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Abstract Tensor clustering is a knowledge management technique which is well
known as a major algorithmic and technological driver behind a broad applications
spectrum. The latter ranges from multimodal social media analysis and geolocation
processing to analytics tailored for large omic data. However, known exact tensor
clustering problems when reduced to tensor factorization are provably NP hard. This
is attributed in part to the volume of data contained in a tensor, proportional to the
product of its dimensions, as well as to the increased interdependency between the
tensor entries across its dimensions. One well studied way to circumvent this inher-
ent difficulty is to resort to heuristics. This article presents an enhanced version of
a genetic algorithm tailored for community discovery structure in tensors contain-
ing spatiosocial data, namely linguistic and geolocation data. The objective function
as well as the chromosome fitness functions by design take into account elements
of linguistic propagation models. The genetic operators of selection, crossover, and
mutation as well as the newly added double mutation operator work directly on the
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community level. Moreover, various policies for maintaining gene variability across
generations are studied in an extensive simulation powered by Google TensorFlow.
As with its predecessor, the proposed genetic algorithm has been applied to a dataset
consisting of a large number of Tweets and their associated geolocations from the
Grand Duchy of Luxembourg, a historically and de facto trilingual country. The re-
sults are compared with those obtained from the original genetic algorithm and their
differences are interpreted.
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1 Introduction

Two of the most prominent features of current online social media are multimodality
and multilinguality. The latter reflects the natural de jure or de facto state of affairs,
itself the result of various social or historical conditions, in a considerable number
of countries around the globe including Canada, Switzerland, Cyprus, Belgium, and
Luxembourg. In Twitter alone there is no single predominant language, since the vol-
ume of tweets in Spanish and in Japanese each equal approximately the number of
those in English as shown in Donoso and Sánchez (2017), with Hong et al (2011)
maintaining that Indonesian tweets are very close as well. As is the case with any
other human activity, language exposure in social media results in almost constant
alteration as Croft (2003) claims. This change process according to Eisenstein et al
(2014) includes syntax, forms, emoticons, abbreviations, phonetic spellings, and ne-
ologisms. Note that different dialects of the same language are treated in this work as
related yet distinct languages.

With the advent of multimodal social media the diachronic role of language as
the primary human communication vehicle is strongly reinforced with various non-
linguistic elements including metatext (i.e. hashtags), memes, short live videos, ge-
olocation, sentiment, and netizen reactions such as the signature Facebook like but-
ton. Among the factors influencing the size and shape of online linguistic communi-
ties Weinreich et al (1968) singles out location, social status, income, and dialect. Of
these factors only the first and the last can be directly quantified, even with a certain
degree of uncertainty.

Community structure discovery in multilingual and multimodal social graphs is well
known to be among the most challenging tasks due to the high number of semantic,
topical, spatial, linguistic, or other type of constraints deriving from the context. Fol-
lowing Drakopoulos et al (2017d) this article augments ordinary Twitter interactions
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with linguistic and spatial post similarity metrics. In order to include the additional
functionality, it is necessary to represent Twitter netizens and the interaction between
them as a multilayer graph, which can be naturally expressed as an adjacency ten-
sor. Given that tensor clustering is an NP hard problem, the possibility of a heuristic
solution should be explored, especially for large scale and sparse tensors.

The primary contribution of this article is TENSOR-G2, an enhanced version of
the genetic algorithm TENSOR-G proposed in Drakopoulos et al (2017d). The main
difference between them is that TENSOR-G2 has a new genetic operator for dou-
bly mutating the same chromosome in a single step as well as a new termination
criterion. Moreover, TENSOR-G2 unlike its predecessor is implemented in Google
TensorFlow exploiting the inherent parallelism potential of the latter. Two additional
notable differences from Drakopoulos et al (2017d) is that Luxembourgish language
is now treated separately instead of as a German dialect and that the respective defini-
tions of the two fitness functions have been slightly altered. The original test dataset
will serve as a benchmark.

