Binary Search

The idea of this algorithm is to apply the well known Binary Search method in
order to find the string with maximum value L, which is a common prefix of
all the strings [23]. The algorithm searches in the interval (0 . . .minLen), where
minLen is of minimum string length and simultaneously has the maximum possible
common prefix. At each time period, the search space, which is (0 . . .minLen), is
divided in two equal parts; the one of these two is discarded as it doesn’t contain
the solution.

There are two possible cases:

– The first case assumes that the S[1 . . .mid] is not a common string. This means
that for each j > i, the string S[1 . . . j] is not a common one and thus, the
second half of the search space is discarded.

– The second case assumes that the S[1 . . .mid] is a common string. This means
that for each i < j, the string S[1 . . . i] is a common one and thus, the first
half of the search space is once again discarded (our goal is to find a longer
common prefix).



6 Kanavos, Livieris, Mylonas, Sioutas, Vonitsanos

The Time Complexity of Binary Search Algorithm is O(n ∗m ∗ logm), where
n is the number of strings and m is the length of the largest string. This occurs
since we use the recurrence relation T (M) = T (M/2) +O(M ∗N).

4 Longest Common Substring

The Longest Common Substring compares two strings and determines whether
they might match by determining the longest length of a sequence of characters
(sub-string) that is common to both strings. Specifically, it checks whether that
corresponding substring matches exactly or is a part of the given string. The
Longest Common Substring is a major problem in the study of strings and it
occurs in many different cases in the field of Biology [2, 4, 40]. Specifically, let us
consider two strings S and T with length m and n respectively, then the goal is
to find the longest strings which are sub-strings of both S and T .

The k-common sub-string problem can be considered as a generalization. Con-
cretely, given the set of strings S = S1, . . . , SK , where |Si| = ni and Σni = N , the
algorithm finds the longest strings which occur as sub-strings of at least k strings,
with 2 ≤ k ≤ K.

The algorithms considered in this study for the Longest Common Substring
problem are the following:

– Naive Search
– Dynamic Programming
– Suffix Array

4.1 Naive Search

The Naive Search constitutes the simplest method among other pattern searching
algorithms. Concretely, it checks whether all the characters of the main string exist
in a specific pattern [17]. Furthermore, it is proven to be effective regarding smaller
texts and also, it does not require any pre-processing phases. For the identification
of a substring, an additional check for the string needs to be performed [27].

The Time Complexity of Naive Search Algorithm is O(n ∗m), where n is the
size of the main string and m is the size of the pattern.

4.2 Dynamic Programming

The Dynamic Programming is considered a powerful enough technique that can
be used for solving several different problems in O(n2) or O(n3) time, where a
naive approach would require an exponential time [17, 22, 37, 40]. One important
factor that needs to be taken into account regarding these kinds of problems is
the following; if solving a sub-problem is the optimal solution, then this optimal
solution for the specific sub-problem must be used [20].

Overall, this method constitutes a general approach for solving problems and
resembles “divide-and-conquer” method. The main difference between these two
methods is that except that in Dynamic Programming, the sub-problems will



Apache Spark Implementations for String Patterns in DNA Sequences 7

typically overlap. The aim is to somehow split the initial problem into a reasonable
number of sub-problems in a way that we can use optimal solutions to the smaller
sub-problems; the final output is to provide the initial problem with a near optimal
solution. The storing of the concrete solutions can be implemented by using a
memory-based data structure, such as an array, a map, etc.

4.3 Suffix Array

The Suffix Array has been introduced by Manber and Myers [30] as a practical and
memory-efficient replacement for the suffix tree in string matching applications.
The suffix array of a string s having length n is merely an array of these n integers
that indicate the lexicographic order of non-empty suffixes of s. Its simplicity
and compactness make it an extremely useful tool in modern text processing.
Furthermore, the Suffix Array represents in an explicit way all the leaves of the
suffix tree, while it omits internal nodes and outgoing edges.

Authors in [32] introduce a linear time and space suffix array construction
algorithm, which is novel because of the LMS-substrings used for the problem
reduction and the pure induced-sorting used to propagate the order of suffixes as
well as that of LMS-substrings.

Definition 1 The Suffix Array of a string S of length n is an array A containing
a permutation of the interval [O,n], such that SA[i−1] <lex SA[i] for all i ∈ [1, n].

