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Abstract: In this paper we present an approach towards real-time hand gesture recognition using the
Kinect sensor, investigating several machine learning techniques. We propose a novel approach for
feature extraction, using measurements on joints of the extracted skeletons. The proposed features extract
angles and displacements of skeleton joints, as the latter move into a 3D space. We define a set of gestures
and construct a real-life data set. We train gesture classifiers under the assumptions that they shall be
applied and evaluated to both known and unknown users. Experimental results with 11 classification
approaches prove the effectiveness and the potential of our approach both with the proposed dataset and
also compared to state-of-the-art research works.

Keywords: gesture recognition; Kinect; skeleton joints; machine learning

1. Introduction

Both poses and gestures may be used for communication, since they are able to convey some kind of
meaning. Pose and gesture recognition aim to recognizing such meaningful expressions performed by
a human. These expressions typically involve the motion of hands, arms, head, facial expressions and
in some cases the whole body. Their recognition often aims to facilitate the interfacing between humans
and computers. Current applications range from sign language, to gaming, medical applications and
even virtual reality. Typically, the user stands in front of a camera and some parts of his/her body are
detected and tracked. Features are then extracted and compared to models so as to be translated into some
predefined gestures.

In this work we propose an arm gesture recognition approach which introduces a novel set of features.
More specifically we use the Kinect sensor and its software development kit (SDK) to extract and track the
skeletal joints. Using a subset of these joints, meaningful for the set of gestures that we aim to recognize,
we extract their 3D coordinates. Then we calculate a set of statistical features on the aforementioned set of
coordinates and for the whole set of video frames that depict the specific gesture. In the following, the term
“gesture” shall refer to arm gestures that may involve hands, wrists and elbows. We investigate the use
of some well-known machine learning algorithms on these features. Moreover, we adopt two real-life
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scenarios. We consider the cases where such an approach may be used by (a) a limited set of known users
and (b) an unlimited set of both known and unknown users. The former scenario corresponds to the case
where all users of the system are a-priori known; i.e., the system shall be designed to work only on them.
The latter scenario is the case where the system is pre-trained with a set of available users but also needs
to work with previously unseen ones. To our belief, both cases may be involved in real-life scenarios,
since they may fit real-life user requirements, thus both need to be addressed and evaluated.

We also present a novel dataset of gestures, used for the evaluation of the aforementioned algorithms
and scenarios. This set of features has been defined in order to be semantically meaningful, to reflect small
gesture changes to small feature changes and to require constant time (in terms of complexity). Moreover,
we investigate whether the manual filtering of a dataset from “mischievous” users that fail (intentionally
or not) to provide reliable gestures leads to significant improvement of the results while is worth the effort
spent. Since our ultimate goal is to extract features and classify the corresponding gestures in real-time,
using trained models, we perform an evaluation of our approach in common hardware architectures and
more specifically in terms of the time required for the recognition of a gesture. We discuss which algorithms
are suitable for adoption into real-life, real-time applications and the trade-offs between precision and
responsiveness. Finally, we perform extensive comparisons with the state-of-the-art and discuss research
works that share similar goals to those of this paper. We should clarify that our approach does not perform
any temporal segmentation to detect the beginning and the ending of a possible gesture; instead we
consider this problem as solved, i.e., we use pre-segmented videos and only aim to recognize gestures per
segment. Note that each segment may contain at most a sole gesture.

The rest of this paper is organized as follows: Section 2 presents related research works in the area
of gesture recognition using skeletal data. Section 3 presents the Kinect SDK and the proposed feature
extraction approach. The dataset and the experimental results are presented in Section 4, where we also
include discussion and comparisons to the state-of-the-art. Finally, in Section 5, we draw our conclusions
and discuss plans for future work.

2. Related Work

During the last few years, many research efforts have focused on the problem of gesture recognition.
In this section we present works that attempt to recognize similar gestures, to those that are recognized in
this work and focus on those that include (but are not limited to) arm gestures.

Traditional machine learning approaches such as artificial neural networks (ANN), support vector
machines (SVM), decision trees (DT) or K-nearest neighbor classifiers (KNN) have been widely used.
Bhattacharya et al. [1] used an exemplar gesture to mark the beginning of the recognition process and
avoid temporal segmentation. Their approach used SVMs and DTs on 3D skeletal joint coordinates.
Lai et al. [2] selected the spine joint as reference, computed distances from elbows and hands and used
them as features. For recognizing gestures, they used KNN classifier. Mangera et al. [3] used 3D joints
calculated on extracted key-frames of sequences and cascades of ANNs to firstly classify the gesture side
(left/right) and then recognize gestures, accordingly. Miranda et al. [4] used SVMs to recognize distinctive
key poses. They modelled gestures as sequences of key poses and used decision forests to recognize them.
Ting et al. [5] used 4D quaternions to describe joints and SVMs to recognize gestures.