The structure of this work follows. Previous work in the fields of genetic algorithms,
tensors, and linguistics is summarized in section 2. The notions underlying the design
of both genetic algorithms are explained in section 3, whereas the results obtained
from executing them are outlined and interpreted in section 4. Section 5 concludes
this article by presenting the main findings as well as potential future research direc-
tions. Finally, paper notation is summarized in table 1. Tensors are printed in capital
italics and vectors in small boldface.

Table 1 Article notation.

Symbol Meaning
4
= Definition or equality by definition

{s1, . . . ,sn} Set consisting of elements s1, . . . ,sn
|S| Set cardinality

S1 \S2 Asymmetric set difference between sets S1 and S2
τS1,S2 Tanimoto similarity coefficient between sets S1 and S2

(s1, . . . ,sn) Tuple consisting of elements s1, . . . ,sn
‖T ‖F Tensor Frobenius norm
◦n Vector outer product along dimension n

H(x1, . . . ,xn) Harmonic mean of x1, . . . ,xn
E [X ] Mean value of random variable X

Var [X ] Variance of random variable X



4 Drakopoulos, Stathopoulou, Kanavos, Paraskevas, Tzimas, Mylonas, and Iliadis

2 Previous Work

Current views on the language evolution process as can be found in Matras (2013)
where the historical perspective is taken into consideration, in Milroy (1980), and in
Kershaw et al (2017) where the broader phenomenon of language is treated. Vari-
ous language constructs and their change over time are studied in Pakendorf (2014)
as well as in Milroy and Milroy (1985), which places an emphasis on diffusion be-
tween communities. More studies on various topics of language evolution include
Matsumoto (2010) which examines multilingual communities, Dixon (1997) and An-
droutsopoulos (2011) which claim language evolution is a global social phenomenon,
and Labov (2001) and Labov (2007) which explore the relationship between real and
online linguistic communities. Quantitative methods for assessing language evolu-
tion are developed in Hale (2007), Kershaw et al (2015), and in Michael et al (2014).
The link between language change and social change is treated in Trudgill (2011),
Nevalainen (2015), Kirk and Mees (2006), and in Djugasvilii (1950). Interaction be-
tween multilingual communities and how hybrid expressions and neologisms are cre-
ated are examined in Eleta and Golbeck (2012) and later in Hale (2014), the latter in-
dicating cross-language awareness through the links between single language blogs.
It is of interest that interaction in digital communities tends to be geographically as-
sortative as shown in Backstrom et al (2010) and in Maybaum (2013), a finding which
Goel et al (2016) and Kershaw et al (2017) specialize for Twitter.

Tensor analysis, also known as multilinear algebra, as described in numerous pa-
pers including Kolda and Bader (2009), Karatzoglou et al (2010), and Dunlavy et al
(2011) is the current evolution step of linear algebra in the sense that tensors are mul-
tidimensional vectors. Tensors appear naturally in signal processing settings where
multiple inputs interact simultaneously with multiple outputs such as MIMO radars
explained in Nion and Sidiropoulos (2010), blindly discriminating simultaneous data
sources as described in Cardoso (1990), as well as in and biomedical image process-
ing as shown in Westin et al (2002). Social media analysis has also benefited with
the introduction of tensors as analytical tools as the latter allow the development of
higher order influence analytics as in Drakopoulos et al (2017b), sentiment analy-
sis as in Drakopoulos (2016), or advanced community structure discovery in fuzzy
graphs Drakopoulos et al (2017c). In knowledge mining tensors can be used for di-
mensionality reduction as in De Lathauwer and Vandewalle (2004), in Papalexakis
and Doğruöz (2015), and in Shashua and Hazan (2005). Moreover, information re-
trieval models based on third order tensors have been recently proposed. For instance
Drakopoulos and Kanavos (2016) proposes a term-author-document model, while in
Drakopoulos et al (2017a) a term-keyword-document is described. A space efficient
and persistent scheme for storing compressed tensors as multilayer graphs is pre-
sented in Kontopoulos and Drakopoulos (2014).

