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Abstract—Tensor algebra is the next evolutionary step of
linear algebra to more than two dimensions. Its plethora of
applications include signal processing, big data, deep learning,
multivariate numerical analysis, information retrieval, and
social media analysis. As is precisely the case with data matri-
ces, decompositions and factorizations with special properties
reveal inherent but latent patterns which are not immediately
discernible. Alternatively, for large tensors direct clustering can
yield similar patterns. Once identified, said patterns can pave
the way for other operations commonly found in a knowledge
mining pipeline such as compression, outlier discovery, and
higher order statistics. This survey concisely presents the
key tensor clustering techniques as well as their applications.
Additionally, deep learning frameworks which natively support
tensors such as TensorFlow, Breeze, Spark MLIib, and Tensor
Toolbox are presented.

Index Terms—tensor algebra; multilayer graphs; knowledge
mining; tensor stack network; multilinear discriminant func-
tion; TensorFlow; theano; keras; MLIlib; Breeze

1. Introduction

In the 6V era, tensor algebra currently garners consider-
able multidisciplinary attention. Two major drivers behind
this intense interest is the multitude of close ties to other
resarch fields which heavily rely on multivariate linear alge-
bra as well as the fact that tensor algebra has more expres-
sive power. Thus, seemingly complex formulas involving
multiple sums, such as Volterra or multivariate Taylor ex-
pansions, can be rewritten in a very natural way, allowing
thus for almost intuitive interpretability and for deeper un-
derstanding. Therefore, simultaneous linear interaction can
be captured in applications so diverse such as brain circuit
simulation, numerical deep learning, information retrieval,
supply chain and logistics networks, non-linear system iden-
tification, computational combinatorics, multispectral image
processing, and multilayer graph mining.

Besides the algorithmic cornerstones, efficient software
tools having tensors as a native data type are required.
The latter have already been implemented in a number of
MATLAB toolboxes such as Tensor Toolbox and TensorLab.
TensorFlow in an open source low level platform with C++
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and Python APIs originally developed by Google whose
primary data unit is, as its name suggests, a tensor. Low level
deep learning operations over GPU are also implemented in
theano, whereas keras provides high level front ends for
both TensorFlow and theano. DistKeras is a recent keras
variant which can be executed over Spark. Tensor operations
are being currently integrated in MLIib for Spark and at a
higher level at Breeze for Scala. Additionally, parallel linear
algebra libraries are being modified for CUDA.

The primary research objective of this survey is a broad
review of tensor clustering techniques. Where appropriate,
the fundamental tensor algebra background is provided for
deeper understanding. As a secondary objective the main-
stream tensor related software is reviewed.

The structure of this work follows. Section 2 describes
milestones in tensor research, tensor related scientific soft-
ware, and outlines the frame of reference. Tensor clustering
criteria are discussed in section 3. Important applications are
mentioned in section 4. Finally, section 5 describes future
research directions.

2. Previous Work

2.1. Section Overview

This section focuses on scientific literature regarding
tensors and relevant topics such as higher order signal
processing, which forms a starting point for the proposed
research. Moreover, important software as well as a number
of digital repositories are mentioned. Finally, for complete-
ness purposes, certain topics related to tensor algebra are
mentioned even though they will not be part of the proposed
research.

At this point it should be emphasized that since 2013
in Google scholar the number of tensor related publications
has been increasing almost exponentially, with contributions
coming from every major US and EU university. Addi-
tonally, the same trend can be traced at the number of
special sessions in deep learning and data mining confer-
ences. These scientometric data indicate the current intense
research interest for tensors.



2.2. Tensor Algebra

Tensor algebra is a superset of matrix algebra [1] [2]
since tensors are multidimensional vectors indexed by a
tuple of p integers in the same way a matrix is a two
dimensional vector [3] [4] [5]. The importance of tensors
lies in their greater expressive power and the wider ranger
of operations which can be defined on them compared
to matrices [6] [7]. Kruskal decomposition [8] as well as
Tucker [9] [10] and Poisson factorizations [11] are among
the common tensor operations.

2.3. Higher Order Signal Processing

Higher order signal processing extended classical signal
processing to more than two input variables and to the
study of correlations of three or more points in time or
in frequency. Such methods are necessary in important
scenaria such as nonlinear system analysis, cyclostationary
signal analysis, blind source separation. A typical example
of the latter is ICA [12] [13], which under mild assumptions
blindly separates a set of signals driven to a system given
only the output that system. Typical higher order statistics
include higher order moments [14] [15] and cumulants [16]
[17] [18].