Since in general, gestures are temporal sequences that vary in speed (e.g., when performed by different
users), the dynamic time warping algorithm (DTW) [6] has been exploited in many works, as it is able to
tackle precisely this problem. Celebi et al. [7] used dynamic time warping (DTW) on 3D points normalized
per person. Reyes et al. [8] proposed a feature weighted variation of DTW on 3D joints, using the neck as a
reference point. Ribó et al. [9] presented a similar approach which relies on DTW, KNN classifiers and
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some heuristics to improve performance. Ibañez et al. [10] used 3D joints and compared DTW with an
HMM, acquiring the same precision.

Hidden Markov models (HMM) and Gaussian Mixture Models (GMM) have also been frequently
used, due to their ability to solve temporal pattern recognition problems. Anuj et al. [11] reduced the
problem of 3D tracking to 2D, by projecting the tracked joints to a coordinate system attached to the
user and aligned to his/her orientation. Their rule-based approach was based on HMM and adaptive
thresholds. The technique proposed by Gonzalez–Sanchez and Puig [12] relied on background subtraction
and head/hands detection. The 3D positions of hands and head were used with a GHMM. Gu et al. [13]
used a HMM on clustered sets of 3D joints. Tran and Trivedi [14] detected head and hands and then
trained GMMs by imposing kinematic constraints in the process. Finally, Yin and Davins [15] tracked
hands and derived feature vectors that represented the hand shape based on HOG and motion features.
Then they used a hierarchical model of HMMs for real-time recognition.

In Section 5 we summarize the aforementioned approaches, emphasizing on features used, learning
algorithm(s) applied, gestures tackled and accuracy achieved on the data set adopted at each. As it will
be seen, within this work we evaluate traditional machine learning algorithms, such as SVMs, KNN,
HMMs, GMMs and tree models. However, we should herein mention that during the last few years,
research efforts have shifted towards deep-learning based approaches. The latter are able to learn features,
instead of computing them using an algorithm. Lin et al. [16] proposed the use of deep spatio–temporal
features that are extracted by 3D convolutional neural networks (CNNs) and a model that was built with
skeleton information and was based on a long short term memory network (LSTM). Wang and Wang [17]
used two-stream recurrent neural networks, in order to model the temporal dynamics and the spatial
configurations of actions. Mathe et al. [18] used a CNN on raw skeletal data, while Zhang et al. [19]
used 3D CNNs and convolutional LSTMs. However, as we shall later discuss in Section 5, deep learning
approaches typically lead to more complex models that require more computational resources when
compared to the simpler models that result from feature-based approaches such as the one proposed in
this work.

3. Arm Gesture Recognition

It is well-known that both poses and gestures may be used to communicate meaning. We may define a
pose as the temporary suspension of movement, where body joints assume a distinct configuration in space.
On the other hand, a gesture may have a more complex definition. According to the Merriam–Webster
dictionary (https://www.merriam-webster.com/dictionary/gesture), a gesture may be either defined as
“a movement usually of the body or limbs that expresses or emphasizes an idea, sentiment, or attitude,”
or “the use of motions of the limbs or body as a means of expression.” Within the scientific literature,
there exist several definitions of a gesture. In the fields of computer vision and pattern recognition,
a generic definition of a gesture by Mitra and Acharya [20] has been formed as: “Gestures are expressive,
meaningful body motions involving physical movements of the fingers, hands, arms, head, face, or body
with the intent of: (1) conveying meaningful information or (2) interacting with the environment.” In the
context of this work we focus on a subset of gestures, which may be referred to as “arm gestures” [21].
More specifically, we may define an arm gesture as the transfer of a (sub)set of arm joints (i.e., hands,
wrists, elbows) from point A to point B, using a vaguely predefined trajectory.

3.1. The Microsoft Kinect SDK

In order to extract the skeletal data, we use the Microsoft Kinect [22] camera, which provides real time
RGB, depth and skeletal tracking information and is based on the work of Shotton et al. [23], providing a
robust algorithm for every person, in any background, without the need of a calibration step. A human

https://www.merriam-webster.com/dictionary/gesture
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is described by a structured graph of joints, representing its main body parts (e.g., arms, legs, head,
shoulders etc.). For each joint, the corresponding 3D coordinates are extracted in real time. In Figure 1 we
depict the human skeleton joints, as they are extracted with the use of the Kinect SDK. We should note that
in this work we are only interested in the left and right elbows, hands, and wrists. As we have already
discussed, these data are comprised of the id and the 3D coordinates of each joint. We should note that
joints are organized in a hierarchical structure, where a parent–child relationship is implied; e.g., the root
is the hip center, its children are the spine, the left heap and the right heap and so on.