Genetic algorithms as described in De Jong (1988) and in Holland (1992) constitute
a class of numerical optimization algorithms inspired from standard DNA operations
and Darwinian evolution as defined in Darwin (1859) and refined in Dawkins (2006),
which places heavy emphasis on the concept of fitness. Speficially, these heuristics
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consider a large number of candidate solutions named chromosomes consisting of a
group of genes, each coding distinct parts of the solution as shown in Booker et al
(1989). The chromosomes are handled at the gene level with operations including
selection, crossover, and mutation as explained in Davis (1991). Genetic algorithms
have a broad spectrum of applications include disease diagnosis as in Lu et al (2016),
sensorineural hearing loss as in Wang et al (2017), electromagnetic field optimization
as in Rahmat-Samii and Michielssen (1999), set cover in graphs as in Beasley and
Chu (1996), and nonlinear higher order function as in Tanese (1989). Finally, the
close connection between genetic algorithms and machine learning are explored in
Goldberg and Holland (1988).

3 Implementation

3.1 Tensor Representation

Formally, a tensor is defined as:

Definition 1 (Algebraic tensor definition -from Kolda and Bader (2009)) A p-th
tensor T , p ∈ Z+, is a linear mapping simultaneously connecting p not necessarily
distinct linear spaces Sk, 1≤ k ≤ p.

The key point in our case is the simultaneous connection of spaces, as TENSOR-
G2 operates on third order tensors T n×n×(L0+2) which represent pairwise elementary
spatiosocial interactions between the n netizens. Specifically, the first two dimensions
represent the netizen space (twice), while the third dimension denotes the number
of ways two netizens can interact. L0 is the total number of languages taken into
consideration, in this case English, German, French, and Luxembourgish. Note that
in Drakopoulos et al (2017d) the latter was considered a German dialect but now is
treated as a separate language. The two additional interaction ways are the spatial
assortativity and the Twitter interaction, expressed through the follow relationship.

Each tensor entry signifies whether there is a linguistic, spatial, or online interaction
between a given pair pair of netizens.

T [i1, i2, i3] =

{
1, netizens i1 and i2 interact through i3
0, otherwise

(1)

One way to partition any p-th order tensor D ∈ RI1×I2×...×Ip to a sum of r0 not
necessarily overlapping communities with special structure is to use the Kruskal de-
composition. The latter states that D can be rewritten as:

D =
r0

∑
k=1

λk Dk =
r0

∑
k=1

λk vk,1◦1 . . .◦p−1vk,p, λk > 0,
∥∥vk, j

∥∥
2 = 1 (2)

where ◦k denotes the outer tensor product along dimension k. The properties of this
product are defined among others in Kolda and Bader (2009). Thus, the original data
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tensor D is rewritten as the sum of r0 tensors of rank one, which can be thought of
as the LSI factors in higher dimensions. However, Kruskal decomposition will not be
used as a baseline method as was in Drakopoulos et al (2017d) since r0 estimation
is NP hard, the communities can overlap, and have an excessive structure restric-
tion placed on them. Thus, the performance of TENSOR-G2 will be evaluated using
cluster quality metrics. The layered structure of tensor T is shown in figure 1.

netizen

n
e
t
i
z
e
n 

interaction

linguistic
spatial
social 

Fig. 1 Tensor layers (linguistic, spatial, and social).

The elements of T are filled as follows. In the L0 linguistic layers interaction is
taking place when two netizens post a tweet in the same language. In the spatial layer
two netizens are close if their corresponding social factor, defined in subsection 3.2,
is above a given threshold η0 (see table 2). Finally, for the last layer of T any two
netizens are considered to interact socially in Twitter if either follows the other.