2.4. Multilayer Graphs

Multilayer graphs extend ordinary graphs by assigning to
each vertex a not necessarily distinct label and by allowing
the existence of multiple edges between the same vertex
pair as long as the edges have pairwise distinct labels. One
of the algebraic counterparts of this combinatorial object
is a third order tensor with a specific entries, appropriately
called an adjacency tensor. Note that the converse is not
always true, as not every third order tensor corresponds to
a multilayer graph, in the same way that not every matrix is
a graph adjacency matrix [19] [20]. Thus, multilayer graphs
represent a restricted class of third order tensors [21].

2.5. Tensor Software

Due to the intense research on tensors there is a signif-
ican amount of high quality software. MATLAB toolboxes
include Tensor Toolbox and N-way array toolbox, which fo-
cus on multilinear algebra, and TensorLab which is oriented
towards higher order signal processing. Breeze is a linear
algebra library for Java and Scala inherently supporting
multidimensional vectors. Concerning deep learning, open
source TensorFlow from Google employs tensors as the
basic data unit, while GraphLab can be modified to perform
tensor operations. Finally, NumPy and SciPy offer tensor
functionality in Python.

Multilayer graphs constitute the basic building blocks in
graph databases, which are mentioned separately in the next
subsection. Also, NetworkX Python library natively supports
multilayer graphs, provided their size can fit in the main
memory.

Because of the potentially very large size and their very
low density, which in certain applications can be as low as 5-
7%, there is an intense research interest for distributed tensor
processing in systems such as Hadoop, Spark, or Flink.
The difference between the distributed computation model
in these systems is highly likely to lead to different im-
plementations of the same tensor operations. Factors influ-
encing these implementations are memory requirements, the
number of available computational nodes, fault tolerance,
and scheduling both at the system and the node level. In
any case, the application programmer maintains a significant
degree of flexibility.

Similar functionality, with different operational chara-
cteristics, is offered by CUDA in GPUs. Specifically, GPU
parallel computation compared to that of a distributed com-
putation is quicker, more local, and more reliabile. However,
this comes at the cost of lower system memory and reduced
programming flexibility, again in comparison to distributed
computing [22] [23].

2.6. NoSQL Databases

The recent advent of NoSQL databases created new
possibilities for handling structured data in formats other
than tabular. Moreover, they can store semistructured or even
unstructured data [24] [25]. The NoSQL ecosystem consists
of four primary technologies listed in table 1.

Graph databases are ideal for representing and managing
multilayered graphs and, thus, indirectly adjacency tensors.
In fact, most commercially available graph databased sup-
port multigraphs inherently and can be used as a platform
for developing multilayer graph analytics such as central-
ity and cohesion metrics or community structure discovery
algorithms.

2.7. Online Repositories

It is common knowledge in deep learning and data
science that data factors such as volume, veracity, and vari-
ability are closely liked to clustering effectiveness, probably
in a critial manner in certain domains. Therefore, digital
repositories whose datasets are of high quality, according to
common metrics, concerning those factors are of paramount
importance. Online archives whose datasets are often em-
ployed as benchmarks for assessing clustering behavior
include Kaggle, Georgia Tech GIS Center, Stanford Network
Analysis Project (SNAP), UFL Matrix Collection, and UCR
Dataset Collection.

2.8. Related Fields

Tensors and multidimensional arrays are also present
under various names and forms in other fields of computer
science and engineering not mentioned above. In the world
of relational databases, OLAP cubes are three or four dimen-
sional arrays which may contain categorical data or strings
[26] [27].



TABLE 1. NOSQL DATABASES

Type Data type Standard Software

Key-value Associative array ~ JSON, XML Apache Dynamo, Riak, Redis, Oracle NoSQL
Column family  Long rows JSON, BSON Apache Cassandra, Keyspace

Document Documents JSON, BSON, YAML, XML MongoDB, CouchDB, OrientDB, CreatelO
Graph Linked data RDF, JSON-LD, conceptual multigraph ~ Neo4j, TitanDB, Sparksee, InfiniteGraph

In [28] is described a versatile, efficient, and effective
linear algebraic technique for converting first order digital
influence metrics in social media to higher order ones. The
latter are more appropriate for discovering structural or
functional patterns of interest in graphs, since by definition
graphs rely on recursive link, communication, and function-
ality diffusion in general between their vertices. This is the
reason that PageRank is by far more successful than previous
vertex centrality metrics such as degree centrality.

A heuristic for tensor clustering along with the associ-
ated algorithmic details is presented in [29]. Specifically,
a genetic algorithm for the approximate clustering of a
third order tensor containing geolocational and linguistic
Twitter data coming from the de jure and de facto trilingual
grand duchy of Luxembourg is described. Two alternative
objective functions have been used, each equally based on
linguistic change models and a Zipf function of geodesical
distance, whereas the selection, crossover, and mutation,
operators have been linked to community merging and split-
ting.