Shoulder 
Left

Hip Center

Elbow Left

Wrist Left

Hip Left

Hand Left

Knee Left

Knee Right

Shoulder 
Right

Elbow Right

Wrist Right

Hand Right

Hip Right

Shoulder 
Center Head

Ankle Right

Foot Right
Ankle Right Foot Left

(a)

Elbow Left 
(Jp)

Wrist Left 
(Jc)
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point
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a
b

c

d

(b)

Figure 1. (a) Extracted human skeleton 3D joints using the Kinect software development kit (SDK).
(b) Visual representation of a given node J, its parent Jp and its child Jc; a, b, c, d, used in Equations (2)–(6)

and the reference point (vJp

x,i, 0, 0).

3.2. Gesture Recognition

The proposed set of features, is partially inspired to those proposed by Sheng [24], whose work
extended the one of Rubine [25] from the 2D to the 3D space. More specifically, let J denote a given joint.
Then, by Jc and Jp we denote its child and parent joints, accordingly. Also let Fi, i = 1, 2, . . . , N denote a

given video frame and v(J)
i =

(
v(J)

x,i , v(J)
y,i , v(J)

z,i

)
a vector corresponding to the 3D coordinates of J at frame

Fi. Also, let V (J ) be the set of all v(J)
i . By B(V (J )) we denote the 3D bounding box of V (J ), by aB(V (J ))

and bB(V (J )) the two different lengths of its sides. The extracted features are depicted in Table 1. Note that
each feature is calculated for a given joint J and may involve a different subset of frames. The notation is
summarized in Table 2.

More specifically, we extracted the spatial angle between the first two frames (i.e., F1 and F2), the last
two frames (i.e., FN−1 and FN) and the first and the last frame (i.e., F1 and FN), in all cases using the inner
product of the corresponding vectors. Moreover, we extracted the total and the squared total vector angles,
between F1 and FN using the inner product of the corresponding vectors, i.e., v(J)

1 and v(J)
N . The total

vector displacement is the magnitude of the difference of the vectors corresponding to the initial and the
final positions of J, while the total displacement is the sum of the magnitudes of all differences between
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the positions of J within any two given consecutive frames. Similarly, the maximum displacement is the
magnitude of the maximum difference between the positions of J within any two given frames. Finally,
we built a 3D bounding box for the set of all positions of the joint within all frames and estimate accordingly
the length and the angle of its diagonal. Note that from the skeletal data we used only a subset of joints
(i.e., their 3D coordinates). Also, note that, J ∈ { ElbowLeft, ElbowRight, HandLeft, HandRight, WristLeft,
WristRight}. Features marked with ∗, are calculated using only HandLeft and/or HandRight.

Table 1. Proposed features, extracted from the skeletal joints (features marked with ∗, are calculated using
only HandLeft and/or HandRight).

Feature Name Frames Involved Equation

Spatial angle F2, F1 arccos
v(J)

2 · v
(J)
1∥∥∥v(J)

2

∥∥∥ · ∥∥∥v(J)
1

∥∥∥
Spatial angle FN , FN−1 arccos

v(J)
N · v

(J)
N−1∥∥∥v(J)

N

∥∥∥ · ∥∥∥v(J)
N−1

∥∥∥
Spatial angle FN , F1 arccos

v(J)
N · v

(J)
1∥∥∥v(J)

N

∥∥∥ · ∥∥∥v(J)
1

∥∥∥
Total vector angle F1, . . . , FN

N

∑
i=1

arccos

 v(J)
i · v

(J)
i−1∥∥∥v(J)

i

∥∥∥ ∥∥∥v(J)
i−1

∥∥∥


Squared total vector angle F1, . . . , FN

n

∑
i=1

arccos

 v(J)
i · v

(J)
i−1∥∥∥v(J)

i

∥∥∥ ∥∥∥v(J)
i−1

∥∥∥
2

Total vector displacement FN , F1

∥∥∥v(J)
N − v(J)

1

∥∥∥
Total displacement F1, . . . , FN

n

∑
i=1

∥∥∥v(J)
i − v(J)

i−1

∥∥∥
Maximum displacement F1, . . . , FN max

i=2,...,N

(∥∥∥v(J)
i − v(J)

i−1

∥∥∥)
Bounding box diagonal length ∗ F1, . . . , FN

√
a2

B(V (J ))
+ b2

B(V (J ))

Bounding box angle ∗ F1, . . . , FN arctan
bB(V (J ))

aB(V (J ))

Table 2. Symbols used throughout this paper and their description.

