
A Case Of Adaptive Nonlinear System Identification
With Third Order Tensors In TensorFlow
Georgios Drakopoulos

Department of Informatics
Ionian University
Kerkyra, Hellas

c16drak@ionio.gr

Phivos Mylonas
Department of Informatics

Ionian University
Kerkyra, Hellas

fmylonas@ionio.gr

Spyros Sioutas
CEID

University of Patras
Patra, Hellas

sioutas@ceid.upatras.gr

Abstract—Non-linear system identification is a challenging
problem with a plethora of engineering applications including
digital telecommunications, adaptive control of biological sys-
tems, assessing integrity of mechanical constructs, and geological
surveys. Various approaches have been proposed in the scientific
literature, including Volterra and multivariate Taylor series,
fuzzy neural networks, state space models, and wavelets. This
conference paper proposes a succinct model of a non-linear
system with memory based on a third order tensor whose
coefficients are trained in an LMS-like way. Moreover, two
variants deriving from sign LMS and batch LMS algorithms
respectively are also implemented in TensorFlow. The results
of applying the three training algorithms to this system are
compared in terms of the mean square error in validation phase,
the convergence rate of the coefficients, and the convergence rate
of the Euclidean norm of the local gradients of the system model.

Index Terms—tensor algebra, higher order data, non-linear
system identification, adaptive system identification, local gradi-
ent estimation, Volterra series, LMS training, sign LMS, batch
LMS, TensorFlow

I. INTRODUCTION

Non-linear system modeling plays a central role in a broad
spectrum of engineering applications including but by no
means limited to MIMO ground communication networks,
satellite communications and underwater acoustic channels
with non-linear channels, control of robotic arms, geological
surveys for water, oil, or rare earths, and adaptive control of
biological and medical systems. Because of both the plethora
of applications and the challenging background involved in
the analysis of non-linear systems, a number of ingenious
approaches drawing inspiration from various branches of
mathematics, physics, or other fields have been proposed in
the scientific literature.

The primary research objective of this conference paper
is twofold. First, a tensor model for a non-linear system is
developed using a third order tensor, displaying the potential
of tensor algebra. The coefficients of this model are trained
using an LMS-like training process. Second, two alternatives
of the training process based on the sign LMS and the batch
LMS are also developed. All three algorithms were tested on

a non-linear system with memory whose structure is similar
to that of many systems found in applications such as satellite
or underwater communications.

The remaining of this work is structured as follows. Section
II briefly review current scientifc literature regarding tensor
algebra and system identification theory. Certain tensor op-
erations which will be the building blocks for the system
modeling are described in III, where the model itself is
devloped in IV. Section V containes some notes on the
TensorFlow implementation and the results obtained by of the
three algorithms. Future research directions are mentioned in
section VI. Table I summarizes the notation of this conference
paper. Finally, concerning notation tensors are represented
with capital calligraphic letters, matrices with capital boldface,
vectors with small boldface, and scalars with small letters.

TABLE I
NOTATION OF THIS CONFERENCE PAPER

Symbol Meaning
�
= Definition or equality by definition
{s1, . . . , sn} Set with elements s1, . . . , sn
(i1, . . . , ip) Tuple with elements i1, . . . , ip
�tk� A sequence with elements tk
|S| Set, sequence, or tuple cardinality
×k Tensor multiplication along the k-th dimension
�T �F Frobenius norm of tensor T
T (k;d) k-th slice of tensor T along dimension d
In n× n identity matrix
0m×n m× n zero matrix
⊗ Tensor Kronecker product
◦ Tensor outer product
� Discrete linear convolution

II. PREVIOUS WORK

System identification can take a number of forms depending
on the context. State space models, namely white box models,
for non-linear systems are explored in [1], whereas black
box modeling in extensively treated in [2]. Concerning the
modeling of non-linear systems with models other than state
space ones, various approaches have been proposed in the
literature including Volterra series with coefficients derived
from an adaptive training process [3], fuzzy neural networks
trained with a variation of the BEP algorithm [4] or with
a modified fuzzy BEP algorithm [5], and wavelets [6]. The978-1-7281-1862-8/19/$31.00 ©2019 IEEE

relationship between the Volterra and Wiener series is explored
in [7]. Wiener and Hammerstein cascade models for non-linear
biological systems are examined in [8].

