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Abstract. In this paper we present an approach for the recognition of
human actions targeting at activities of daily living (ADLs). Skeletal
information is used to create images capturing the motion of joints in
the 3D space. These images are then transformed to the spectral domain
using 4 well-known image transforms. A deep Convolutional Neural Net-
work is trained on those images. Our approach is thoroughly evaluated
using a well-known, publicly available challenging dataset and for a set of
actions that resembles to common ADLs, covering both cross-view and
cross-subject cases.

Keywords: Human action recognition ·
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1 Introduction

Understanding of human actions from video has attracted an increasing interest
during the last few years. This research area lies in the broader field of human-
centered activity recognition and combines ideas and techniques mainly from
the fields of computer vision and pattern recognition. There exist several human
action understanding tasks. Wang et al. [23] proposed a categorization into the
following sub-problems: gesture, action, interaction and group activity recogni-
tion. The performance of a gesture requires a relatively small amount of time,
while the performance of an action requires a significant amount of time and
contrary to a gesture, it typically involves more than one body parts. Moreover,
c© Springer Nature Switzerland AG 2019
J. Macintyre et al. (Eds.): EANN 2019, CCIS 1000, pp. 511–521, 2019.
https://doi.org/10.1007/978-3-030-20257-6_44

fmylonas@ionio.gr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20257-6_44&domain=pdf
https://doi.org/10.1007/978-3-030-20257-6_44


512 A. Papadakis et al.

an interaction involves either a person and an object or two persons. Finally, a
group activity may be defined as any combination of the aforementioned. Open
challenges in the area of human action understanding include the representation,
the analysis and the recognition of the actions [2], while a broad field of applica-
tions such as surveillance, assisted living, human-machine interaction, affective
computing etc. have benefited.

Earlier recognition approaches such as the one of Schuldt et al. [19] were based
on hand-crafted features, used to train traditional machine learning algorithms
such as Support Vector Machines (SVMs). However, as it has been demonstrated,
the accuracy of such approaches is drastically reduced, when the number of the
actions significantly increases. Moreover, they may be unable to provide robust-
ness to viewpoint changes, a case typically encountered in real-life scenarios.
Recent advances in hardware and more particularly in graphics processing units
(GPUs) have enabled fast training of deep neural network architectures [9]. Such
approaches do not strictly require a feature extraction step; instead, features are
“learnt” within the network. Also, their accuracy significantly increases with the
increase of the available training examples.

In this paper, we build on previous works [17,18] and propose the use of
visual representations of human actions, based on well-known 2D image trans-
formations. More specifically, we use the Discrete Fourier Transform (DFT), the
Fast Fourier Transform (FFT), the Discrete Cosine Transform (DCT) and the
Discrete Sine Transform (DST). First, we create raw signal images which capture
the 3D motion of human skeletal joints over space and time. Then, one of the
aforementioned transforms is applied into each of the signal images, resulting to
an “activity” image, which captures the spectral properties of signal images. For
classification, we propose a deep CNN architecture. We evaluate the proposed
approach using the challenging PKU-MMD dataset [15] and present results for
cross-subject and cross-view cases. We demonstrate that the proposed approach
may be used in real-like environments for the recognition of activities of daily
living (ADLs) [12].

The rest of this paper is organized as follows: Sect. 2 presents related research
works in the field of human action recognition, limited to those that are based on
visual representations of 3D skeletal information and CNN. Next, Sect. 3 presents
the proposed methodology, i.e., the 2D representation of a skeleton based on a set
of 3D joints, the construction of image representations capturing skeletal motion
in space and time. Also, the CNN architecture is presented therein. Experiments
are presented in Sect. 4 and are discussed in Sect. 5, where plans for future work
are also included.

