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Abstract—Smart agriculture is increasingly becoming a
paramount financial sector with important implications on a
global scale. The real time weather and soil status monitoring
as well as the desired higher food quality are major drivers
behind this technological, ecological, and financial trend. This
work explores the enticing prospect of combining IoT and
smart contract technologies with smart agriculture in order to
deliver not only higher quality agricultural products, but also
improving the associated supply chain and agricultural logistics,
thus resulting in multiple benefits for all the parties involved.
Emphasis is placed on deriving similarity metrics for tuples
describing soil and climate conditions based on numerical and
possibly categorical data. Moreover, a sample implementation
of one such metric is given in Solidity, a high level language
for formulating smart contracts designed for the Ethereum
Virtual Machine is also provided as a concrete example. Finally,
aspects of agricultural asset digitization, a crucial step for smart
contracts relying on physical objects are also discussed.

Index Terms—smart agriculture, smart farming, soil factors,
crop quality, weather monitoring, supply chains, blockchains,
smart contracts, solidity, Ethereum Virtual Machine (EVM), IoT

I. INTRODUCTION

With the advent of IoT a number of technological fields, as
well as economy sectors, have received a considerable boost
bringing different outcomes on environmental monitoring ap-
plications that use sensors to support the assessment of air,
water and soil quality. Additionally, The physical devices
connected to the internet (namely IoT devices) bare the po-
tential of improving agricultural machinery and building smart
infrastructure for remotely managing and controlling water
pumps, atomizers and other agricultural apparatus. These
integrated systems are not yet considered to be widely used
in agriculture, although pivotal for the current development of
farming techniques. Intelligent methods of agriculture involve
incorporation of computer science and information technolo-
gies into the traditional notion of farming [1].

The large volumes agricultural data, created by most IoT
monitoring and controlling applications, demand distributed
storage for dynamic data enrichment, trackability, ownership,
and scalability. Given the fact that oT smart capabilities also
include integrated information processing, agricultural related
data are produced by electronic identities that can be queried
remotely that are equipped with sensors for detecting physical

changes around them, even particles as small as dust might be
tagged and networked. Such characteristics transform merely
static objects of agricultural practice into newly dynamic
things, embedding intelligence in the environment, and stim-
ulating the creation of innovative products and entirely new
services. These things themselves are capable of distributing
processing power with embedded intelligence to the edges
of each network structure that offer further possibilities for
greater data processing and the resilience the interconnected
apparatus [2].

These procedures require the development of well defined,
meaningful, measurable, motivational, and self-explanatory
metrics based on a set of indicators providing broad and
general information [3]. The vast amounts of data collected
shape an optimally designed and managed monitoring net-
work to track, anticipate, and manage changes related to the
biophysical components of agricultural filed applied to. This
allows scientists and farmers to find solutions to pressing
problems, such as allow for aspects of agriculture and food
systems to be quantified and compared across time and space.
In other words the scope of an monitoring system is to produce
quantifiable information about environmental conditions in
agriculture [3].

Agriculture as a practice is established across different
ecological and climatic zones, so an IoT system focuses
on gathering data on a set of common metrics for each
application. However, the produced indices cannot be dictated
by a generic framework for application in all jurisdictions.
Contrariwise, the researcher/farmer should assess spatial, tem-
poral, and spatio-temporal transferability of such metrics [4]
on a regional level. This approach understands the variability
of ecological and agricultural conditions that bare different
biotic taxonomies. Furthermore, in association of their spatial,
temporal, and spatio-temporal transferability these subsets are
subject of the scientific and managerial scope the particular
cropland is monitored. In conclusion, an IoT system for
agricultural monitoring should reflect well designed, optimally
conceptualized, customized model of entities that represent the
physical parameters under question as shown in figure 1.

The primary research objective of this conference paper is
the exploration of the applications of IoT and smart contracts
technologies to smart agriculture. Moreover, as a secondary



Fig. 1. Agricultural monitoring framework (source: [4])

TABLE I
NOTATION OF THIS CONFERENCE PAPER.

Symbol Meaning
4
= Definition or equality by definition
{s1, . . . , sn} Set with elements s1, . . . , sn
(t1, . . . , tn) Tuple with elements t1, . . . , tn
|S| or |T | Set or tuple cardinality
ρ (T1, T2) Cosine tuple similarity coefficient
τS1,S2

Tanimoto set similarity coeffcient

objective, a similarity metric quantifying tuples representing
soil surface factors is presented in Solidity, a high level
language for formulating smart contracts in the Ethereum
digital ecosystem.

The remaining of this conference paper is structured as
follows. In section II the recent scientific literature regarding
smart agriculture and the relevant applications of IoT to it
are briefly summarized. Section III examines smart agriculture
from an abstract standpoint and enumerates the basic ecologi-
cal and farming factors involved. The applications of IoT and
smart contracts to smart agriculture are analyzed in section IV.
Section V outlines possible future research directions. Finally,
table I summarizes the notation of this work.