Tensor algebra and well as its main properties, including the
fundamental Tucker and Kruskal decompositions, have been
introduced among others in [9] and in [10]. Moreover, the
role of tensor factorizations in discovering structure inherently
found in data is explored in [11]. Tensor applications are
numerous. In [12] a graph resilience metric based on path
lengths and the number of triangles is proposed. In social
network analysis multiple Twitter functional analytics are
combined in a multilayer graph in [13], while the digital
influence of an account in Twitter can be expressed in higher
order terms [14]. An extension of ontologies to multiple edges,
each with a different semantic aspect, is proposed in [15].
For a genetic algorithm for clustering large third order tensors
containing geolocation and linguistic data with an objective
function based on linguistic variation models see [16].

Multilinear signal processing, namely signal processing
based on tensor algebra, has been the subject of many research
papers. In [17] a concise presentation of the subject from a
higher dimensional viewpoint is given along with important
concepts such as base tensors, efficient base change, dimen-
sionality reduction, and the relationship between the different
variants the SVD takes for more than two dimensions. Higher
order statistics play a crucial role in source identification in
MIMO systems since third and fourth order statistics can
discover signal structure second order statistics are oblivious
to [18] [19].

TensorFlow has been originally developed by Google in
order to simulate complex brain circuits. Since 2015 it is an
open source, low level framework designed specifically for
tensor algebra based on the dataflow paradigm [20]. The latter
is explained in detail along with other implementation aspects
in [21]. A versatile graph structure which allows versioning
and keeping the history of changes in symbolic operations
stored as strings is proposed in [22]. An efficient generator of
Gaussian processes for TensorFlow is described in detail in
[23], while a tool for visualizing symbolic computation trees
in TensorFlow is given in [24].

III. BACKGROUND

Tensor algebra is the generalization of linear algebra to more
than two dimensions. Additionally, it includes linear algebra
as a special case. Formally, in the most general case a tensor
is defined in a straightforward manner as [9]:

Definition 1 (Tensor): A p-th order tensor T ∈ V1 × . . .×
Vp → S represents the simultaneous linear mapping between
p not necessarily distinct vector spaces Vk to a vector space
S, 1 ≤ k ≤ p.

For the purposes of this work we will use real valued tensors
defined over real domains. Therefore, in the remaining of the
text tensors are either T ∈ Rn1×...×np or T ∈ Rn1×n2×n3 .

In equation (1) the exact structure of a 2× 2× 2 tensor T
is shown. It consists of eight real scalars, each indexed by a
distinct triplet of integers (i1, i2, i3) where ik ∈ {1, 2}.

T [i1, i2, 1] =

�
T [1, 1, 1] T [1, 2, 1]
T [2, 1, 1] T [2, 2, 1]

�

T [i1, i2, 2] =

�
T [1, 1, 2] T [1, 2, 2]
T [2, 1, 2] T [2, 2, 2]

�
(1)

Definition 2 (Tensor slices): Slices of a p-th order tensor T
along dimension d is a set of nd tensors

�
T (id;d)

�
of order

p − 1 which are derived by fixing the d-th index and using
it as a parameter, whereas the remaining indices remain free
variables.

In the specific case of a 2 × 2 × 2 tensor T there are six
possible slices in total, namely two slices for each of the three
dimensions. The upper and lower subequations of equation (1)
are T (1;3) and T (2;3) respectively. The other four slices are:

T (1;1) �
=

�
T [1, 1, 1] T [1, 1, 2]
T [1, 2, 1] T [1, 2, 2]

�

T (2;1) �
=

�
T [2, 1, 1] T [2, 1, 2]
T [2, 1, 1] T [2, 1, 2]

�

T (1;2) �
=

�
T [1, 1, 1] T [1, 1, 2]
T [2, 1, 1] T [2, 1, 2]

�

T (2;2) �
=

�
T [1, 2, 1] T [1, 2, 2]
T [2, 2, 1] T [2, 2, 2]