3.2 Linguistic And Spatial Factors

This subsection introduces the social, linguistic, and spatial factors which assess the
degree of various aspects of chromosome compactness and will subsequently serve as
building blocks for more complex chromosome fitness functions. Let L(u), 1≤ u≤ n,
be the language set used by netizen u to interact digitally and also let `0(u) ∈ L(u) be
its predominant language. For any netizen set S let L(S) symbolize the union of all
languages used by the netizens beloning to that set

L(S) 4=
⋃
s∈S

L(s) (3)

Also let the set of all languages be

L0
4
= |L(1)∪ . . .∪L(n)| =

∣∣∣∣∣ n⋃
k=1

L(k)

∣∣∣∣∣ (4)

Definition 2 (Coherent netizens) Two netizens u and v are coherent if and only if
`0(u) = `0(v).

Definition 3 (Coherent and social neighborhoods) Let Γ (u) be the set of netizens
who interact socially with u and ∆(u) be the coherent neighbors of u.
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The total coherency is a straightforward way to evalaute the average alignment of the
social and language neighbourhood of a chromosome. Thus, it is one of the candidate
social and linguistic factors of the fitness functions.

Definition 4 (Partial and total coherency) The partial coherency c(S;Lk) of a non-
empty set of netizens S with respect to language Lk ∈ L(S) can be found by averaging
the Tanimoto coefficient of Γ (u) and ∆(u). If Lk 6∈ L(S), then c(S;Lk) equals zero.

c(S;Lk)
4
=

1
|s ∈ S∧Lk = `0(s)| ∑

s∈S∧Lk=`0(s)
τΓ (s),∆(s)

=
1

|s ∈ S∧Lk = `0(s)| ∑
s∈S∧Lk=`0(s)

|∆(s)∩Γ (s)|
|∆(s)∪Γ (s)|

=
1

|s ∈ S∧Lk = `0(s)| ∑
s∈S∧Lk=`0(s)

|∆(s)∩Γ (s)|
|∆(s)|+ |Γ (s)|− |∆(s)∩Γ (s)|

(5)

The (total) coherency is the maximum coherency over the languages which are used
by the netizens comprising S.

ϕ(S) 4= max
Lk

c(S;Lk), 0 ≤ ϕ(S) ≤ 1 (6)

A purely linguistic factor which reveals linguistic diversity within a chromosome.
However, it lacks the social element of coherency.

Definition 5 (Partial and total density) The partial density d(S) of a nonempty set
of netizens S with respect to language Lk ∈ L(S) is defined as the ratio of the number
of netizens whose predominant language is Lk to |S|. If Lk 6∈ L(S), then d(S;Lk) = 0.

d(S;Lk)
4
=
|s ∈ S ∧ Lk = `0(s)|

|S|
(7)

The (total) density is the maximum density over the languages which are used by the
netizens comprising S.

ϑ(S) 4= max
Lk

d(S;Lk), 0 ≤ ϑ(S) ≤ 1 (8)

The language set of each netizen was determined by observing the frequencies of the
languages used. This posed a problem only for very few accounts, most of which were
official ones and, hence, trilingual almost by definition. In these isolated cases, ties
were broken randomly. Each language was identified through two techniques used in
conjunction following the example of Eisenstein (2015). Each post was scanned for
words unique to each of the L0 languages. Additionally, the bigrams and trigrams,
namely character sequences, for each tweet were compared to that of established text
corpora.

