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Abstract—In this paper we present an approach for the
recognition of human activity that combines handcrafted features
from 3D skeletal data and contextual features learnt by a trained
deep Convolutional Neural Network (CNN). Our approach is
based on the idea that contextual features, i.e., features learnt in
a similar problem are able to provide a diverse representation,
which, when combined with the handcrafted features is able
to boost performance. To validate our idea, we train a CNN
using a dataset for action recognition and use the output of the
last fully-connected layer as a contextual feature representation.
Then, a Support Vector Machine is trained upon an early fusion
step of both representations. Experimental results prove that the
proposed method significantly improves the recognition accuracy
in an arm gesture recognition problem, compared to the use of
handcrafted features only.

Index Terms—Human Activity Recognition, Convolutional
Neural Networks, Context-aware Deep Features

I. INTRODUCTION

Human action recognition consists probably one of the
most challenging problems in the field of computer vision.
It is considered to be a sub-area of the human-centered
activity recognition. According to Wang et al. [21], related
recognition tasks fall into four categories: a) gesture; b) action;
c) interaction; and d) group activity recognition. Gesture and
action differ mainly in the amount of time required and also
to the body parts involved. More specifically, a gesture is
typically performed “instantly,” i.e., it requires a small amount
of time. Also, it usually involves a single body part. On the
other hand, an action may involve more or even all body
parts and requires a larger amount of time. However, they
both involve one person, contrary to an interaction, which may
involve two persons or a person and an object. Lastly, group
activity involves more than one persons and is considered as
a combination of some of the aforementioned categories.

At the early days of human action recognition, most ap-
proaches [1], [15] were based on the extraction of hand-
crafted features. The latter are typically algorithmic pipelines,
manually designed to extract image properties using the
information available within the image, in a deterministic
way. Design takes place by keeping in mind that extracted

features should be robust to variances such as illumination,
viewpoint changes etc. Then, these features were used to train
traditional machine learning algorithms such as support vector
machines. Such approaches have several limitations including
limiting robustness to viewpoint changes or significant drop
of performance when trained for a large number of actions.
Especially the first limitation is crucial, when dealing with
real-life scenarios. Due to recent advances in the fields of
hardware and more particularly in graphics processing units
(GPUs), fast training of more complex network architectures
has been enabled. Such architectures are typically referred
to as “deep architectures” [5]. Their main advantage is that,
contrary to traditional approaches, a prior handcrafted feature
extraction step is omitted. Instead, features are “learnt” by
the network, during the training process. Note, that efficient
training of deep architectures requires a significantly large
number of training examples.

Several human action recognition datasets have been pro-
posed, comprising either of a small number of simple actions
[15], such as walking, running, hand clapping etc., or more
realistic human actions e.g., answer phone, get out of car,
hand shake [7]. More challenging datasets [6], [18] contain
interactions with objects such as playing cello, horse riding,
swing baseball bat, fencing. Finally, recent large scale datasets
[9], [16] are comprised of large numbers of training video and
depth sequences. An important problem when dealing with
human action recognition tasks is the intense diversity between
different datasets and benchmarks. More specifically, datasets
show significant differences mainly in terms of size, visual
data and classes.

Therefore, in this work, our goal is to experimentally
demonstrate that the ability of deep architectures to learn pat-
terns in large datasets may be used to complement handcrafted
features and boost the performance of classification. More
specifically, we use a Convolutional Neural Network (CNN)
which has been pre-trained to classify contextual classes in a
human action recognition problem as a visual feature extractor
in the similar, yet different task of arm gesture recognition.
We experimentally evaluate our approach, using the PKU-
MMD dataset [9] which is a challenging large scale action978-1-7281-3634-9/19/$31.00 © 2019 IEEE



recognition dataset to train the CNN and a dataset we had
created in previous work [10] for arm gesture recognition.