Symbol Definition

J a given joint
Jc, Jp child/parent joint of J, respectively

Fi a given video frame, i = 1, . . . , N
vJ

i vector of 3D coordinates of J at Fi

v(J)
x,i , v(J)

y,i , v(J)
z,i the 3D coordinates of vJ

i
J the set if all joints
VJ the set of all vectors vJ

i , J ∈ J , i = 1, 2, . . . , N
B(•) a 3D bounding box of a set of vectors

aB(•), bB(•) the lengths of the sides of B(•)
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Also between two parent and child joints i.e., {Jp, J}, (or equivalently {J, Jc}) we calculate the initial
and final (i.e., at F1 and FN , respectively), mean and maximum angle (i.e., for F1, . . . , FN). The angle θpc

used in these calculations is

θpc = cos−1

(
a2

pc + b2
pc − c2

pc

2apcbpc

)
, (1)

where
a2

pc =
(

v(J)
x − v(Jc)

x

)2
+
(

v(J)
y − v(Jc)

y

)2
, (2)

bpc = v(J)
x and (3)

c2
pc =

(
v
(Jp)
x

)2
+
(

v(J)
y − v

(Jp)
y

)2
. (4)

Note that for the formulation of the triangle we use a reference point with coordinates (v
Jp
x,i, 0, 0)

(any given point may be used). A visual representation of this triangle is illustrated in Figure 1b, where
apc, bpc and cpc have been drawn. Finally, between HandLeft (HL) and HandRight (HR) we extract the max

dmax = max
i,j

{
d
(

vHR
i , vHL

j

)}
, (5)

and the mean distance,

dmean =
1

F(J) ∑
i,j

d
(

vHR
i , vHL

j

)
, (6)

within the gesture. By d we denote the Euclidean distance and F(J) is the number of frames for each
gesture, which is also used as a feature. The distance d between HL and HR is illustrated in Figure 1b.

According to [24] the extracted features should be defined so as to satisfy the following criteria:
(a) they should require constant time; (b) small gesture changes should be reflected to small changes to
the extracted features; and (c) features should be semantically meaningful. As for (a), the aforementioned
extracted features allow for very fast feature extraction, because the calculations require constant time
(i.e., O(1)) updates per frame. Criteria (b) and (c) are met because we chose to use angle and displacement
dependent features, able to discriminate between slight joint movements. In addition they comprise a
good semantic representation of the way joints move to perform a gesture i.e., as a set of interconnected,
yet discrete points.

4. Experimental Results

4.1. Dataset

For the sake of the evaluation of the proposed method we constructed a real-life dataset of 10 users
(seven male and three female), all between 22 and 36 years old of several heights ranging from 155 cm to
190 cm. We defined a set of “swipes” (swipe up/down/in/out) for both hands, thus resulting to eight
different arm gestures. In the “swipe-up” gesture, the user starts with both arms close to the hips. Then,
one of the arms is moving vertically, with the palm facing up, until it reaches the head and then returns
back. In the “swipe-in” gesture, the user starts with both arms closed to the hips. Then one of the arms is
moving vertically, with the palm facing up until it reaches approx. the middle of the shoulder center and
the hip center. Then, it turns towards the direction of the other hand and performs a horizontal movement,
with the palm facing it, until it is aligned with the imaginary line joining the shoulder center and the hip
center. Then, with a diagonal movement, it returns to its original position. In Figure 2 we illustrate a
sequence of RGB and skeletal frames for “swipe-in” and “swipe-up” gestures, performed by the same user,
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with his right hand. “swipe-out” and “swipe-down” and also left hand gestures may be easily conceived,
since they are symmetric to the aforementioned. Note that the orientation of the palm does not matter,
however, users were instructed to perform the aforementioned changes, so that the produced gestures
would be more “natural.”

(a)

(b)

Figure 2. Aligned RGB and skeletal images of (a) swipe-up and (b) swipe-in gestures, performed by the
same user.