�
(2)

Multiplying a p-th order tensor T ∈ Rn1×...×np with a
vector x ∈ Rnk along the k-th dimension always results in a
(p− 1)-th order tensor G whose elements are defined as:

G[i1, i2, . . . , ik−1, ik+1, . . . , ip]
�
=

(T ×k x)[i1, i2, . . . , ik−1, ik+1, . . . , ip] =
nk�

ik=1

T [i1, . . . , ik−1, ik, ik+1, . . . , ip]x[ik] (3)

Definition 3 (Frobenius tensor norm): The Frobenius tensor
norm is defined as:

�T �F
�
=

n1�

i1=1

. . .

np�

ip=1

T 2[i1, . . . , ip]

1
2

(4)

Frobenius norm is especially useful for evaluating the
distance between a sequence of tensors �Gk� generated succes-
sively by an iterative process. A common termination criterion
in these cases is the comparison of the Frobenius norm with
a prespecified threshold ρ0 as follows:

�Gk+1 − Gk� ≤ ρ0 (5)

The last equation converges to a global minimum or maxi-
mum if �Gk� is a Cauchy sequence, otherwise the convergence
may be local.

IV. TENSOR SYSTEM MODEL

A. Formulation

Let x, y, and z be three independent real valued data
vectors:

x
�
=

�
x1

x2

�
y

�
=

�
y1
y2

�
w

�
=

�
w1

w2

�
(6)

Then, the proposed system model can be constructed by
multiplying a third order tensor with all three input vectors.
Each dimension of the tensor is multiplied by one input vector:

q(x,y,w; T)
�
= T ×1 x×2 y ×3 w

= (T ×3 w)×1 x×2 y

= M×1 x×2 y

= yTMx

=

2�

i1=1

2�

i2=1

2�

i3=1

T [i1, i2, i3]xi1yi2wi3 (7)

In equation (7) matrix M can be written as:

M =
�
T (1;2)w T (2;2)w

�
(8)

An alternative form for equation (8) is:

M =
�
T (1;2) T (2;2)

� � w 02×1

02×1 w

�
(9)

The last equation can be compactly rewritten using Kro-
necker tensor products as:

M =
�
T (1;2) T (2;2)

�
(I2⊗w) (10)

B. Adaptive Training

The general formula for the update of the tensor elements
at the k-th step is a delta rule [25] [26]:

T [k][i1, i2, i3] = T [k−1][i1, i2, i3] +ΔT [k][i1, i2, i3] (11)

Notice that in equation (11) the superscripted bracket index
refers to the k-th step of the training process, whereas or-
dinary bracket indexing refers to the elements of the tensor.
The convention for representing the step index will be used
throughtout the text.

The elementwise correction term at the k-th step is LMS-
like [27] [28] [29]. Therefore, the correction term is:

ΔT [k+1][i1, i2, i3]
�
= µ[k]e[k]u[k][i1, i2, i3]

= µ[k]
�
d[k] − s[k]

�
u[k][i1, i2, i3] (12)

In equation (12) the last term is:

u[k][i1, i2, i3]
�
= x[k][i1]y

[k][i2]w
[k][i3] (13)

A vectorized form of equation (12) using the tensor outer
product definition of [9] is:

T [k+1] = T [k] + µ[k]e[k]x[k] ◦ y[k] ◦w[k] (14)

C. Convergence Metrics

Besides the Frobenius norm of the difference between two
successive iterations as in equation (5), the Euclidean norm of
the local gradients ∇xg, ∇yg, ∇wg in each iteration will be
used.