2 Related Work

As it has already been mentioned in Sect. 1, when working with deep learning
approaches, a large-scale multi-class dataset may be the key to effectiveness and
robustness. The first publicly available datasets such as the KTH [19], were
limited to a small number of simple actions e.g., walking, running, hand clapping

fmylonas@ionio.gr



Recognizing Human Actions Using 3D Skeletal Information and CNNs 513

etc.. Later, a next series of datasets such as the Hollywood dataset [11] targeted
more realistic human actions e.g., answer phone, get out of car, hand shake etc.,
still being limited to a small number of classes. In less than a decade, more
challenging datasets such as the UCF101 [21] and the HMDB [10] emerged,
containing large numbers of more complex actions, including interactions with
objects such as playing cello, horse riding, swing baseball bat, fencing etc. Recent
large-scale datasets such as PKU-MMD [15] or the NTU [20], are comprised of
large numbers of training video and depth sequences.

According to Wang et al. [23] human action recognition tasks may be divided
into two major categories:

– segmented recognition: the given input video sequence contains only the
action to be recognized. This means that any frame before/after the action,
i.e., not depicting a part of the action, has been removed. In this case, Recur-
rent Neural Networks (RNNs) [5] or CNNs [13] are typically used.

– continuous recognition: the goal is to recognize actions within a given
video; the video may or may not depict a single action. In that case, also
known as “online” recognition, RNNs are typically used.

Note that when a CNN is used and the only available motion features are skeletal
data, an intermediate visual representation of skeletal sequences is required. This
representation should capture both spatial and temporal information regarding
the motion of joints, i.e., in the 3D space over time. This information should
be reflected to its color and/or texture properties. In this section our goal is
to present research works that are based on visual representations of 3D skele-
tal data of human actions and training deep networks, i.e., an intermediate
hand-crafted feature extraction step is not included in the process. Skeletal data
typically consist of a set of skeletal joints moving in 3D space over time, i.e., for
each joint 3 1D signals are generated per action. The extraction of joints from
video requires depth information.

In the work of Du et al. [4], in order to preserve the spatial information
the set of joints is split into five subsets corresponding to arms, legs and the
trunk. Pseudo-colored images are generated by corresponding x, y and z spa-
tial coordinates to R, G and B components, respectively. To preserve temporal
information, spatial representations are chronologically arranged. Wang et al.
[24] proposed a representation of “joint trajectory maps,” wherein the motion
direction is encoded by hue. Maps were constructed by appropriately setting
saturation and brightness so as texture would correspond to motion magnitude;
each was based on the projected trajectory of the skeleton to a Cartesian plane.
Similarly, Hou et al. [6] transformed the extracted skeleton joints into a represen-
tation called “skeleton optical spectra,” so that hue changes would reflect to the
temporal variation of skeletal motion. Li et al. [14] proposed the representation
of “joint distance maps,” and opted for encoding the pair-wise joint distances
in the 3 orthogonal 2D planes and also used a fourth one to encode distances in
the 3D space, while hue was used to encode distance variations. Each map was
separately classified and a late fusion scheme was adopted. In an effort for invari-
ance to the initial position and orientation of the skeleton, Liu et al. [16] applied
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transforms to skeletal sequences. The representation of each joint consisted of
its 3D space coordinates, also adding time and joint label to create a 5D space.
Upon projection to a 2D image using two of the aforementioned dimensions, the
remaining three were used as R, G, B values to form pseudo-colored images.
Finally, Ke et al. [8] did not extract 3D coordinates. Instead, they extracted
translation, rotation and scale invariant features by subsets of joints as in [4].
From each, they extracted cosine distances and normalized magnitudes from
vector representations generated from pairwise relative positions between joints.
These representations were concatenated to form a 2D representation.