Users were sitting in front of the Kinect; their distance was approx. 2 m to ensure that the skeleton
would be extracted. From each sequence corresponding to a gesture we extracted the RGB-D raw data and
also the skeletal data. Note that RGB-D data have been used only for visualization purposes, since the
proposed approach relied solely on the skeletal data. We first demonstrated these gestures to the users so
that they would become familiar before the gesture collection process. Within this process, we asked all
users to perform each gesture at least 10 times and then we manually cleaned the data set by letting users to
decide to “drop” some of their performed gestures, when they felt that it was wrongly performed. One of
the users was “mischievous”; he was asked to introduce errors in the dataset generation process, since we
wanted to observe the effect of those errors. More than 50% of his gestures were intentionally performed
far from the correct way that he was instructed (e.g., incomplete, very fast/slow, wrongly performed etc.).
This process resulted to a total of 820 gestures with approx 7.5% being a result of the mischievous behaviour
of the aforementioned user. Note that none of the users meant to harm the experiment, apart from the
mischievous one, who was explicitly instruct to behave this way.

To deal with “noisy patterns”, before/after each gesture and to avoid a costly temporal segmentation
step, users were equipped with a toggle button, which when pressed initialized/ended the recording of a
gesture, accordingly. We let each user familiarize with this procedure, by testing it for 5–10 times. This way
we were able to isolate gestures from other movements. For each gesture, we recorded the relevant skeletal
data and extracted the sets of features described in Section 3.2 for all joints involved in these gestures, i.e.,
elbows, wrists and hands.

4.2. Experiments

We have experimented with a set of widely used classifiers, deriving from the Scikit-learn toolbox [26]:
(a) support vector machines [27], both linear (LSVM) and non-linear (RBFSVM, i.e., with the radial basis
function kernel); (b) k-nearest neighbor (KNN) classification [28]; (c) naïve Bayes (NB) [29]; (d) quadratic
discriminant analysis (QDA) [30]; (e) linear discriminant analysis (LDA) [30]; (f) decision trees (DT) [31];
(g) random forest (RF) classifiers [32]; (h) extremely randomized trees (ET) [33] (which are ensembles that
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are trained using a random threshold for each feature and while tend to produce more complex trees,
they require smaller training time); (i) AdaBoost [34] with DT (ABDT) and ET (ABDT) classifiers.

For the experimental evaluation of the proposed methodology, we performed two series of extensive
experiments. The goal of the first experiment was to investigate the performance for a known set of
users. In other words, we applied the learning approach to a “closed” set of users, thus we were able to
use training and testing sample gestures from all users (of course a sample gesture may not appear in
both sets). The goal of the second experiment was to investigate the performance for an unknown set of
users, i.e., training and testing sets were comprised from sample gestures of different users. This way, we
aimed to study the generalization of our approach. The experiments were performed using the scikit-learn
API [26].

Within each experiment, classifiers were trained using an optimal parameter value set, which was
determined using cross-validation. As for the first experiment, we evaluated the aforementioned algorithms
with a stratified K-fold cross validation procedure (K ∈ {3, 5, 7, 10, 13, 15, 17, 20}). The corresponding results
are depicted in Figure 3, while the optimal parameter sets in Table 3. We may observe that best performance
was achieved with the ET classifier followed by the RF. This indicates that an ensemble Tree Bagging
approach is optimal for separating samples in the feature space constructed by our features. Nevertheless
the rest of the classifiers still give adequate performance, which gives us the flexibility of tradeoffs
(e.g., classification accuracy for computational complexity).

For our second experiment, we selected the most accurate approach of the first one, i.e., the ET.
We experimented with training sets consisting of 1 to 9 users, while the samples of the rest were kept for
the construction of the test set. Since we did not have a good heuristic to split the users in train and test
sets, we considered every possible combination and calculated the mean accuracy over every combination
with a given number of users in the training set. This experiment has two goals: (a) to estimate the
generalization capability of our approach to unseen users; and (b) to investigate which is the minimum
number of users so as to get usable results in real-life applications.

We begun this series of experiments with the leave one (user) out case. For this experiment we
retained the samples of a user for the test set while training the algorithm on the samples of the rest of the
users. In Table 4 we see the F1 score of the gesture classification for every unknown user. We list the F1

score for each gesture in detail and the average over the gestures.

Figure 3. K-fold cross validation results for all machine learning approach and for several values of K.
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Table 3. Optimal classifier parameters (α: learning rate; n: number of neighbors; e: number of estimators;
s: search algorithm; d: max depth; m: metric between point p and q; f : max number of features; r:
regularization parameter).

Classifier Parameters

ABDT e = 103, α = 621.6
ABET e = 82, α = 241.6

DT d = 48, f = 49
ET d = 17, f = 70, e = 70

KNN n = 22, s = kd_tree, m = ∑n
i=1(|pi − qi|)

LSVM C = 0.0091
QDA r = 0.88889

RBFSVM C = 44.445, γ = 0.0001
RF d = 27, f = 20, e = 75

Table 4. F1 score for each gesture separately and mean F1 score for all gestures for leave one (user)
out experiment.