The rest of this paper is organized as follows: Section II
presents related work, focusing in deep learning approaches.
Section III presents the proposed methodology. Experimental
results are presented in Section IV, while conclusions are
drawn in Section V, where plans for future work are also
presented.

II. RELATED WORK

During the last few years, several research works have
experimented with fusion of handcrafted features with learnt
features that are extracted using deep neural network architec-
tures. Nanni et al. [11] proposed the use of a trained deep CNN
as a feature extractor and mixed its output with handcrafted
features. More specifically three substructures were proposed.
Firstly they remapped the output of a CNN so as to solve a
different problem than the one it was trained. Classification
was performed with an SVM. Secondly, they fed an SVM
with the output of the last dense layer of a CNN as a feature
vector. Lastly, they fused the output of several layers and also
fed an SVM. They also used several methods for extracting
non-handcrafted features and a wide range of state-of-the-
art algorithms for the handcrafted ones. They applied the
method at several image classification problems. Wu et al. [22]
proposed a model for person re-identification called “Feature
Fusion Net.” This model combines color histogram features
and texture features with the last pooling layer of a CNN so as
to adapt the weights of the CNN by taking into consideration
the handcrafted features. Kashif et al. [4] proposed a technique
that showed improved performance when handcrafted features
were combined with raw data in order to be used as an input in
a CNN model. They used the aforementioned features to detect
tumor cells in histology images. Another approach, proposed
by Egede et al. [2], combined handcrafted features with deep-
learned features in a regression problem for automatic pain
estimation. Nguyen et al. [12] used deep image features
extracted by a CNN with local binary pattern handcrafted
features in a presentation attack detection in face recognition.
Finally, in previous work [3] we applied a methodology similar
to the proposed one to solve a soundscape classification
problem, combining statistical handcrafted short-term audio
features with a CNN, trained on spectrogram representations
of audio signals.

III. PROPOSED METHODOLOGY

A. Convolutional Neural Networks

The area of computer vision has significantly benefited from
the use of deep learning architectures. The dominant deep
architecture is undoubtedly the Convolutional Neural Network
(CNN) [8]. The latter, resembles to traditional neural networks
and has almost eliminated the need of extracted handcrafted
features for the description of low-level visual properties.
This is achieved by its key component, i.e., the convolutional
layers. Their role is to learn a set of convolutional filters. The
dimension of these filters is rather small (i.e., a few pixels).

They are formed by grouping neurons in a rectangular grid and
slide across the whole image during the forward pass of the
algorithm. This way, the responses when a filter is centered at
any pixel, produce a 2D activation map. Training takes place
as with every other NN; a forward propagation of data and a
backward propagation of error do take place to update weights.
Ultimately, the filters learnt by the network will activate when
they encounter certain types of visual features.

Pooling layers are usually placed between single or sets
of serial or parallel convolutional layers. Their role is to
progressively reduce the representation size. To achieve this,
they take small rectangular blocks from the convolutional
layer. By subsampling them, they end up to produce a single
output from each block. This way, a step towards reducing
the complexity of the network and controlling overfitting is
performed. Finally, in dense layers (also known as “fully-
connected” layers) each node is connected to all activations
of their previous layer and their role is to perform classifi-
cation based on the extracted features by the convolutional
layers (which may have been subsampled by pooling layers).
Within our approach, we also adopt the widely used dropout
regularization technique [19]. Its goal is to reduce overfitting
by preventing complex co-adaptations on training data, i.e.,
dependencies among neighboring neurons. To achieve this,
several random neurons are ignored (“dropped-out”) during
training and also their weights are not updated.