3 Human Action Recognition

3.1 Skeletal Information

The proposed approach requires as input 3D trajectories of skeletal joints (i.e.,
x, y and z coordinates for each) during an action. We work using data that
have been captured with the Microsoft Kinect v2 sensor. More specifically, data
consist of 25 human joints; up to 6 skeletons are simultaneously extracted in
real time by using the Kinect SDK. A human skeleton corresponds to a graph;
nodes correspond to body parts such as arms, legs, head, neck etc., while edges
follow the body structure. Moreover, a parent-child relationship is implied. For
example, the joint “HEAD” is parent of “NECK,” while the “NECK” is the
parent of “SPINE SHOULDER,” etc. Each joint consists a 3D signal capturing
its 3D position over time. Equivalently, this signal may be seen as 3 1D signals;
each corresponding to a coordinate. Therefore, 75 such 1D signals result from the
set of 25 joints and for any given video sequence. Note that their duration may
vary, since different actions may require different amounts of time. Also different
persons or even the same one may perform the same action with similar, yet not
equal duration.

3.2 Convolutional Neural Networks

Deep learning is a recent trend in the broader field of machine learning. It is
based on the idea to use multiple intermediate interconnected layers within a
network, so as to non-linearly process its input. In a sense, these layers are used
to “learn” how to extract features in multiple levels of abstraction. During the
last few years they have started playing a dominant role in several applications
in areas such as computer vision, audio analysis, speech recognition etc., having
successfully replaced traditional machine learning approaches. The latter often
exhibit a drop of performance when used in real-life applications. During the
last few years, research in practical computer vision problems has shifted to
deep architectures.

When dealing with computer vision problems, the most popular approach is
to train CNNs. A CNN resembles to traditional feed-forward networks; train-
ing takes place by forward and backward propagation of input data and error,
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Fig. 1. (a) A signal image; activity image resulting upon (b) DFT; (c) FFT; (d) DCT;
(e); DST. Action is playing with phone/tablet. DFT and FFT images have been pro-
cessed with log transformation for visualization purposes. Figure best viewed in color.
(Color figure online)

respectively. Their discrimination power lies to the fact that their convolutional
layers are designed to learn a set of convolutional filters; during training, their
parameters are learnt. Neurons are grouped into rectangular grids; each grid
performs a convolution in a part of the input image. A pooling layer typically
succeeds a single or a set of convolutional layers and sub-samples its input, to
produce a single value from a small rectangular block. Finally, dense layers are
those that are ultimately responsible for classification, based on the features that
have been extracted by the convolutional layers and sub-sampled by the pooling
ones.

3.3 Proposed Methodology

Our work has been partially inspired by the one of Jiang and Yin [7]. Similarly,
we first create an image by concatenating the aforementioned 75 1D signals,
which form the “signal” image. From each signal image we create an “activity”
image, by applying one of the following transforms: (a) the 2D Discrete Fourier
Transform (DFT); (b) the 2D Fast Fourier Transform (FFT); (c) the 2D Discrete
Cosine Transform (DCT); and (d) the 2D Discrete Sine Transform (DST). From
each transform we preserve only the magnitude, while we discard the phase. Note
that DST and DCT are further processed by normalizing using the orthonorm.
Obviously, in all cases the result is a 2D signal. Note that FFT is a fast imple-
mentation of DFT. Several implementations of FFT are approximations. Also
even exact implementations are prone to floating point errors. Therefore, our
goal was to assess whether the implementation of FFT we used showed a drop of
performance compared to DFT. In Fig. 1 we illustrate an example signal image
and the 4 corresponding activity images.

We herein remind that the goal of this work is limited to action classification.
Therefore, it belongs to the category of segmented recognition (see Sect. 2), as
it does not perform a temporal segmentation step. As we shall see in Sect. 4,
we work using pre-segmented video sequences, aiming to only recognize the
performed actions within each segment. We also assume that each segment con-
tains exactly one action. To address the problem of temporal variability between
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Fig. 2. The proposed CNN architecture.

actions and between users, an interpolation step is necessary. Upon experimen-
tation, we set the duration of all videos equal to 159 frames, upon imposing a
linear interpolation step. This way, the size of signal and activity images was
fixed and equal to 159 × 75.