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10

LH-SwipeDown 0.76 0.83 1.00 0.82 1.00 0.80 1.00 1.00 1.00 0.96
LH-SwipeIn 0.38 0.92 0.84 1.00 1.00 0.92 1.00 1.00 1.00 1.00

LH-SwipeOut 0.61 0.93 0.86 1.00 1.00 0.89 1.00 1.00 0.97 1.00
LH-SwipeUp 0.69 0.90 1.00 0.84 1.00 0.83 1.00 1.00 0.97 0.96

RH-SwipeDown 0.78 1.00 0.95 - 1.00 1.00 0.92 1.00 0.87 1.00
RH-SwipeIn 0.64 1.00 0.67 - 1.00 1.00 1.00 1.00 0.89 0.96

RH-SwipeOut 0.61 1.00 0.80 - 1.00 1.00 0.95 1.00 1.00 0.95
RH-SwipeUp 0.40 1.00 0.95 - 1.00 1.00 1.00 0.96 1.00

Average 0.62 0.94 0.88 0.92 1.00 0.92 0.99 1.00 0.96 0.97

For the next experiment we calculated the mean classification accuracy over the number of users
in the training set. In Table 4 we may observe that as expected, the mischievous user had considerably
lower classification scores, and we repeated the experiment with this user completely filtered out from
the dataset. The results of both experiments are compared in Figure 4. As expected the overall accuracy
of the system without the mischievous user was considerably higher, but as we included more users the
difference between the performances of the aforementioned case, it decreased. It is important to note that
we were able to train a classifier with adequate performance using only 3–4 users. In Figures 5 and 6 we
plot the mean classification accuracy for each gesture separately as a function of the number of users used
for training with and without the mischievous user, respectively. This information can be used to design
more effectively a natural user interface (NUI) e.g., by assigning gestures with better recognition rate to
most common operations.

Finally, since the ultimate goal of the presented approach was to recognize gestures in real time,
we performed a series of experiments with different architectures, considering two cases where the
classifier may run (a) on powerful desktop processor and (b) on a system with limited resources, like e.g.,
a Raspberry Pi. We constructed a benchmark where 80% of the dataset is used as training data and 20%
as test data. We performed classification for every sample in the test data 1000 times and calculated the
average time each classifier needed for a sample. Results are illustrated in Figure 7. We may observe that
the most accurate classifiers, i.e., ET and RF, were considerably slower than the rest with approx. 100 ms
classification time on a desktop system and 300 ms on a Raspberry Pi 2. However, we believe that although



Algorithms 2019, 12, 108 10 of 17

these classification times are slower that the rest of the algorithms, the ET classifier can still be used in a
real time scenario without having an impact on the user experience.

Figure 4. Mean accuracy vs. number of users in training set, with/without the mischievous user.

Figure 5. Mean accuracy per gesture vs. number of users in training set, with the mischievous user.
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Figure 6. Mean accuracy per gesture vs. number of users in training set, without the mischievous user.

Figure 7. Comparison of average time required for the classification of a sample in several architectures.

4.3. Comparisons to the State-of-the-Art

In order to assess the efficiency of the proposed method, we performed a comparison using the MSR
action dataset of [35]. This dataset consists of 20 gestures, performed by 10 subjects, each performing
each action 2–3 times and captured with a depth sensor similar to the Kinect. We compare against the
work of Li et al. [35], which are the authors of the dataset. We also compare against the aforementioned
work of Miranda et al. [4], which only reported results on Test III. Results are depicted in Table 5. Based
on the proposed evaluation procedure, three tests are performed, namely tests I, II and III, on three
different datasets, namely AS1, AS2 and AS3. In tests I and II samples from all subjects are used both
in training and testing (1/3–2/3 and 1/2–1/2 splits, respectively), while in test III half subjects are used
for training and the remaining for testing. We may observe that our method performs very well using
the AS3 dataset, has satisfactory results using AS1 while its performance drops when using AS2. This
is due to the complexity of gestures involved in each dataset. AS3 is composed of simpler gestures that
are closer to the ones we use in our dataset, while AS2 consists of more complex and nuanced gestures
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that cannot be consistently and accurately recognized with only the use of aggregate features. Moreover,
AS1 lies in the middle. We must also note that our method performs well on Test III, which evaluates
performance on unseen users, which is a major issue when designing a NUI. Experiments indicate that our
method outperforms the one of Li et al. [35] in both AS1 and AS3 and on average. However, the method of
Li et al. achieved better results in tests I and II, mostly due the poorest performance of our approach in
AS2. Of course, since in test III evaluation considers only unseen subjects, we feel that the superiority of
our method therein compared to both [35] and also [4] is the most remarkable result of the evaluation with
the MSR dataset.