B. Handcrafted Features

The set of handcrafted features used within this paper, has
been proposed in our previous work [13] and is partially
inspired by a set of features that have proposed by Sheng [17],
who extended the features of Rubine [14] from the 2D to the
3D space. We use 3D skeletal data extracted by the Microsoft
Kinect sensor, where the human skeleton is described by a
structured graph that consists of a set of joints, which represent
its main body parts (e.g., arms, legs, head, shoulders etc.). Note
that joints are organized in a hierarchical structure, where a
parent–child relationship is implied; e.g., the root is the Hip
Center, its children are the Spine, the Left Heap and the Right
Heap and so on. We extract features based on the spatial
relation of joints to their parent and child joints, over time.

More specifically, for a given joint J we use its child and
parent joints Jc and Jp, accordingly. Features are extracted
from video sequences. Let Fi, i = 1, 2, . . . N denote a
given video frame and v

(J)
i =

(
v
(J)
x,i , v

(J)
y,i , v

(J)
z,i

)
a vector

corresponding to the 3D coordinates of J at frame Fi. Also, let
V(J ) denote the set of all v(J)

i , B(V(J )) the 3D bounding box
of V(J ), by aB(V(J )) and bB(V(J )) the two different lengths
of its sides. Extracted features are depicted in Table I.

C. Context-aware deep Feature Extraction using a CNN

In this work we use a visual representation of skeletal
information, which has been proposed in our previous work
[20], in order to create images so that they will be used
as input to a CNN. We create pseudo-colored images which
aim at capturing inter-joint distances during an action. For a



TABLE I
PROPOSED FEATURES, EXTRACTED FROM THE SKELETAL JOINTS. NOTE
THAT EACH FEATURE IS CALCULATED FOR A GIVEN JOINT J AND MAY

INVOLVE A DIFFERENT SUBSET OF FRAMES. FEATURES MARKED WITH ∗,
ARE CALCULATED USING ONLY HandLeft AND/OR HandRight. ALSO, B(•)

DENOTES A 3D BOUNDING BOX OF A SET OF VECTORS, WHILE
aB(•), bB(•) THE LENGTHS OF THE SIDES OF B(•). FOR A GIVEN JOINT

J , Jc, Jp DENOTE ITS CHILD AND PARENT NODE, RESPECTIVELY.

Feature name Frames involved Equation

Spatial angle F2, F1 arccos
v
(J)
2 · v(J)

1∥∥∥v(J)
2

∥∥∥ · ∥∥∥v(J)
1

∥∥∥
Spatial angle FN , FN−1 arccos

v
(J)
N · v(J)

N−1∥∥∥v(J)
N

∥∥∥ · ∥∥∥v(J)
N−1

∥∥∥
Spatial angle FN , F1 arccos

v
(J)
N · v(J)

1∥∥∥v(J)
N

∥∥∥ · ∥∥∥v(J)
1

∥∥∥
Total vector angle F1, . . . , FN

N∑
i=1

arccos

 v
(J)
i · v(J)

i−1∥∥∥v(J)
i

∥∥∥∥∥∥v(J)
i−1

∥∥∥


Squared total vector angle F1, . . . , FN

n∑
i=1

arccos

 v
(J)
i · v(J)

i−1∥∥∥v(J)
i

∥∥∥∥∥∥v(J)
i−1

∥∥∥
2

Total vector displacement FN , F1

∥∥∥v(J)
N − v

(J)
1

∥∥∥
Total displacement F1, . . . , FN

n∑
i=1

∥∥∥v(J)
i − v

(J)
i−1

∥∥∥
Maximum displacement F1, . . . , FN max

i=2,...,N

(∥∥∥v(J)
i − v

(J)
i−1

∥∥∥)
Bounding box diagonal length∗ F1, . . . , FN

√
a2
B(V(J ))

+ b2
B(V(J ))

Bounding box angle∗ F1, . . . , FN arctan
bB(V(J ))

aB(V(J ))

Initial angle F1 ]v(J)
1 Ov

(Jp)
1 or ]v(J)

1 Ov
(Jc)
1

Final angle FN ]v(J)
N Ov

(Jp)