The next factor considers the geolocation aspect of the Twitter data and shows
whether a given chromosome is geographically disperse.
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Definition 6 (Spatial distance and inverse dispersion) The spatial factor between
two netizens u1 and u2 is a function of the actual geographic distance q(u1,u2) be-
tween them as follows:

y(u1,u2;η0,δ0)
4
=


1, 0 ≤ q(u1,u2) ≤ δ0

δ0
q(u1,u2)

, δ0 < q(u1,u2) ≤ η0δ0

0, q(u1,u2)> η0δ0

(9)

The factor ψ(S), the inverse dispersion, is the ratio of the minimum distance between
any netizens divided by the maximum one. In contrast to ϕ and ϑ , the maximum
distance alone is not indicative of the compactness of a chromosome. Moreover, it
has the same scale with the other factors. Thus:

ψ(S) 4=
miny y(u1,u2)

maxy y(u1,u2)
, u1,u2 ∈ S (10)

Each netizen was mapped to the geolocation most frequently associated with his
tweets. The latitude and longitude were compared against the national and regional
borders of Luxembourg and, if necessary, were clipped to fit frontier areas. The GIS
information provided freely by the Global Administrative Areas database (GADM)1

was highly valuable.

3.3 TensorFlow

TensorFlow is a low level, open source, tensor oriented framework originally de-
veloped from the Google Brain team in order to efficiently implement computation-
ally intensive deep learning tasks such as backpropagation and distributed learning
such as Adam and AdaGrad in neural networks. It falls under the stateful dataflow
graph computational paradigm where the entire computation is represented as a tree
with each vertex representing a tensor operation. The latter refers both to a broad
spectrum of elementary operations such as Hadamard product and column oriented
operations and to advanced operations such as Kruskal decomposition, Tucker fac-
torization, and the computation of tensor eigenvectors. For instance, the Frobenius
tensor norm ‖T ‖F

‖T ‖F
4
=

(
I1

∑
i1=1

. . .
Ip

∑
ip=1

T 2[i1, . . . , ip]

) 1
2

=

 ∑
(i1,...,ip)

T 2[i1, . . . , ip]

 1
2

(11)

is efficiently computed in parallel.

1 www.gadm.org
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TensorFlow is designed to exploit the computational potential of multiple CPUs,
GPUs, and TPUs. The latter are special hardware processing units whose instruction
set comprises of rudimentary tensor operators such as parallel addition, elementwise
and Kronecker multiplication, and the computation of unit tensors. When developing
the source code, TensorFlow allows the construction of long symbolic expressions
through placeholders which are initialized within the context of a session. TensorFlow
sessions can be executed serially or in parallel, each with a different context.

3.4 The Algorithm

TENSOR-G2 is outlined in algorithm 1, while its full set of parameters is summa-
rized in table 2. Also, for clarity TENSOR-G2 and its differences from its predecessor
are depicted in figure 2.

Algorithm 1 TENSOR-G2 algorithm (double mutations enabled)
Require: Parameter set as in table 2 and termination criterion T
Ensure: Spatiolinguistic structure is heuristically discovered

1: create chromosome population of size K0 with J0 as in (12)
2: repeat
3: evaluate fitness of each chromosome
4: retain the dα0K0e fittest chromosomes
5: retain the dβ0K0e least fit chromosomes
6: crossover the remaining I0 = K0−dα0K0e−dβ0K0e chromosomes
7: select the I0 fittest of the Θ

(
I2
0
)

new chromosome pairs
8: with probability pγ mutate a chromosome
9: with probability pγ mutate another gene of the same chromosome

10: if more than L0 communities exist then
11: with probability pζ :
12: for all community pairs in the best fitting chromosome do
13: if any two communities are spatiolinguistically close then
14: merge these communities and update J0
15: end if
16: end for
17: end if
18: until T is true
19: return {Ck}

The chromosomes Ck have a very simple form, since it suffices that each netizen
be assigned to one community. Each such assignment corrsponds to a valid tensor
clustering, whose quality of course needs to be checked. Therefore, it suffices to
consider as chromosomes vectors of length n, namely the total number of netizens
available in the dataset, where each such vector is an integer between 0 and J0− 1.
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This simplifies TENSOR-G2 and at the same time ensures that the genetic operators
operate in a sane manner and consistent.