The architecture of the proposed CNN is presented in detail in Fig. 2. The
first convolutional layer filters the 159× 75 input activity image with 32 kernels
of size 3 × 3. The first pooling layer uses “max-pooling” to perform 2 × 2 sub-
sampling. The second convolutional layer filters the 76×34 resulting image with
64 kernels of size 3 × 3. A second pooling layer uses “max-pooling” to perform
2 × 2 sub-sampling. A third convolutional layer filters the 36 × 15 resulting
image with 128 kernels of size 3×3. A third pooling layer uses “max-pooling” to
perform 2 × 2 sub-sampling. Then, a flatten layer transforms the output image
of the last pooling to a vector, which is then used as input to a dense layer using
dropout. Finally, a second dense layer produces the output of the network. To
avoid overfitting, the most popular approach, which is also adopted in this work
is the use of the dropout regularization technique [22]: at each training stage
several nodes are “dropped out” of the network. This way overfitting is reduced
or even prevented, since complex co-adaptations on training data are prevented.

3.4 Implementation Details

For the implementation of the CNN we have used Keras [3] running on top of
Tensorflow [1]. All data pre-processing and processing steps have been imple-
mented in Python 3.6 using NumPy1, SciPy2 and OpenCV.3

4 Experiments

4.1 Dataset

For the experimental evaluation of our approach we used the PKU-MMD dataset
[15]. As it has already been mentioned, PKU-MMD is a large-scale benchmark
1 http://www.numpy.org/.
2 https://www.scipy.org/.
3 https://opencv.org/.
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focusing on human action understanding and containing approx. 20K action
instances from 51 categories, spanning into 5.4M video frames. Note that 66
human subjects have participated in the data collection process, while each
action has been recorded by 3 camera angles, using the Microsoft Kinect v2
camera. For each action example, raw RGB video sequences, depth sequences,
infrared radiation sequences and extracted 3D positions of skeletons are pro-
vided.

Our experiments are divided into two parts. In the first part our goal was
to assess whether the proposed approach may be used for ambient assistive
living scenarios and more specifically for the recognition of ADLs. Therefore,
we selected 11 out of the 51 classes of PKU-MMD, which we believe are the
most close to ADLs or events in such a scenario. The selected classes are: eat
meal snack, falling, handshaking, hugging other person, make a phone call answer
phone, playing with phone tablet, reading, sitting down, standing up, typing on
a keyboard and wear jacket. In Fig. 3 we illustrate sample signal and activity

Fig. 3. Examples of activity images from 11 classes and for the 4 transforms used. 1st
row: DFT; 2nd row: FFT; 3rd row: DCT; 4th row: DST. (a) eat meal/snack; (b) falling;
(c) handshaking; (d) hugging other person; (e) make a phone call/answer phone; (f)
playing with phone/tablet; (g) reading; (h) sitting down; (i) standing up; (j) typing
on a keyboard; (k) wear jacket. DFT and FFT images have been processed with log
transformation for visualization purposes. Figure best viewed in color. (Color figure
online)
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images from these 11 classes and for all types of transforms. In the second part,
we performed experiments with the whole dataset, i.e., with all 51 classes. In
both parts, we worked only based on the skeletal data, discarding RGB, depth
and infrared information.

4.2 Results

The evaluation protocol we followed is as follows: we first performed experiments
per camera position; in this case both training and testing sets derived from the
same viewpoint. Then, we performed cross-view experiments, where different
viewpoints were used for training and for testing. The goal of these experiments
was to test the robustness of the proposed approach in terms of transformation
(e.g., a translation and a rotation), which could correspond to abrupt viewpoint
changes which typically occur in real-life situations. Finally, we performed cross-
subject experiments, where subjects were split in training and testing groups,
i.e., any actor “participated” only into one of the groups. The goal of this subject
was to test the robustness of our approach into intra-class variations. In real-
life situations this is expected to happen when a system is trained e.g., within
a laboratory environment and is deployed into a real ambient-assistive living
environment. Note that in all cases we measured classification accuracy. Detailed
results are depicted in Tables 1 and 2 for 11 and 51 classes, respectively. As it
may be observed, in the first case, DST showed best accuracy for the majority of
single- and cross-view experiments, followed by DCT. In cross-view experiments,
while in the cross-subject case, DFT showed best accuracy, once again followed

Table 1. Experimental results denoting accuracy of the proposed approach in the 11
selected classes of the PKU-MMD dataset. M, L and R denote the middle, left and
right camera angles, respectively.