Finally, [30] revolves around a conceptual framework for
ontologies with labeled edges. Thus, where the underlying
domain permits it, mutiple connections can exist between
two given entities. As a concrete example, a selected number
of persons from the 1970s and 1980s Apple and the con-
nections between them have been extracted from the official
biography of Steve Jobs and the 1999 film The pirates of
Silicon Valley.

3. Clustering Critria

Depending on the underlying domain, clustering can
take a different form in order to optimize execution time,
memory, or interpretability, the latter being of paramount
importance as it is inherently tied to clustering validity. For
instance, if the tensor contains fMRI images, then a neuro-
physiological interpretaion based on a commonly acceptable
brain atlas such as AAL or AAL2 is necessary. Similarly, if
the tensor comprises of social media account interactions,
then clustering results should accord with the principles of
digital activity found in the scientific literature.

The following complexity criteria typically act as a
primary benchmark for tensor clustering:

e CI1: The total execution time as well as any critical
paths in execution flow.

e C2: The total demands across the memory hierarchy
as well as access patterns.

e (C3: The scalability expressed as the ability of the
algorithm to be implemented in a GPU card or in a

distributed platform. In the first case the fundamantal
restrictions are the card memory and the communi-
cation protocol between the card processors, whereas
in the second case the node communication proto-
cols and the full exploitation of the distributed com-
putation model, e.g. DAG in Spark and MapReduce
in Hadoop, are paramount factors.

Secondary criteria for evaluating the clustering algorithm
besides the complexity related ones are listed below. They
represent other significant viewpoints and are ordered from
the most general to the most specific.

o C4: The evaluation of the role of the entire system
in the algorithm performance including architecture,
database type, scalability, and implementation lan-
guage.

e C5: Domain specific as well as generic quality clus-
tering metrics to ensure comparison fairness.

o« C6: Memory effect, in the form of the architecture
of possibly nested feedback loops, in deep learning
scenaria where convolutional and feedforward net-
works are involved as units of tensor networks.

e C7: Data coding effect, especially for heuristics
such as tensor stack networks and tensor genetic
algorithms.

o (C8: Data distribution effect in probabilistic scenaria
with emphasis in the interpretability of both input
and output distribution. For instance, in social net-
work scenaria it might be of interest that the message
frequency distribution has a Poisson distribution or
that hashtag length has a Zipf distribution.

e (C9: Numerical stability for a large number of float-
ing point operations, which is an important factor in
computing probabilities or solving large linear sys-
tems, operations which lie at the kernel of many deep
learning problems. Relevant considerations are the
selection of floating point system and the possible
benefits if using numbers which are 64- and 128-bit
long, provided that specialized software exists.

4. Applications

This section focuses on tensor applications. Given the
topic diversity and the length of this section, it is evident
that tensors have a very broad spectrum of applications in
computer science and engineering. This happens because of
the following reasons:

« Being the next evolutionary step of matrix algebra,
tensor alebra can appear virtually everywhere when



the former can, with certain necessarynotation re-
arrangements. Perhaphs the most representative ex-
ample is the the celebrated singular value decom-
position (SVD) or latent semantic indexing (LSI),
as it is known in information retrieval. The basis
of SVD is the factorization of a, potentially large,
data matrix in three simpler matrices with special
properties, which can be more naturally expressed
as two tensor products between these factors.

e Moreover, tensors almost by definition appear in
multivariable Taylor and McLaurin expansions. Un-
der the viewpoint of Newton’s work, who proved
that any arbitrary function is essentially a polynom-
ical of possibly very high degree, tensors can natu-
rally represent or approximate any nonlinear system,
which is not possible in the general case in matrix
algebra.

Data mining is a broad field encompassing a multitude
of diverse techniques with matrix algebra constitiing one
of the maintays of the field. Tensors can be the primary
data represenatation, especially when the input data are
images or matrices. Additionally, tensors can appear at the
preprocessing stage of the general data mining piepline.
Moreover, tensors have been used as a starting point of
the vector clustering algorithm proposed in [31], where a
graph is indirectly constructed in order to provide an initial
estimate of the cluster number for the original version of
the k-means algorithm.

Online social networks have emerged as the primary
theater of the connected era for digital marketing, cul-
tural content dissemination, and political campaigns among
others. Ultimately, they constitute a vehicle for massive
and multidimensional communication, as in Turkey in the
wake of the failed military coup of 2016 and during the
Arab Spring of 2011, or for the outcome prediction of
political and social events. However, as clearly indicated by
the recent experience with the US and French presidential
elections, more reliable prediction techniques should be
invented.

