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ABSTRACT
In this paper we present preliminary results of an approach for
understanding human actions, based on a novel 2D image represen-
tation for 3D skeletal data. More specifically, motion information
for human skeletal joints is transformed to a pseudo-colored image.
A Convolutional Neural Network is then used for classification. Our
approach is evaluated for actions that may be used in an ambient
assisted living scenario.
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1 INTRODUCTION
The problem of understanding human actions based on visual infor-
mation has been increasingly attracting the interest of the research
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community in the fields of computer vision and pattern recogni-
tion. Main open challenges in this area include the representation,
the analysis and the recognition of actions [1]. Main applications
include surveillance, assisted living, human-machine interaction,
affective computing etc.

Recent large-scale datasets such as PKU-MMD [6] comprised of
large numbers of training video and depth sequences have enabled
efficient training of deep learning approaches. Several approaches
adopting pseudo-colored image representations of skeletal trajec-
tories and working with CNNs have been proposed. Du et al. [2]
proposed the use of images generated by corresponding chronolog-
ically arranged spatial coordinates to color components. Wang et
al. [9] used saturation and brightness in a way that texture corre-
sponded to motion magnitude of skeleton motion trajectories. Hou
et al. [3] corresponded hue changes to the temporal variation of
skeletal motion. Li et al. [5] encoded pair-wise joint distances in
2D planes, distances in the 3D space and hue was used to encode
distance variations. Liu et al. [7] transformed skeletal sequences
to ensure invariance to initial skeleton position and orientation
and created images originating from 5D representation consisting
of space coordinates, label and time. Finally, Ke et al. [4] opted
for translation, rotation and scale invariant features by subsets of
joints and proposed a representation based on concatenated cosine
distances and normalized magnitudes from vector representations
generated from pairwise relative positions between joints. In previ-
ous work [8] we proposed an image representation of skeletal data
based on the DCT transform.

2 METHODOLOGY
We propose a novel visual representation of skeletal information
corresponding to human actions.More specifically, we create pseudo-
colored images capturing inter-joint distances during an action. We
use as input the 3D trajectories of skeletal joints. From the x , y and
z coordinates of each of the 25 available joints, we collect 75 signals
for any given video sequence. We assume that each video segment
contains exactly one action to be recognized. To address the prob-
lem of temporal variability between actions and between users,
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Figure 1: Representative pseudo-colored images. Top:
eat_meal_snack, bottom: falling.

a linear interpolation step is imposed, setting the duration of all
videos equal to N = 150 frames. From each video sequence, we cal-
culate coordinate differences between consecutive frames. To create
the pseudo-colored images, x ,y, z coordinates correspond to R, G, B
color channels, respectively. Let xi (n) denote the x-position of the
i-th joint in the n-th frame. Let R denote the R channel of the color
image. The value of R(i,n) is calculated as: R(i,n) = xi (n+1)−xi (n),
where i = 1, . . . ,N . Similarly, B and G channels are constructed.
As it is exhibited, the way these pseudo-colored images are formed,
leads to preserving both the temporal and the spatial properties
of the skeleton trajectories. For classification, we use a slightly
modified deep CNN architecture, which has been proposed in our
previous work [8]. An example is illustrated in Fig. 1.

3 EXPERIMENTAL RESULTS
For the evaluation of the proposed approach, the large-scale PKU-
MMD dataset [6] has been used, which contains instances recorded
by 3 camera angles. Since our goal was to evaluate whether the
proposed approach may be suitable for application in an ambi-
ent assistive living scenario, we selected 11 classes of PKU-MMD,
which we believe are the most close to activities of daily living
(ADLs) or events that should be monitored in such a use case. The
selected classes are: eat meal snack, falling, handshaking, hugging
other person, make a phone call answer phone, playing with phone
tablet, reading, sitting down, standing up, typing on a keyboard and
wear jacket. Note that we worked using only the available skeletal
data, i.e., we discarded RGB, depth and infrared information.

We present results for the following cases: a) Single-view: both
training and testing sets derived from the same camera; b) Cross-
view: different viewpoints were used for training and testing; and
c) Cross-subject: actors were split in training and testing groups.
The goal of the second case was to evaluate the performance when
abrupt viewpoint changes occur, while the goal of the third case
was to evaluate the robustness into intra-class variations, i.e., when
the algorithm is applied to unseen users. In all cases we measured
classification accuracy. Results are presented in Table 1. It may
be observed that compared to our previous work, it demonstrated
superior results, both in single-view and in cross-view cases.

4 CONCLUSIONS
In this paper we presented preliminary results of our approach for
the recognition of human actions in video sequences, which was
based on a novel representation of 3D skeletal trajectories using
pseudo-colored images. A CNN was used for classification into
actions that correspond to real-life ADLs or events that should be
monitored into ambient assistive living use cases. Our initial results

Table 1: Accuracy of the proposed approach in the 11 se-
lected classes of the PKU-MMD dataset. M, L and R denote
the middle, left and right camera angles, respectively.

Experiment Train Test Proposed [8]

Single-view
M M 0.88 0.82
L L 0.85 0.85
R R 0.84 0.75

Cross-view

M L 0.71 0.56
M R 0.69 0.64
L M 0.72 0.61
L R 0.53 0.40
R M 0.70 0.56
R L 0.56 035
M,L R 0.76 -
M,R L 0.66 -
L,R M 0.81 -

Cross-subject M,L,R M,L,R 0.86 -

demonstrated the potential of our approach, since classification
accuracy was satisfactory even in cross-view and cross-subject
experiments. Among our plans for future are a) to further improve
the representation, e.g., by incorporating features extracted from
RGB and depth video data; b) modifications of the CNN architecture;
c) extensive evaluation of the proposed approach on several publicly
available datasets; and d) application into a real-like or even real-life
ambient assistive living environment.
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