Experiment Train Test DFT FFT DCT DST

Single-view M M 0.89 0.84 0.83 0.86

L L 0.76 0.82 0.78 0.84

R R 0.84 0.85 0.89 0.87

Cross-view M L 0.62 0.61 0.63 0.64

M R 0.58 0.61 0.65 0.63

L M 0.65 0.66 0.64 0.72

L R 0.41 0.38 0.32 0.43

R M 0.56 0.59 0.64 0.63

R L 0.32 0.37 0.33 0.39

M, L R 0.60 0.60 0.62 0.62

M, R L 0.60 0.57 0.59 0.60

L, R M 0.77 0.77 0.81 0.82

Cross-subject M, L, R M, L, R 0.85 0.79 0.83 0.81
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Table 2. Experimental results denoting accuracy of the proposed approach in the 51
classes of the PKU-MMD dataset. M, L and R denote the middle, left and right camera
angles, respectively.

Experiment Train Test DFT FFT DCT DST

Single-view M M 0.46 0.49 0.66 0.65

L L 0.46 0.52 0.60 0.65

R R 0.55 0.51 0.69 0.67

Cross-view M L 0.33 0.34 0.33 0.36

M R 0.32 0.31 0.36 0.32

L M 0.33 0.30 0.35 0.39

L R 0.22 0.22 0.13 0.14

R M 0.32 0.34 0.36 0.34

R L 0.20 0.19 0.13 0.14

M, L R 0.33 0.34 0.33 0.34

M, R L 0.32 0.33 0.32 0.34

L, R M 0.44 0.44 0.55 0.52

Cross-subject M, L, R M, L, R 0.50 0.52 0.64 0.63

by DCT. In the second case, DCT and DST showed best accuracy in the majority
of cases, apart from the extreme cross-view cases where left angle was used for
training and right for testing or vice versa, where DFT showed best accuracy,
followed by FFT.

5 Conclusions and Future Work

In this paper we presented a novel approach which aims to recognize human
actions in videos. Our approach is based on a novel representation of skeletal
3D motion which uses spectral image transformations and also on a novel CNN
architecture. More specifically, a CNN was trained on images which resulted
upon (a) concatenation of raw 1D signals corresponding to 3D motion of skeletal
joints’ coefficients and (b) application of a transform to the created image.

We evaluated the proposed approach using a state-of-the-art and challenging
dataset, which consisted of sequences corresponding to 51 human actions. These
sequences had been captured with 3 Kinect v2 cameras, under different camera
angles and the skeletal joints of the human actors involved had been extracted.
We performed experiments involving either a single camera (single-view) or more
than one (cross-view). We also performed cross-subject experiments to evaluate
the robustness of the approach. We mainly focused on a subset of 11 actions
which in our opinion are the most close to real-life ADLs. However, we also
experimented with the whole dataset. Our initial results indicate that the pro-
posed approach may be successfully applied to human action recognition in
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real-like conditions, yet a drop of performance is expected when significant
changes of viewpoint occur.

Among our plans for future are the following: (a) investigation on methods
for creating the signal image, possibly with the use of other types of sensor
measurements such as wearable accelerometers, gyroscopes etc.; (b) investigation
on image processing methods for transforming the signal image to the activity
image; (c) use of simplified activity images by considering symmetries, e.g., in
DFT and FFT (d) exploitation of other types of visual modalities in the process,
such as RGB and depth data; (e) evaluation of the proposed approach on several
other public datasets; and (f) application into a real-like or even real-life assistive
living environment.
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