5 Longest Common Subsequence (LCS)

The Longest Common Subsequence problem for a given set of sequences consti-
tutes the identification of a common subsequence of all the sequences that has the
maximal length [18, 29]. It can be considered as a classic computer science problem
as it is the basis of data comparison programs and also has several applications
in bioinformatics. Also, LCS addresses various problems in genetics and molecular
biology while being used as a measure of similarity between the strings and the
biological sequences they represent. In addition, it is widely used by revision con-
trol systems, such as SVN and Git in terms of reconciling multiple changes made
to a revision-controlled collection of files.

A survey introducing a comprehensive comparison of well-known longest com-
mon subsequence algorithms (for two input strings) and in following studying their
behaviour in various application environments is presented in [6]. As authors state,
the performance of the methods depends heavily on the properties of the problem
instance as well as the supporting data structures used in the implementation.

One related work was introduced in [25], where authors presented a randomized
algorithm to solve this problem. More to the point, the corresponding algorithm
associates with each string X a fingerprint φ(X), which is shorter enough from
the corresponding string. In following, the search procedure compares short finger-
prints instead of the initial long strings. Similarly, in [21], new variants of Longest
Common Subsequence problem and efficient algorithms for solving them are prop-
erly introduced. In particular, authors discuss the notion of gap constraints in
corresponding problems.



8 Kanavos, Livieris, Mylonas, Sioutas, Vonitsanos

The algorithms considered in this study for the Longest Common Subsequence
(LCS) problem are the following:

– Naive Search
– Dynamic Programming
– Longest Increasing Subsequence (LIS)

5.1 Naive Search

As mentioned in the previous problem, the Naive Search method for this problem
considers initially the generation of all the subsequences of the given sequences.
In following, the second step constitutes the identification of the longest matching
subsequence.

The Time Complexity of the Naive Search Algorithm is exponential. The num-
ber of the total possible combinations will be 2n. Hence, this general recursive
solution requires O(2n).

5.2 Dynamic Programming

The Dynamic Programming method has already been introduced in the Longest
Common Substring problem. What is more, each of the sub-problem solutions is
indexed based on the values of its input parameters so as to facilitate its lookup.
As a result, the time where the same sub-problem occurs, instead of recomputing
its solution, one simply looks up the previously computed solution, hence saving
computation time. The corresponding technique of storing solutions for the sub-
problems, instead of recomputing them, is called memorization.

5.3 Longest Increasing Subsequence (LIS)

The Longest Increasing Subsequence (LIS) problem corresponds to the discovery
of the subsequence of a given sequence in which the subsequence’s elements are
in sorted order, lowest to highest, and in which the subsequence is as long as
possible. Notice that this subsequence is not necessary to be continuous or unique.
Generally, this method creates a sequence based on the positions of the characters
of the one string that match the characters of the other string [10, 15].

Definition 2 A subsequence of sequence x1, . . . , xn is some sequence xφ1, . . . ,
xφh such that for all k, where 1 ≤ k ≤ h, we have 1 ≤ φk ≤ n. In addition, for any
xj in the subsequence, all xi preceding xj in the subsequence, satisfy that i < j.
An increasing subsequence constitutes a subsequence such that for any xj in the
subsequence, all xi preceding xj in the subsequence satisfy xi < xj . A largest
increasing subsequence is a subsequence of maximum length.

The Time Complexity of the Longest Increasing Subsequence Algorithm is
O(n2 ∗ logk), where n is the length of the strings and k is the maximum length of
LCS.



Apache Spark Implementations for String Patterns in DNA Sequences 9

6 Implementation

In this section we will briefly discuss the tools we used to perform the experimental
evaluation. The analysis was performed with the use of Apache Spark. We based
our experiments on two different DNA sequences and the application we imple-
mented utilised Python language. In the next subsections, the cloud infrastructure,
as well as the datasets, are properly introduced.

6.1 Apache Spark

Apache Spark2 [39] was founded in 2009 at the University of California, Berkley.
Although it shares the same principles as Hadoop, its philosophy differs. It uses the
abstraction of “Resilient Distributed Dataset” (RDD’s), which represent a fault-
tolerant correlation of elements, distributed across many compute nodes that can
be manipulated in parallel. Using them, a wide range of tasks, including SQL,
streaming, machine learning and graph processing, in a unified manner, can be
captured. Its main advantage over MapReduce paradigm is that we don’t have
to flush the intermediate data to the disk, just to read them at the reduce stage,
since it can perform iterative computations in memory, which can have a positive
impact on the performance [35].

The creators of Apache Spark have also founded Databricks that supplies re-
searchers with a web based platform in which they can store and analyse their
data with Spark. It offers researchers a mini cluster with 6 Gb of RAM for their
analysis and also cloud storage. As programming language, Python (PySpark) was
chosen.