The partial derivatives of q with respect to the two elements
of x can be directly computed in terms of a tensor slice as:

∂q

∂x1
= T [1, 1, 1]y1w1 + T [1, 1, 2]y1w2

+ T [1, 2, 1]y2w1 + T [1, 2, 2]y2w2

= yTT (1;1)w (15)

Similarly, the partial derivative of q with respect to the
second element x2 has a similar closed form involving a
different tensor slice:

∂q

∂x2
= T [2, 1, 1]y1w1 + T [2, 1, 2]y1w2

+ T [2, 2, 1]y2w1 + T [2, 2, 2]y2w2

= yTT (2;1)w (16)

Stacking the two derivatives to a column vector yields:

∇xq =
�
∂q
∂x1

∂q
∂x2

�T
=

�
yTT (1;1)w
yTT (2;1)w

�
(17)

The last equation can be rewritren in matrix-vector form:

∇xq =

�
yT 01×n

01×n yT

� �
T (1;1)

T (2;1)

�
w (18)

Another alternative form of equation (17) using the Kro-
necker tensor mutliplication is equation (19).

∇xq =
�
I2⊗yT

� �T (1;1)

T (2;1)

�
w (19)

In a similar manner, the vector partial derivative with respect
to input vector y has the following high level structure:

∇yq =
�
I2⊗xT

� �T (1;2)

T (2;2)

�
w (20)

And the vector partial derivative with respect to the last
input w has the following high level structure:

∇wq =
�
I2⊗xT

� �T (1;3)

T (2;3)

�
y (21)

D. Variations

LMS is an approximation to the stochastic gradient descent.
Therefore, one might only be interested in the direction of the
instantaneous error e[k]:

T [k+1] = T [k] + µ[k] e[k]��e[k]
��x

[k] ◦ y[k] ◦w[k] (22)

Another variation is batch LMS which approximates the
stochastic gradient algorithm in a statistically better way. As its
name suggests batch LMS relies on replacing the instantaneous
error with a smoothed one over a window of length L:

T [k+L] = T [k]+µ[k+L]ê[k+L]x[k+L] ◦y[k+L] ◦w[k+L] (23)

The smoothed error in equation (23) is the sample mean,
implying that the underlying process is ergodic.

ê[k+L] �
=

1

L

L−1�

p=0

e[k+L−p] (24)

Combining the above, the framework for executing the LMS
training requires the following parameters.

• The type of LMS which will be used, namely one of the
equations (14), (22), or (23).

• Whether the training I/O pairs appear in the same order
every epoch in a random order.

• The decay rate, if any, of the learning rate µ[k]. Although
many options have been proposed in the scientific litera-
ture, three appear to be the most popular ones and have,
thus, been implemented. Specficially, these options are:

– Cosine decay: In this case, the learning rate is a
scaled one fourth of a cosine period, namely when
the argument of the cosine ranges in [0,π/2). In this
case the formula for the learing rate is:

µ[k] �
= α0 cos

�
πk

2β0

�
, 0 ≤ k ≤ β0 − 1 (25)

– Inverse linear decay: This option provides a smooth
decay rate, especially during the later iterations. It
is an easily understood learning rate decay and can
be implemented easily in software without calls to
libraries. The formula for the learning rate is:

µ[k] �
= α0(1 + β0k), 0 ≤ k ≤ 9/β0 (26)

– Exponential decay: Finally, the exponential decay
has a steep descent rate during all iterations and also
leaves the less room for iterations for the same value
of β0. In this case the learning rate drops as follows:

µ[k] �
= α0e

−β0k, 0 ≤ k ≤ 5/β0 (27)

• The number of epochs, namely how many times can the
training vectors be used in total.

• The training dataset, including the training, testing, and
validation sets.

• The tensor initalization scheme. Tensors can be initialized
with either random or zero values.

• The termination criterion. Common options include:
– T1: The Frobenius norm of the difference of two

successive tensors drops below a given threshold ρF
as follows:

���T [k+1] − T [k]
���
F

≤ ρF (28)

– T2: The sum of the Euclidean norms of the local
gradient vectors drop below a given threshold ρE as
follows:

�∇xq�2 + �∇yq�2 + �∇wq�2 ≤ ρE (29)

V. RESULTS

As a concrete example, the adaptive training methohologies
of section IV are applied to the non-linear system with memory
of equation (30).

s[n] = g[n]g[n− 1] +
1

2
g[n− 2] + η[n] (30)

Observe that s[n] can be written as the sum of a strictly
non-linear system with memory with a purely linear system
also with memory. Finally, η[n] is a discrete zero mean AWGN
process with controlled variance σ2