Tensors can represent a social network in higher granu-
larity compared to the classical adjacency matrix represen-
tation, as adjacency tensors can take into account separately
each of the factors associated with netizen interaction in-
cluding geographical and linguistic criteria [29] [32]. Fur-
thermore, each of these factors can be the building block
for digital influence metric and, in turn, those metrics can
be fused through tensor algebra to advanced and higher
order influence metrics which yield deeper insight into
information diffusion as in [33] and [28]. Digital influence is
a fundamental question with applications ranging from fake
news discovery to digital marketing. As a general note, these
factors can be determined either by sociopolitical critreria
[34] [35] or by the interaction options offered by the social
network itself [36].

Community models based on tensor algebra [37] [38]
address the important aspect of community structure dis-
covery, an inherent property of the large scale free graphs

which can be found literally everywhere in the real world.

Some recent advances is cognitive science and in neu-
roinformatics can be attributed in part to the successful
algorithmic analysis of large brain related data such as CAT
scans, fMRI video, and EEG time series. Tensor algebra
has already been applied to fMRI with positive results [39]
[40], although there is still room for improvement, as the
set of features may vary in each clinical case or for each
type of diagnosis. Given brain complexity, both in terms
of connectivity and functionality, it is highly unlikely that
a single tensor analysis suffice because of the inherent
multidinensionality of brain data [41] [42]. However, it is
reasonable to expect that tensor based brain models which
take into account variables such as time, space, subject con-
dition, and subject task are a mathematically sound starting
point for brain study [43].

Traditionally ontologies are represented as directed trees
such as the XML trees which are heavily used at the
Semantic Web. The edges of these ontological trees have
attributes denoting predicates. Multilayer graphs can also
be used in this context and they can replace complex re-
lationships between two given entities with a number of
simpler ones. Thus, large relationship sets can be reduced
to smaller and simpler ones, resulting in lower complexity
and added parsimonity. Moreover, multilayer graphs can
represent time varying or incomplete ontologies by storing
mutiple instances of the same ontology using techniques
such as those proposed in [44].

Tensors can be used in information retrieval in order
to extend in a number of ways the classical term-document
matrix model. Such extentions include for instance the term-
author-document and the term-keyword-document third or-
der tensors [45]. Besides their accordance with intuition,
such tensor models can take advantage of clustering algo-
rithms tailored for three dimensions instead of the generic
schemes.

In deep learning tensors take many forms including
linear tensor discriminant analysis (LTDA) [46] and tensor
stack networks (TSN) [47]. Both schemes have been suc-
cessfully applied to many challenging tasks including speech
recognition [48], face recognition [49], gait classification
[50], and automated object identification in computer vision
[51]. These methodologies require a relatively large number
of data in order to reliably construct an indirect partition of
the data space. Thus, new schemes or improved variations
of existing ones can be derived.

Besides the abovementioned applications, tensors in one
form or another can be found in other fields. Even if this
subsection is by no means exhaustive, its breadth allows the
reader to understand the wide applicability of tensor algebra
in computer science and engineering.

In computational biology multilayer graphs can repre-
sent protein-protein interactions or time varying genomic
data [52].

In transportation networks and logistics studies tensors
can represent multiple connections such as road and train
networks or alternative routes offered by various logistics
companies, allowing a detailed investigation of supply and



distribution chains. The same hold true for seaways and
airways, as different companies may offer pricing policies
depending on the conditions in different geographical areas.

Nonlinear system identification can be reduced through
expansions such as Taylor and Volterra series to the numer-
ically stable determination of the coefficients of multilinear
and multivariable models [53] [54].

Multispectral image analysis relies on the separate study
and manipulation of the spectra of the same image corre-
sponding to the various depictable wavelengths [55]. Ap-
plications include 3D reconstruction of damaged skin areas
[56] and the noninvasive burn depth determination in prepa-
ration for restoration operations [57].

Finally, in scientific computing, a number of transforms
can exploit an alternative tensor representation of data in
order to achieve a considetable speedup [S8] [59].

5. Conclusions

This survey reviews methods for tensor clustering as
well as scientific software for efficiently performing data
intensive tensor operations. Tensor clustering plays an in-
strumental role in a wide array of fields, most prominently
deep learning, ontology, fMRI analysis, big data manage-
ment, information retrieval, non-linear system identification,
and knowledge disovery. Fundamental tensor algebra func-
tionality is already provided by both deep learning software
such as TensorFlow and theano as well as by libraries for
linear algebra such as Tensor Toolbox and TensorLab for
MATLAB and Breeze for Scala.

Possible research directions include the developement
of specialized efficient operations for lower order tensors,
e.g. for tensors with up to five dimensions. Symmetries
drawn from group theory can be used to accelerate vari-
ous operations such as clustering or Kruskal factorization.
Additionally, at a lower level, the recent advances in GPU
computing and in distributed systems should be exploited
by appropriate layers of tensor related software.
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