6.2 Datasets

As previously mentioned, the experiments were conducted with DNA sequences
derived from the database of the National Center for Biotechnology Information
(NCBI). More specifically, these sequences are part of the genomes entitled Es-
cherichia coli K-12 [34] as well as Streptococcus pneumoniae R6 [19].

7 Results

The results of our work are presented in the following Tables 1 to 6 for different
number of input strings as well as different number of strings characters. The
execution time (in milliseconds and seconds) is used as the evaluation metric of
the different algorithms.

Regarding Table 1, we present four different experiments for the problem of the
Longest Common Prefix. In the first case, the number of characters for the three
input strings is 450, 300 as well as 125 respectively and the output consists of an
LCP with 76 characters. In following, in the second case, the number of characters
for input strings is 2605, 2455 as well as 2060 respectively and the output consists

2 http://spark.apache.org/



10 Kanavos, Livieris, Mylonas, Sioutas, Vonitsanos

of an LCP with 250 characters. For the last two cases, the number of characters
for input strings is 9948, 8884, 8504 and 21350, 18790, 16845 whereas the output
consists of an LCP with 1054 and 2530 characters respectively.

Table 1 Four different scenarios for Longest Common Prefix Implementations

Scenario Number of Input Strings
Longest Common Prefix

Output

1 450, 300, 125 76
2 2605, 2455, 2060 250
3 9948, 8884, 8504 1054
4 21350, 18790, 16845 2530

Binary Search, as expected, achieved the best performance in Table 2, while the
other three algorithms, although they almost have the same complexity, in fact are
quite different. Binary Search takes the lowest time as it examines each character
starting from the first one until the one that is in the position equal to the length of
the smallest string. Divide and Conquer is the next best performance as it divides
the problem into smaller sub-problems and calculates the final solution through
solutions in each sub-problem. Word by Word Matching is the slowest, as it has
to look at all the strings and the prefix, which occur each time between the pairs
of the strings and may be larger than the final prefix, so there is the possibility of
additionally unnecessary calculations. On the other hand, Character by Character
Matching, instead of going through the strings one by one, looks at the characters
separately. So, once a character in any string is not the same with the other, the
query stops and the output consists of the occurred prefix; moreover, no additional
unnecessary calculations need to be done.

Table 2 Time for different scenarios of Longest Common Prefix Implementations

Longest Common Prefix
Algorithm 1 2 3 4

Word by Word Matching 2,02 2,88 3,58 5,75
Character by Character Matching 1,55 2,68 3,39 5,39
Divide and Conquer 1,52 1,73 1,97 2,61
Binary Search 0,95 1,09 1,28 1,44

Furthermore, results in Table 3 introduce the problem of the Longest Common
Substring. We also present four different experiments, where in the first case, the
number of characters for the two input strings is 300 as well as 280 respectively
and the output consists of a substring with 7 characters. In the second case, the
number of characters for input strings is 4575 as well as 4270 respectively and
the output consists of a substring with 13 characters. For the last two cases, the
number of characters for input strings is 7500, 7000 and 14925, 14070 whereas the
output consists of a substring with 13 and 23 characters respectively.

The results in Table 4 show that the Naive Search algorithm is the slowest one
as it requires, after the identification of all the possible strings of the first input, to



Apache Spark Implementations for String Patterns in DNA Sequences 11

Table 3 Four different scenarios for Longest Common Substring Implementations

Scenario Number of Input Strings
Longest Common Substring

Output

1 300, 280 7
2 4575, 4270 13
3 7500, 7000 13
4 14925, 14070 23

additionally check whether each one of them is substring of the initial; the largest
one will be the desired Longest Common Substring. The Dynamic Programming
method performs better because in this case, a table that contains the lengths of
the maximum common suffixes of the two strings, will be created. In following,
as already mentioned, every corresponding output will be stored in the table in
order to be used in calculations that precede. On the other hand, the Suffix Array
approach, even if quite simple, is faster than the previous two algorithms. It is
considered a simple data structure that contains all the information needed for
finding the Longest Common Substring; a table is created with all the possible
string suffixes resulting from the combination of input strings and after being
sorted in lexicographic order using an LCP algorithm, we find all the LCPs between
each value with the exactly next one. The largest of these LCPs constitutes the
desired Longest Common Substring.