N or ]v(J)
N Ov

(Jc)
N

Mean angle F1, . . . , FN
1
N

∑N
i=1 ]v

(J)
i Ov

(Jp)
i or 1

N

∑N
i=1 ]v

(J)
i Ov

(Jc)
i
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(Jc)
i

given joint Ji, v
(J)
i =

(
v
(J)
x,i , v

(J)
y,i , v

(J)
z,i

)
is the aforementioned

vector capturing its 3D location at frame i, i.e., its trajectory.
The 3D trajectories of skeletal joints are used as input for the
construction of the representation. Each joint corresponds to a
row of the constructed images, while, its x, y, z coordinates
correspond to R, G, B color channels, respectively.

We should emphasize our assumption that each video
segment contains exactly one action to be recognized. To
address the problem of temporal variability between actions
and between users which results to video segments of different
lengths, a linear interpolation step is imposed, setting the
duration of all videos equal to N frames. By using skeletal in-
formation collected by the Microsoft Kinect v2, i.e., consisting
of 25 joints, we ended up with pseudocolored images having
dimension 25×N×3. Each is created as follows: we calculate
coordinate differences between consecutive frames, thus if v(j)x,i

denotes the x-position of the j-th joint in the i-th frame. Let
R denote the red channel of the color image. The value of
R(j, i) is calculated as: R(j, i) = v

(j)
x,i+1− v

(j)
x,i , i = 1, . . . , N .

Similarly, blue and green channels are constructed. As it is
exhibited, the way these pseudo-colored images are formed,
leads to preserving both the temporal and the spatial proper-
ties of the skeleton trajectories. Examples of pseudo-colored
images are illustrated in Fig. 1.

Fig. 1. Representative pseudo-colored images from actions of the PKU-MMD
dataset [9] and by using all 25 skeletal joints. Top: eat meal snack, bottom:
falling.

The architecture of our CNN is presented in detail in Fig. 2.
First, we used a convolutional layer to filter the 25×149 input
image with 16 kernels of size 3×3. Then, we continued with
the first pooling layer, which uses “max-pooling” to perform
2×2 subsampling. A second and a third convolutional layer
filters the 11×73 and 9×71 , resulting images with 32 kernels
of size 3×3, respectively. A second pooling layer follows and
uses “max-pooling” to perform 2×2 subsampling. Next, the
fourth convolutional layer filters the 2×33 resulting image
with 64 kernels of size 3×3. A third pooling layer uses “max-
pooling” to perform 2×2 subsampling. Then, a flatten layer
transforms the output image of size 1×16 of the third pooling
to a vector, which is then used as input to a dense layer using
dropout. Finally, a second dense layer produces the output of
the network, however this layer is omitted when the CNN is
used for feature extraction.

D. Human-Activity Recognition

A visual overview of the proposed approach is illustrated in
Fig. 3. As it may be seen, we use two distinct feature extraction
steps. The first consists of the handcrafted features that are
extracted by 3D trajectories of skeletal joints as described
in subsection III-B. Each activity is represented by a feature
vector. We should emphasize that this description aims to rep-
resent the activity in a space that is discriminative with regards
to the involved classes of the problem at hand. The second
consists of the context-aware deep features that are extracted
using a CNN, trained by using visual representations of 3D
skeletal joint trajectories, as described in subsection III-C. The
CNN has been trained in a different (yet semantically similar)
problem and the output of its last fully connected layer is
used as the extracted feature. Both feature representations are
combined in an early fusion step and an SVM is used for
classification upon a PCA step.

The motivation for our approach is that since, the CNN
is trained using different context classes, it learns a comple-
mentary representation to the one provided by the handcrafted
features. As it has been shown to a plethora of works [3], the
combination of such diverse representations leads to improved
recognition accuracy. In our approach, the CNN is trained at
an action recognition problem, while the problem at hand is
arm gesture recognition, i.e., both are problems that lie in the
area of human activity recognition.
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Fig. 2. The deep CNN that has been used for contextual feature extraction.
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Fig. 3. A visual overview of the proposed approach.