However, as the true number of communities J0 is unknown, it is estimated based on
classical, i.e. non Bayesian, signal estimation techniques and linguistic observations
from Kershaw et al (2015) and modeled as a normal random variable where

J0 ∼ N (1+3L0,L0) (12)

The intuition in favor of the normal distribution is that the latter maximizes the dif-
ferential entropy in the distribution class having the same variance. Therefore, the
normal distribution models the maximum uncertainty for J0 given all available in-
formation about it. Additionally, the properties of the normal distribution limit the
range of J0 to [1,1+6L0]. However, from a modeling perspective other distributions
such as the chi square or the lognormal might also make sense since they both have
nonnegative support.

Mutation

Convergence

Initialize gene
population 

Randomly select
gene

Mutate at
random point

Select fittest
genes

Population
crossover

YES

NO

YES

NO

Store
results 

Double
mutation

Mutate at
another

random point

YES

NO

Fig. 2 TENSOR-G flow chart (green) with TENSOR-G2 enhancements (blue).

Based on the building blocks of subsection 3.2, two fitness functions for evaluat-
ing the fitness of a chromosome Ck were created. The first is the harmonic mean of
coherency and inverse dispersion:

g1(Ck)
4
=H(ϕ(Ck),ψ(Ck)) = 2

(
1

ϕ(Ck)
+

1
ψ(Ck)

)−1

(13)
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Table 2 Full set of TENSOR-G2 parameters.

Parameter Meaning Value

n Number of tweets 579
α0 Percentage of best fit clusterings kept in each iteration 0.1
β0 Percentage of worst fit clusterings kept in each iteration 0.1
γ0 Threshold of first order difference in T0 0.05
γ1 Threshold of second order difference in T0 0.05
γ2 Terminating threshold in criterion T1 0.85
δ0 Geolocation distance for maximum assortativity 20 Km
η0 Threshold for geolocation assortativity in terms of δ0 8
M0 Minimum number of iterations in criterion T0 32
M1 Maximum number of iterations in criterion T0 1024
N0 Number of instances of TENSOR-G2 executed 2048

b Random sample size for merging communities eq.(17)
L0 Total number of languages in the tweets 4
J0 Initial estimation of the true community number eq.(12)
pγ Probability distribution for single and double mutation Poisson
pζ Probability distribution for agglomeration operation Poisson

while the second is the harmonic mean of density and inverse dispersion:

g2(Ck)
4
=H(ϑ(Ck),ψ(Ck)) = 2

(
1

ϑ(Ck)
+

1
ψ(Ck)

)−1

(14)

The harmomic mean is chosen as the connector of the factors of the fitness functions
because of its tendency to be closer, from the above, to the lowest of its arguments,
being thus a rather conservative yet relaxed mean. Also, the harmonic mean is known
to be robust in outliers.

Having defined the fitness functions, the objective function G of TENSOR-G2 in
the j-th iteration is the averaged sum of the chosen fitness function applied to each of
the chromosomes:

G
(

C[ j]
)
=

1∣∣Ck ∈C[ j]
∣∣ ∑

Ck∈C[ j]

g(Ck) (15)

where C[ j] denotes the set of all chromosomes during the j-th iteration.

Concerning the genetic operations, crossover is easy to implement as it suffices to
decide a random place to cut two chromosomes and exchange the corresponding parts
so that two new integer vectors of length n are formed. Both the single and the double
mutation work equally efficiently. To ensure a certain degree of gene variability, in
each iteration the dα0J0e fittest chromosomes can be chosen to remain intact. There-
fore, genes proven to work until that iteration are preserved. However, this policy
may result in the entrapment of the genetic algorithm to a local maximum. To avoid
this, the dβ0J0e least fit chromosomes can be also retained.
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This is the intuition behind the last operation of community merge. It comes from
clustering theory and from the fact that J0 is essentially estimated. Thus, its value
may vary if the fitness function of the best chromosome points to that direction and
as long as there are enough communities to support L0 languages. With probability
pζ the best fitting chromosome is decoded and the communities are formed. Then,
all possible pairs are inspected and a given pair Ci and C j is merged if and only if:

g(S) ≤ max
{

g(Ci) , g(C j)
}

(16)

where S is a new community randomly formed from b netizens from each of the
Ci and C j. A successful merge equals a cluster agglomeration. However, this is a
potentially expensive step. In our case, b was chosen as:

b 4= min
{

max
{
dlog |Ci|e ,

⌈
log
∣∣C j
∣∣⌉} , |Ci| ,

∣∣C j
∣∣} (17)