η , which in turn controls the
SNR. The true spectrum of s[n] is:

S
�
ejω

�
= e−jωG

�
ejω

�
�G

�
ejω

�
+

1

2
e−j2ωG

�
ejω

�
(31)

The system (30) was driven with a long sequence of 2048
PAM symbols, where each such symbol can take one of four
values {±1,±3}. Note that the indexing of the input vectors
refer to training iterations, while the indexing of system input
g[k] refers to system time. In our experiments both time scales
are equal.

x[k] �
=

�
g[k]
1

�
y[k] �

=

�
g[k − 1]

1

�
w[k] �

=

�
g[k − 2]

1

�
(32)

A total of 256 training pairs have been selected at random
and have been partitioned to the following disjoint categories:

• Training set: It consists of 64 training pairs and it is used
to perform the actual tensor coefficient corrections.

• Testing set: It is made up of 64 training pairs and its
role is to evaluate the mean square error (MSE) of the
model at the end of each epoch. During the testing phase
the model coefficients are not updated. The MSE J for
a model with memory length Q and parameters {ϑj} is:

J({ϑj}) �
=

1

P

P�

k=1

�
d̃[k]− s̃[k]

�2

(33)

In equation (33) d̃[k] and s̃[k] stand for the expected
system output and the actual system response respectively
given that its input during the past Q steps was the very
same sequence of vectors as denoted in equation and that
the system parameters were {ϑj}.

d̃[k]
�
= d[k]|v[k] . . . v[k −Q+ 1]

s̃[k]
�
= s[k]|v[k] . . . v[k −Q+ 1]; {ϑj} (34)

Moreover, P is the total available points in the training
or in the validation sets and the index j ranges over the
samples of the training or the validation sets.

• Validation set: It comprises the other half of the total
dataset. Once each model has been trained, the validation
set is used only once in order to compute the MSE of each
model.

In total nine training algorithms were used for the model (7)
using SNR values from 2dB to 20dB with an increment of 2dB.
Each of the three algorithms were coupled with three instances
of the learning rate decay. Specifically, these instances were:

0 5 10 15 20
102

103

104

105

SNR (dB)

Va
lid

at
io

n
M

SE
 (l

og
 s

ca
le

)

Validation MSE (log scale) vs SNR (dB)

lms-exp
lms-lin
lms-cos
sign-exp
sign-lin
sign-cos
batch-exp
batch-lin
batch-cos

Fig. 1. Mean square error for validation phase vs SNR (dB).

• Cosine decay with α0 = 0.01 and β0 = 65.
• Inverse linear decay with α = 0.01 and β0 = 9/64.
• Exponential decay with α = 0.1 and β0 = 5/64.
In figure 1 the validation MSE is shown for each of the

nine combinations. It can be inferred that the batch LMS with
the cosine decay has clearly the lowest one, followed closely
by the sign LMS with cosine decay and the batch LMS with
inverse linear decay. This can be attributed to the way both
variants handle the approximation of the stochastic expected
value of the error between the desired and the actual system
response. The effect of SNR is also visible, as lower SNR
values create a very strong trend for MSE values to increase.

In figure 2 is depicted the total number of epochs required
for each combination. An epoch is defined as the number of
iterations necessary to drive the model with every training pair,
thus an epoch is a batch of iterations. Notice that batch LMS
does not update model coefficients in every iteration as the
other two schemes do. However, since the window length is
small compared to the total number of training pairs, even
this fractional update suffices to give batch LMS a very good
performance in terms of epochs as well. In any case, sign LMS
is the clear winner concerning the number of epochs, since
two of its combinations consistently need the lowest number
of epochs. Once again the effect of SNR can be seen, since the
higher the SNR the less epochs are necessary for the training
process to converge.

Figure 3 shows the Frobenius norm of the difference be-
tween two consecutive tensors. This figure has been generated
using only the cosine decay rate for each of the three schemes
and for the best and the worst SNR conditions. The number
of epochs for each combination is repeated for clarity in table
II. Notice that, since differences are shown, the epoch index
starts from two and not from one.