We also performed a comparison to the publicly available dataset of [7], which has also been used
for the evaluation of [3,9]. This dataset contains gestures similar to those of our dataset, which are also a
lot simpler when compared to those of the MSR dataset. Corresponding results are depicted in Table 6.
As it may be seen, our approach showed excellent performance, by recognizing all examples. Finally in
Table 7 we compare our system to the results of [36]. This dataset consisted of gestures similar to ours and
it was split in three subsets: RotationDB, RelaxedDB and Rotation/RelaxedDB. For the first subset, users
inserted rotational distortion with their positioning in respect to the camera. For the second subset, users
performed the gestures in a more relaxed way inserting movement of more joints than a gesture needs
(for example scratching ones head while performing a swipe). The third subset contained both types of
distortion. We may observe that our system outperforms the state-of-the-art approach of [36] for both
types of injected distortions. Finally, we performed a comparison using our own dataset and the deep
learning methodology of Mathe et al. [18] that uses a Convolutional Neural Network (CNN). Results for
this case are provided in Table 8. As it may be seen, the proposed feature-based approach showed accuracy
which was slightly increased compared to the CNN. Note, that in every case, the evaluation protocol of
the dataset used was followed, so as to ensure fair comparisons among research works.

Table 5. Comparisons to state-of-the-art research works using the MSR action dataset of [35]. Results
denote accuracy (%).

Test I Test II Test III Avg.

[35] Our [35] Our [35] Our [4] [35] Our

AS1 89.50 85.36 93.30 91.39 72.90 89.28 93.50 85.23 88.68
AS2 89.00 72.90 92.90 84.40 71.90 73.20 52.00 84.60 76.84
AS3 96.30 93.69 96.30 98.81 79.20 97.47 95.40 90.60 96.66
Avg. 91.60 83.98 94.17 91.53 74.67 86.65 80.30 84.24 87.39

Table 6. Comparison to state-of-the-art research works using the dataset of [7].

[7] [3] [9] Our

Acc. (%) 96.7 95.6 89.4 100.0

Table 7. Comparison to the state-of-the-art research work of [36].

RotationDB RelaxedDB Rotation/RelaxedDB

[36] Our [36] Our [36] Our

Acc. (%) n/a 98.01 97.13 98.74 96.64 97.98
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Table 8. Comparison to state-of-the-art research work of [18], using our own dataset.

[18] Our

Acc. (%) 91.0 96.0

5. Conclusions and Discussion

In this paper we have presented an approach that aims to recognize a set of simple gestures in
real-time. We proposed a novel set of features extracted from the 3D positions of skeletal joints and
evaluated them using several well-known machine learning approaches. We also introduced a dataset
comprising of RGB, depth and skeletal data for several gestures.

Our approach was evaluated based on the assumptions that a gesture-driven NUI may be used by
(a) a limited set of known users, i.e., both training and testing sets will be built using gesture examples
from all users; and (b) unknown (previously unseen) users, i.e., training and testing sets will not have
common users. The experimental results indicated that our approach, when using ET for classification,
was able to achieve more than satisfactory results, outperforming state-of-the-art methods. Moreover,
we investigated the effect of mischievous users, i.e., users which (intentionally or not) fail to successfully
imitate the exemplar gestures. We showed that upon the sanitation of the dataset from such users, we were
able to achieve significant accuracy improvement. Finally, we performed a comparison of prediction times
of trained classifiers under different CPU architectures.

In Table 9 we summarize all related work of Section 2. As it can be observed, the majority of included
research works do not propose a set of features on joints; rather they use joint coordinates and in many
cases heuristics, which limit their capability to expand to other gestures. Also, performed evaluation in
most cases is poor, most times limited to 3–5 subjects. High accuracy rates are achieved using custom and
not publicly available datasets. On the other hand we proposed a scalable approach which uses features,
does not rely on heuristics and is evaluated using a significantly larger set of users.

Future work will focus on expanding the set of gestures, by adding more complex ones and more
samples of the existing ones. We also aim to investigate more machine learning approaches and extend our
data set with more users. We also aim to use the approach in the context of the smart meeting room [37]
developed within the IoT ecosystem of [38]. Therein it may act as an alternative means of controlling
devices in the room, e.g., HVAC, lights, projector etc., and will be transformed into an exposed web service.
Of course, in such a scenario, there will be the need for temporal segmentation or continuous recognition
of performed arm gestures. Such a segmentation may be performed e.g., by finding the statit position of
the actor [39], by applying sliding window volumes comprising of consecutive video frames [40], or even
in a totally unsupervised manner by using clustering and keyframe extraction [41].