Table 4 Time for different scenarios of Longest Common Substring Implementations

Longest Common
Substring Algorithm 1 2 3 4

Naive Search 3,82 14, 16 ∗ 103 58, 14 ∗ 103 482, 53 ∗ 103

Dynamic Programming 0,01 3,32 8,02 33,22
Suffix Array 0,003 0,22 0,42 1,59

Finally, Table 5 presents the problem of the Longest Common Subsequence,
where in the first case, the number of characters for both two input strings is
20 and the output consists of an LCS with 9 characters. In the second case, the
number of characters for the two input strings is 83 as well as 81 respectively
and the output consists of an LCS with 46 characters. For the last two cases, the
number of characters for input strings is 158, 155 and 300, 280 whereas the output
consists of an LCSub with 90 and 179 characters respectively.

Table 5 Four different scenarios for Longest Common Subsequence Implementations

Scenario Number of Input Strings
Longest Common Subsequence

Output

1 20, 20 9
2 83, 81 46
3 158, 155 90
4 300, 280 179



12 Kanavos, Livieris, Mylonas, Sioutas, Vonitsanos

As in the Longest Common Substring Implementations, we observe in Table
6 that the Naive method for calculating the Longest Common Subsequence is the
slowest. Specifically, its complexity is exponential and in the worst case reaches
O(2n). This undoubtedly proves that it is unsuitable for long sequences like the
ones used for computations in the field of bioinformatics. On the other hand,
the Dynamic Programming is clearly a faster method because it uses a table for
storing the temporary results in order to be used in subsequent calculations. The
LIS approach achieves the medium performance as initially, it creates a sequence
based on the positions of the string characters and then, a LIS algorithm that will
produce the desired LCS, is applied.

Table 6 Time for different scenarios of Longest Common Subsequence Implementations

Longest Common Subsequence
Algorithm 1 2 3 4

Naive Search 102,48 - - -
Dynamic Programming 0,001 0,009 0,012 0,037
Longest Increasing Subsequence (LIS) 0,006 0,62 21,41 320,53

8 Conclusions

The aim of this work was to study DNA sequences regarding three well known
problems, namely, the Longest Common Prefix, the Longest Common Substring
and the Longest Common Subsequence. The application was developed in Apache
Spark environment with Python programming language. The use of Spark has
accelerated the processing of large-scale biological sequences, while it has also
contributed to the versatility of the use of Python.

It would be interesting to analyze the Longest Common Extension (LCE) prob-
lem that appears to be a sub-problem in several fundamental problems with strings
such as the k-Difference Global Alignment for the construction of alignment tools
in bioinformatics. Moreover, another potential future work is to incorporate in our
experiments the use of Suffix Tree in the Longest Common Substring problem.
In addition, the ongoing research is aimed at investigating the performance of
algorithms using various text compression algorithms. To be more specific, these
algorithms will take full advantage of genomic sequence data.

References

1. Alamro H, Ayad LAK, Charalampopoulos P, Iliopoulos CS, Pissis SP (2018)
Longest common prefixes with k-mismatches and applications. In: 44th Inter-
national Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM), pp 636–649

2. Arnold M, Ohlebusch E (2011) Linear time algorithms for generalizations of
the longest common substring problem. Algorithmica 60(4):806–818



Apache Spark Implementations for String Patterns in DNA Sequences 13

3. Ayad LAK, Barton C, Charalampopoulos P, Iliopoulos CS, Pissis SP (2018)
Longest common prefixes with k-errors and applications. In: 25th International
Symposium on String Processing and Information Retrieval (SPIRE), pp 27–
41

4. Babenko MA, Starikovskaya TA (2008) Computing longest common substrings
via suffix arrays. In: Computer Science - Theory and Applications, Third In-
ternational Computer Science Symposium in Russia (CSR), pp 64–75

5. Behjati S, Tarpey PS (2013) What is next generation sequencing? Archives of
Disease in Childhood-Education and Practice 98(6):236–238

6. Bergroth L, Hakonen H, Raita T (2000) A survey of longest common subse-
quence algorithms. In: Seventh International Symposium on String Processing
and Information Retrieval (SPIRE), pp 39–48

7. Blumer A, Blumer J, Haussler D, Ehrenfeucht A, Chen MT, Seiferas J (1985)
The smallest automation recognizing the subwords of a text. Theoretical Com-
puter Science 40:31–55

8. Bockenhauer HJ, Bongartz D (2007) Algorithmic Aspects of Bioinformatics.
Springer

9. Crochemore M, Lecroq T (2009) Trie. In: Encyclopedia of Database Systems,
pp 3179–3182

10. Crochemore M, Porat E (2010) Fast computation of a longest increasing sub-
sequence and application. Information and Computation 208(9):1054–1059

11. Crochemore M, Vérin R (1997) On compact directed acyclic word graphs. In:
Structures in Logic and Computer Science, A Selection of Essays in Honor of
Andrzej Ehrenfeucht, pp 192–211