IV. EXPERIMENTS

A. Data sets

Over the last decade, a large number of benchmark datasets
for human action recognition have been created and become
publicly available. In order to train the CNN used throughout
our experiments, we used a recent large-scale dataset, namely
the PKU-MMD [9]. It contains approx. 20K action instances
from 51 action categories, spanning into 5.4M video frames.
The dataset is captured via the Kinect v2 sensor and pro-
vides multi-modality data sources, including skeleton, infrared
radiation, depth and RGB sequences. Note that all data had
been captured by the performance of 66 subjects under three
camera views. The CNN was trained using all the available
data. Apart from the aforementioned data set we also used a
real-life dataset [10], constructed by us. More specifically this
dataset consists of 200 arm gestures performed by 10 users
and captured by one camera. Gestures are divided into the
following classes: clapping, hands raise, hands circle, swipe
up, swipe down,swipe upright, swipe downright In both cases,
we have used the 3D skeletal data derived from the joints’
motion.

B. Model Training

Since our focus was on solving an arm gesture classification
problem, we extracted handcrafted features from hands, arms
and wrists, i.e., J ∈ {ElbowLeft, ElbowRight, HandLeft,
HandRight, WristLeft, WristRight}. From each of the 6 afore-
mentioned joints we extracted the features of Table I, resulting
to a feature vector representation of size 94. The CNN was
trained for 11 classes of the PKU-MMD dataset, as in [20]
which were: eat meal snack, falling, handshaking, hugging
other person, make a phone call answer phone, playing with
phone tablet, reading, sitting down, standing up, typing on a
keyboard and wear jacket. For classification, we have used
a linear SVM. The dimension of the last fully connected
layer was equal to 128, resulting to a combined representation
of size 212. Upon PCA, we kept only the components that
correspond to 95% of total variance, resulting to a feature
vector of size 57, which was fed to the SVM.

Note that data from the PKU-MMD dataset have been
collected using the Microsoft Kinect v2 camera, while data
from our own dataset have been collected using the Microsoft
v1 camera, where only a subset of the available joints have
been used. Thus, in order to create the visual representation
we have set to 0 all rows corresponding to non-available joints.



TABLE II
CLASSIFICATION ACCURACY FOR ALL FEATURE EXTRACTION METHODS.

Method Accuracy
HF 0.87
CF 0.43
HF+CF 0.93

Also, we imposed a linear interpolation step, so as to make
their dimension equal to the input of the trained CNN.

C. Results

For the experimental evaluation of the proposed approach,
we conducted three series of experiments. First, we used
only the handcrafted features (HF). Then, we used only the
contextual features (CF) extracted by the CNN. Last, we used
the combined features (HF+CF). In all cases, a linear SVM
was trained upon PCA pre-processing of the features. Results
are summarized in Table II. It can be seen that the HF+CF
feature extraction approach clearly outperforms both other
approaches. The combination of handcrafted and contextual
features leads to a performance boosting of approx. 7%. Note,
that the use of CF only showed by far the poorest performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach for utilizing a
Convolutional Neural Network that has been trained to classify
human actions in an arm gesture classification task. To this
goal, we have used a combination of handcrafted features with
features learnt from the CNN. We demonstrated that this early
fusion approach is able to provide a performance boosting,
even though learnt features showed the poorest performance
when used alone. This is due to the fact that the CNN is
able to introduce a highly diverse representation, which is
not captured by the handcrafted features. In our opinion, the
main contribution of this work is the experimental proof that
the transfer of contextual knowledge using a CNN is able
to improve classification accuracy of handcrafted features.
Future work will focus on experimenting with more powerful
classifiers and also to the extensive evaluation of the proposed
approach on several publicly available datasets. Among our
goals is also the application into a real-like or even real-life
ambient assistive living environment.
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