With equation (17) two clusters which are comparable in size are logarithmically
sampled, wheras a very large cluster is compared to a small one, the latter is taken
entirely into consideration.

Two termination conditions were coded into TENSOR-G2, namely T0 and T1. The
former examines the first and second order absolute discrete differences of the ob-
jective function, namely it terminates the execution of the genetic algorithm if the
following conditions are simultaneously met:∣∣∣G(C[ j]

)
−G

(
C[ j−1]

)∣∣∣≤ γ0

1
2

∣∣∣G(C[ j]
)
−2G

(
C[ j−1]

)
+G

(
C[ j−2]

)∣∣∣≤ γ1 (18)

The termination criterion T1 monitors the performance of each individual chromo-
some. Since each fitness function ranges from 0 to 1 because of the range of the
factors ϑ , ϕ , and ψ and of the properties of the harmonic mean. T1 terminates when
a chromosome Ck achieves:

g(Ck) ≥ γ2 (19)

A secondary failsafe mechanism runs in parallel with the above criteria. Specifically,
there is a hardcoded yet parameterisable minimum number of M0 iterations as well
as a maximum of M1 iterations.

4 Results

4.1 Data Synopsis

The dataset contains information about n = 579 Luxemburgian netizens, 217 of
whom were identified as predominantly tweeting in English, 163 in French, 152 in
German, and 47 in Luxembourgish. With the notable exception of the small Luxem-
bourgish cluster, the remaining sample is quite balanced in terms of language repre-
sentation. Table 3 contains more information about these netizens.
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Table 3 Netizen statistics.

Property Value

Follows and replies 7571
Spatial connections 1933

min, max, avg degree 1, 31, 17
Monolinguals 29

Bilinguals 196
Trilinguals 354

4.2 Clustering Assessment

Because of the probabilistic selection of J0, it makes sense to ask whether this leads
to compact communities. Figure 3 shows the normalised behavior of two cluster com-
pactness metrics as a function of J0. As the genetic algorithm is stochastic, each point
in this figure represents the mean value of N0 runs. In order to evaluate the clustering
performance of TENSOR-G2, two methodologies were applied. The first, denoted by
F1, is a special case of the normalised mutual information. The latter is defined as:

F1
4
=

2Ic

Hc +Hn
, 0 ≤ F1 ≤ 1 (20)

The metric F1 is the ratio of the mutual information Ic between clusters, whereas
Hc and Hn are the entropies of the cluster distribution and the netizen distribution
respectively. The bigger F1 is, the better the clustering is in the sense that clusters
tend to be mutually exclusive from an information theoretic perspective.

The metric F2 takes into account the linguistic element and it is a special case of the
metric known in the data mining community as the impurity. The latter is defined as
the mean number of misclassifications, assuming that each data point in the cluster is
assigned to the majority class within that cluster. In our case, each netizen is assigned
to the majority language of the cluster. Thus, F2 equals:

F2
4
=

1∣∣c j ∈ c∗
∣∣ ∑

c j

(1−d(c j)), 0 ≤ F2 ≤ 1 (21)

where c∗ =
{

c j
}

is the set of tensor clusters and d(·) is the density function of sub-
section 3.2. A lower value F2 indicates better clustering in the sense that the clusters
are linguistically compact.