Along a similar line of reasoning, in figure 4 is shown the
sum of the Euclidean norms of the three local gradient vectors
for the same combinations used in the previous figure. The
same observations as with the previous figure can be made,

0 5 10 15 20
5

10

15

20

25

SNR (dB)

Ep
oc

hs

Epochs vs SNR (dB)

lms-exp
lms-lin
lms-cos
sign-exp
sign-lin
sign-cos
batch-exp
batch-lin
batch-cos

Fig. 2. Number of epochs vs SNR (dB).

0 5 10 15 20 25
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Epoch

Fr
ob

en
iu

s
no

rm
 d

iff
er

en
ce

Difference of consecutive Frobenius norm vs epoch

lms,SNR=2
lms, SNR=20
sign, SNR=2
sign, SNR=20
batch, SNR=2
batch, SNR=20

Fig. 3. Frobenius norm vs epoch.

verifying that convergence has been achieved.

VI. CONCLUSIONS AND FUTURE WORK

This conference paper presented a model for certain non-
linear sytems based on a third order tensor as well as an adap-
tive LMS-based training process for computing the coefficients
of this model. Moreover, two variants of the training process,
one based on sign LMS and one on batch LMS are also
proposed. A total of nine combinations of training processes,
three algorithms with three learning rate formulas, have been
used to approximate a given non-linear system. Experiments
indicate that the batch LMS with a window of length five
and the sign LMS when combined with cosine decay yield
the lowest and the second lowest mean square error during
validation, even for relatively low SNR.

Both the LMS-based method and its two variants are based
on an I/O description of the system under study. This implies
that a large number of training pair patterns need to be
provided to them, leading to a downtime which may not be

TABLE II
NUMBER OF EPOCHS FOR EACH COMBINATION (COSINE DECAY RATE).

Combination LMS (SNR:2dB) LMS (SNR:20dB) Sign (SNR:2dB) Sign (SNR:20dB) Batch (SNR:2dB) Batch (SNR:20dB)
Epochs 21 9 20 6 19 7

0 5 10 15 20 25
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

Epoch

Su
m

 o
f E

uc
lid

ea
n

no
rm

s
of

 lo
ca

l g
ra

di
en

ts

Sum of Euclidean norms of local gradients vs epoch

lms,SNR=2
lms, SNR=20
sign, SNR=2
sign, SNR=20
batch, SNR=2
batch, SNR=20

Fig. 4. Sum of Euclidean norms of local gradients vs epoch.

acceptable. However, this can be remedied by using online
training. Moreover, the extension of the proposed model to
longer input vectors so that more interactions can be repre-
sented or even the addition of more dimensions to the model
are points worth investigating.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
and Greek national funds through the Competitiveness, En-
trepreneurship and Innovation Operational Programme, under
the Call “Research - Create - Innovate”, project title: “De-
velopment of technologies and methods for cultural inventory
data interoperability”, project code: T1EDK-01728, MIS code:
5030954.

Moreover, this conference paper is part of Project 451, a
long term research initiative for developing novel, scalable,
numerically stable, and interpretable tensor analytics.

Finally, the authors gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan Xp GPU
used for this research.

REFERENCES

[1] T. B. Schön, A. Wills, and B. Ninness, “System identification of
nonlinear state-space models,” Automatica, vol. 47, no. 1, pp. 39–49,
2011.

[2] A. Juditsky, H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung,
J. Sjöberg, and Q. Zhang, “Nonlinear black-box models in system
identification: Mathematical foundations,” Automatica, vol. 31, no. 12,
pp. 1725–1750, 1995.

[3] T. Koh and E. Powers, “Second-order Volterra filtering and its appli-
cation to nonlinear system identification,” TASSP, vol. 33, no. 6, pp.
1445–1455, 1985.

[4] S. Chen and S. Billings, “Neural networks for nonlinear dynamic system
modelling and identification,” International journal of control, vol. 56,
no. 2, pp. 319–346, 1992.

[5] R. Babuška and H. Verbruggen, “Neuro-fuzzy methods for nonlinear
system identification,” Annual reviews in control, vol. 27, no. 1, pp.
73–85, 2003.