We should note that one way to avoid the aforementioned computationally expensive task of temporal
segmentation, the initialization of the gesture recognition may be triggered e.g., with a predefined pose,
which shall also act as a means for the selection of the device to be controlled. We plan to perform both
quantitative and qualitative evaluations, i.e., also assess user experience when using such an approach
within a smart environment. Finally, upon the completion of the aforementioned functionalities we plan an
evaluation by real-life users. Among the issues we plan to investigate is the effectiveness of the proposed
approach with users that cannot successfully perform (some of) the predefined gestures, i.e., people with
limitations, disabilities or diseases such as Parkinson’s.
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Table 9. Reported results of the state-of-the-art (alphabetically). The 2nd column (Approach) summarizes features and learning approach used. In the 3rd column
(Gestures), relevant gestures to those of our work are in bold. The 4th column (Acc.(s.)) presents the best accuracy achieved in the used dataset and the number of
subjects in parentheses.

Ref. Approach Gestures Acc.(s.) Comments/Drawbacks

[11] 2D projected joint trajectories, rules and HMMs Swipe(L,R), Circle, Hand raise, Push 95.4 (5)
heuristic, not scalable rules, different
features for different kinds of moves

[1] 3D joints, rules, SVM/DT Neutral, T-shape, T-shape tilt/pointing(L,R) 95.0 (3) uses an exemplar gesture to avoid segmentation

[7] Norm. 3D joints, Weig. DTW Push Up, Pull Down, Swipe 96.7 (n/a) very limited evaluation

[12] Head/hands detection, GHMM Up/Down/Left/Stretch(L, R, B), Fold(B) 98.0 (n/a) relies on head/hands detection

[13] clustered joints, HMM Come, Go, Sit, Rise, Wave(L) 85.0 (2) very limited evaluation, fails at higher speeds

[10] HMM, DTW Circle, Elongation, Punch, Swim, Swipe(L, R), Smash 96.0 (4) limited evaluation

[2] Differences to reference joint, KNN Swipe(L, R, B), Push(L, R, B), Clapping in/out 97.2 (20) sensitive to temporal misalignments

[3] 3D joints, velocities, ANN Swipe(L,R), Push Up(L,R), Pull Down(L,R), Wave(L,R) 95.6 (n/a) not scalable for gestures that use both hands

[4] Pose sequences, Decision Forests
Open Arms, Turn Next/Prev. Page, Raise/Lower Right Arm,

Good Bye, Jap. Greeting, Put Hands Up Front/Laterally 91.5 (10)
pose modeling requires extra effort, limited to

gestures composed of distinctive key poses

[8] 3D joints, feature weighted DTW Jumping, Bending, Clapping, Greeting, Noting 68.0 (10) detected begin/end of gestures

[9] 3D joints, DTW and KNN Swipe(L, R), Push Up(L, R), Pull Down(L, R), Wave(L, R) 89.4 (n/a)
relies on heuristically

determined parameters

[5] 4D quaternions, SVM Swipe(L, R), Clap, Waving, Draw circle/tick 98.9 (5) limited evaluation

[14] Head/hands detection, kinematic constraints, GMM Punch(L, R), Clap, Wave(L, R), Dumbell Curls(L, R) 93.1 (5) relies on head/hands detection

[15] Motion and HOG features of hands, hierarchical HMMs Swipe(L, R), Circle, Wave, Point, Palm Forward, Grab 66.0 (10)
below average performance

on continuous gestures

our novel set of features, ET Swipe Up/Down/In/Out(L,R) 95.0 (10) scalable, does not use heuristics
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Concluding, we should note that research within the area of gesture recognition has been turned
towards deep learning approaches which make use of raw RGB-D data, e.g., as in the work of
Zhang et al. [19] and sophisticated deep network architectures. However, although such methods are able
to achieve higher accuracy rates, often without the need of hand-crafted features, they typically result to
more sophisticated models that need large amounts of data to train. Also such models may not be able
to run inference in real time using low-end hardware such as a Raspberry Pi, which is often adopted in
several IoT projects. If on the other hand the model runs on a more powerful server the network overhead
of the raw data streams may be a bottleneck. Therefore, we feel that hand-crafted features combined
with traditional machine learning approaches will be still of use within the forthcoming years for data or
computationally constrained applications.
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