Concerning the number of communities from figure 3 follows that the ideal number
of clusters which combines a high F1 value and a low F2 value lies between 6 and 8, a
very narrow range in comparison to the search line of I0. This relatively low number,
which is close to L0, can be attributed to the dispersion of predominantly French
speaking netizens among the more adamant German speakers and the omnipresent
English ones. Also, the small Luxembourgish speaking cluster, although very highly
concentrated, does not influence the overall clustering result much because of its
small size.
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From figure 3 also follows that the termination criterion T2 tends to outperform T1.
One explanation is that T2 is directly looking for a good clustering expressed as a high
scoring chromosome, whereas T1 is averaging the performance of a large number of
chromosomes.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

J
0

F 1
 a

nd
 F

2

F
1
 and F

2
 vs J

0
 (with T

1
 and T

2
 as parameters)

F1;T1

F2;T2

F1;T2

F2;T2

Fig. 3 Compactness metrics F1 and F2 vs J0 (normalised values, T1 and T2 are parameters).

4.3 Performance Evaluation

The performance of the proposed genetic algorithm has three major components.
The first is the location of the cost components, the second is the analysis of the num-
ber of iterations, and the frequency of mutations. Especially the double mutations are
of high importance, since they are very rare but also somewhat expensive operation
which is also the only way to change the initial cluster estimation I0.

The main costly operations of TENSOR-G2 are the chromosome population gen-
eration, the crossover in each iteration, and the rare double mutation operation, even
though it is based on radnom sampling in order to reduce the computational cost.
The single mutation operation on the other hand is very efficient operation since it
requires only the knowledge of two random numbers. Thus, the total cost of the pro-
posed genetic algorithm can be expressed by the ordered triplet (Pg, Pc, Pd). Knowing
these three components the mean value of the total computational cost P, which is a
random variable by definition, of TENSOR-G2 is very well approximated as:

E [P] ≈ Pg +E [T ]Pc + p2
ζ

Pd (22)
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where E [T ] is the mean number of iterations, which in turn depends on the termina-
tion criterion.

Regarding the termination criteria, T2 seems to systematically lead to a lower num-
ber of iterations since:

E [T1] ≈
M1

3√
Var [T1] ≈ 24 (23)

whereas:

E [T2] ≈
M1

4√
Var [T2] ≈ 18 (24)

Finally, regarding mutations there are two directions of interest. These are the dis-
tribution of the total number of single mutations Nγ and double mutations Bγ over the
total number of executions of the genetic algorithm as well as the distribution of iter-
ations Tγ to the first mutation from the beginning of the corresponding execution. All
distributions are taken conditionally that at least one mutation takes place. In figures
4, 5, and 6 the empirical distributions of Nγ , Bγ , and Tγ are shown respectively.
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Fig. 4 Empirical conditional distribution of Nγ .
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5 Conclusions

This article presents TENSOR-G2, a genetic algorithm for spatiosocial sparse tensor
clustering implemented in Google TensorFlow. This type of tensors contain geoloca-
tion and linguistic data harvested from tweets from the Grand Duchy of Luxembourg,
a country with thriving language communities, even of uneven size, and strong dig-
ital presence. The spatiolinguistic communities obtained by TENSOR-G2 using two
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different fitness functions were evaluated using two well known metrics from data
mining, namely the impurity and the normalised mutual information. Additonally,
the mean computational cost can be reduced to three major factors which are proba-
bilistically connected.

This work can be improved in many aspects. Since the total computational cost
depend on the termination criterion, an advanced set of parameterless stopping con-
ditions based on competing factors such as the one proposed in Kanavos et al (2017).
Additionally, each netizen is assigned to a single spatiosocial cluster, which might
not be true, especially for polyglots and polymaths. Thus, a fuzzy clustering scheme
might be more desirable in certain scenarios. Moreover, new fitness functions can be
develop which not only evaluate the overall chromosome status but they also do it
efficiently. Finally, more detailed language change models can be integrated into the
fitness function. Finally, since tensors are particularly suited to diffusion phenomena,
their application to spatiosocial data in general and to the propagation of language
changes should be thoroughly examined.
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