12. Farach M (1997) Optimal suffix tree construction with large alphabets. In:
38th Annual Symposium on Foundations of Computer Science (FOCS), pp
137–143

13. Farach M, Ferragina P, Muthukrishnan S (1998) Overcoming the memory bot-
tleneck in suffix tree construction. In: 39th Annual Symposium on Foundations
of Computer Science (FOCS), pp 174–185

14. Fischer J (2011) Inducing the lcp-array. In: 12th International Symposium on
Algorithms and Data Structures (WADS), pp 374–385

15. Garcia T, Myoupo JF, Seme D (2001) A work-optimal cgm algorithm for
the longest increasing subsequence problem. In: International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA),
vol 2, pp 563–569

16. Gog S, Ohlebusch E (2011) Fast and lightweight lcp-array construction al-
gorithms. In: 13th Workshop on Algorithm Engineering and Experiments
(ALENEX), pp 25–34

17. Gusfield D (1997) Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press

18. Hirschberg DS (1977) Algorithms for the longest common subsequence prob-
lem. Journal of the ACM 24(4):664–675

19. Hoskins J, Alborn WE, Arnold J, Blaszczak LC, Burgett S, DeHoff BS, Es-
trem ST, Fritz L, Fu DJ, et al (2001) Genome of the bacterium streptococcus
pneumoniae strain r6. Journal of Bacteriology 183(19):5709–5717

20. Hsu WJ, Du MW (1984) New algorithms for the LCS problem. Journal of
Computer and System Sciences 29(2):133–152



14 Kanavos, Livieris, Mylonas, Sioutas, Vonitsanos

21. Iliopoulos CS, Rahman MS (2008) Algorithms for computing variants of the
longest common subsequence problem. Theoretical Computer Science 395(2-
3):255–267

22. Iliopoulos CS, Rahman MS (2008) New efficient algorithms for the LCS and
constrained LCS problems. Information Processing Letters 106(1):13–18

23. Irving RW, Love L (2003) The suffix binary search tree and suffix avl tree.
Journal of Discrete Algorithms 1(5-6):387–408

24. Kärkkäinen J, Sanders P (2003) Simple linear work suffix array construction.
In: 30th International Colloquium on Automata, Languages and Programming
(ICALP), pp 943–955

25. Karp RM, Rabin MO (1987) Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development 31(2):249–260

26. Kasai T, Lee G, Arimura H, Arikawa S, Park K (2001) Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: 12th An-
nual Symposium on Combinatorial Pattern Matching (CPM), pp 181–192

27. Knuth DE, Jr JHM, Pratt VR (1977) Fast pattern matching in strings. SIAM
Journal on Computing 6(2):323–350

28. Lanctôt JK, Li M, Ma B, Wang S, Zhang L (2003) Distinguishing string se-
lection problems. Information and Computation 185(1):41–55

29. Lowrance R, Wagner RA (1975) An extension of the string-to-string correction
problem. Journal of the ACM 22(2):177–183

30. Manber U, Myers EW (1993) Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing 22(5):935–948

31. Manzini G (2015) Longest common prefix with mismatches. In: 22nd Interna-
tional Symposium on String Processing and Information Retrieval (SPIRE),
pp 299–310

32. Nong G, Zhang S, Chan WH (2009) Linear suffix array construction by almost
pure induced-sorting. In: Data Compression Conference (DCC), pp 193–202

33. Nsira NB, Lecroq T, Elloumi M (2017) Algorithms for indexing highly sim-
ilar DNA sequences. In: Algorithms for Next-Generation Sequencing Data,
Techniques, Approaches, and Applications, pp 3–39

34. Rudd KE (2000) Ecogene: A genome sequence database for escherichia coli
K-12. Nucleic Acids Research 28(1):60–64

35. Shi J, Qiu Y, Minhas UF, Jiao L, Wang C, Reinwald B, Özcan F (2015) Clash
of the titans: Mapreduce vs. spark for large scale data analytics. PVLDB
8(13):2110–2121

36. Ukkonen E (1995) On-line construction of suffix trees. Algorithmica 14(3):249–
260

37. Wagner RA, Fischer MJ (1974) The string-to-string correction problem. Jour-
nal of the ACM 21(1):168–173

38. Weiner P (1973) Linear pattern matching algorithms. In: 14th Annual Sym-
posium on Switching and Automata Theory (SWAT), pp 1–11

39. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen
J, Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I
(2016) Apache spark: a unified engine for big data processing. Communications
of the ACM 59(11):56–65

40. chao Zhang Y, Che M, Ma J (2007) Analysis of the longest common substring
algorithm. Computer Simulation 12:025