[6] S. A. Billings and H.-L. Wei, “A new class of wavelet networks for
nonlinear system identification,” TNN, vol. 16, no. 4, pp. 862–874, 2005.

[7] T. Ogunfunmi, Adaptive nonlinear system identification: The Volterra
and Wiener model approaches. Springer science and business media,
2007.

[8] I. W. Hunter and M. J. Korenberg, “The identification of nonlinear bio-
logical systems: Wiener and Hammerstein cascade models,” Biological
cybernetics, vol. 55, no. 2-3, pp. 135–144, 1986.

[9] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[10] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM Journal on Scientific Computing,
vol. 30, no. 1, pp. 205–231, 2007.

[11] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction
using matrix and tensor factorizations,” TKDD, vol. 5, no. 2, p. 10, 2011.

[12] G. Drakopoulos, X. Liapakis, G. Tzimas, and P. Mylonas, “A graph
resilience metric based on paths: Higher order analytics with GPU,” in
ICTAI. IEEE, November 2018.

[13] G. Drakopoulos, “Tensor fusion of social structural and functional
analytics over Neo4j,” in IISA. IEEE, July 2016.

[14] G. Drakopoulos, A. Kanavos, P. Mylonas, and S. Sioutas, “Defining and
evaluating Twitter influence metrics: A higher order approach in Neo4j,”
SNAM, vol. 71, no. 1, 2017.

[15] G. Drakopoulos, A. Kanavos, D. Tsolis, P. Mylonas, and S. Sioutas,
“Towards a framework for tensor ontologies over Neo4j: Representations
and operations,” in IISA, August 2017.

[16] G. Drakopoulos, F. Stathopoulou, A. Kanavos, M. Paraskevas, G. Tzi-
mas, P. Mylonas, and L. Iliadis, “A genetic algorithm for spatiosocial
tensor clustering: Exploiting TensorFlow potential,” Evolving Systems,
January 2019.

[17] L. De Lathauwer and J. Vandewalle, “Dimensionality reduction in
higher-order signal processing and rank-(r1, r2, . . . , rn) reduction in
multilinear algebra,” LAA, vol. 391, pp. 31–55, 2004.

[18] D. Nion and N. D. Sidiropoulos, “Tensor algebra and multidimensional
harmonic retrieval in signal processing for MIMO radar,” IEEE Trans-
actions on Signal Processing, vol. 58, no. 11, pp. 5693–5705, 2010.

[19] J.-F. Cardoso, “Eigen-structure of the fourth-order cumulant tensor with
application to the blind source separation problem,” in ICASSP-90.
IEEE, 1990, pp. 2655–2658.

[20] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in OSDI, vol. 16, 2016, pp. 265–283.

[21] M. Abadi, “TensorFlow: Learning functions at scale,” ACM SIGPLAN
Notices, vol. 51, no. 9, pp. 1–1, 2016.

[22] S. Kontopoulos and G. Drakopoulos, “A space efficient scheme for graph
representation,” in ICTAI. IEEE, November 2014, pp. 299–303.

[23] D. G. Matthews et al., “GPflow: A Gaussian process library using
TensorFlow,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 1299–1304, 2017.

[24] K. Wongsuphasawat et al., “Visualizing dataflow graphs of deep learning
models in TensorFlow,” Transactions on visualization and computer
graphics, vol. 24, no. 1, pp. 1–12, 2018.

[25] S. Haykin, Neural networks. Prentice-Hall New York, 1994, vol. 2.
[26] C. M. Bishop, Pattern recognition and machine learning. Springer,

2006.
[27] B. Widrow, J. McCool, M. G. Larimore, and C. R. Johnson, “Stationary

and nonstationary learning characteristics of the LMS adaptive filter,”
Aspects of signal processing, pp. 355–393, 1977.

[28] E. Ferrara, “Fast implementations of LMS adaptive filters,” TASSP,
vol. 28, no. 4, pp. 474–475, 1980.

[29] S. C. Douglas and W. Pan, “Exact expectation analysis of the LMS
adaptive filter,” TSP, vol. 43, no. 12, pp. 2863–2871, 1995.