II. PREVIOUS WORK

Smart agriculture is treated in a number of scientific publi-
cations. One of the early adopters where Zhao et al.[5], which
introduced a platform for real-time data monitoring in agricul-
tural related applications based on wireless sensors through
M2M. The system takes into consideration data collection,
management, and distribution under the scope of greenhouse
control. The platform was able to operate online while produc-
ing reliable humidity and temperature measurements. Smart
agriculture based on patterns discovered through thermal imag-
ing systems mounted on drones is discussed in [6]. Finally,
for a survey between the connection of smart agriculture and
climatic change see [7]. In [8] a data architecture for smart
insular viticultures is proposed, whereas in the follow-up work
[9] a collaborative platform for data annotation based on
said architecture is presented. Multifactor ontologies for smart
agriculture can be constructed following design principles such
as the ones stated in [10].
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Fig. 2. Factors of smart agriculture (source: authors).

Regarding the deployment of IoT networks such as smart
sensors a number of factors must be also considered. Be-
sides energy consumption and heat dissipation, reconfiguration
capabilities, and area coverage patterns, robust architectures
based on structural resilience should also be taken into account
[11]. IoT devices including sensors and drones can provide
ultra high resolution multispectral images describing crop
status [12]. Multispectral images consist of images of the
same physical object in various spectra, typically including
near infrared (NIR) and various components of the visible
(VIS) spectrum [13][14], with each such spectrum contributing
different image features. The fundamentals of multispectral
images including lighting conditions, angle of acquisition, and
synthesis of the available spectra are described in [15]. Such
images are typically handled with tensor based techniques, a
generalization of linear algebra to more than two dimensions.
For a review of tensor analytics, or equivalently of multilayer
graphs, see [16], [17], or [18]. Multispectral imaging tech-
niques are gradually becoming pivotal in DNA analysis [19].

The connection between the emerging technology of
blockchains, and smart contracts by extension, and IoT is
thoroughly examined in [20]. The various cost aspects incurred
by the lack of clause negotiations in traditional contracts is
studied in [21]. The high disruptive potential of smart contracts
and the underlying blockchain infrastructure are discussed in
[22]. Finally, insight on certain legal perspectives about smart
contracts can be found in [23].

III. SMART AGRICULTURE

There is a plethora of technological, ecological and farming,
and financial factors shaping smart agriculture. The most
important of them are shown in figure 2. Ecological and
farming factors such as surface conditions are presented in
this section, whereas the section IV deals with smart contracts
and logistics.



The set of factors influencing the crop quality depends
heavily on the latter, climatic, and soil factors influence the
optimal growth and production rate of each yield type. Each of
the sensing devices, namely IoT Weather Stations, must ensure
reliable wireless data transfer and provide logging capability
such as that proposed in [24] as a common set of atmospheric
factors found in the literature is the following:
• Wind speed and direction
• Prevailing temperature
• Barometric pressure
• Precipitation volume and rate
• Relative humidity
• Leaf humidity
• Solar irradiance
• Ultra-violet (UV) irradiation
In addition to surface conditions, a set of chemical and phys-

iological parameters are considered decisive for the assessment
of each monitoring model. Particularly, the basic parameters,
namely the soil nutrients, of the crop are:
• pH
• Nitrogen (N)
• Calcium (Ca)
• Zinc (Zn)
• Potassium (K)
• Phosphorus (P)

It should be noted that the importance of each of the above
factors depends heavily on the type of agriculture, as each
plant type thrives under a specific range of requirements.

Among the traditional farming equipment which can sig-
nificantly upgraded to contribute to smart farming are the
following [25]:
• Tractors
• Trucks
• Seeds
• Fertilizers
Recently, high tech equipment has been added to the inven-

tory of smart farms. These include the following [26]:
• Telemetry drones
• Robot workers
• Knowledge mining techniques for plant DNA
• Life cycle simulation for new seed variants
• Ground on-the-spot sensors
• Remote imaging systems
• Spaceborne ultrahigh resolution monitoring systems

IV. APPLICATIONS

A. IoT Applications

Smart agriculture can benefit from IoT powered technol-
ogy in multiple ways. First and foremost, smart sensors are
instrumental in determining whether a specific location is
appropriate for a given type of agriculture [27]. These rec-
ommendations can be useful in answering important questions
not only in local but also in nation-wide agriculture strategies
such as [28]:

• Which variants of the seeds available are suitable for a
given area.

• How much water and other resources would these variants
require.

• How sustainable these variants are.
• How resistant these variants are to threats like disease or

insects.
• What effects will a cultivation shift cause to local climate

change.
• Conversely, whether more resistant variants should be

selected to counter effects from any local climate change
in the near future.

IoT technology is pivotal in quickly evaluating the crop
status after a potentially disastrous event such as excessive
drought or rainfall, an aggressive locust raid, or environmental
pollution [29][30]. Especially the topic of pollution plays an
instrumental role in crop planning, since accidents leading to
it cannot be predicted beforehand. To this end specialized IoT-
powered specialized sensor networks [31], usually in conjunc-
tion with drones [32]. Note that for remote and inaccessible
areas, crop status can be evaluated from space using ultrahigh
resolution imaging systems [33].

Last but not least comes the topic of agriculture logistics,
both inbound and outbound. Inbound logistics cover the supply
chain aspects necessary to procure smart agriculture units with
the appropriate equipment (e.g. tractors, drones, or seeds) and
information (e.g. weather conditions, local disease outbreaks,
or long term regional climate predictions). On the contrary,
outbound logistics deal with the distribution of high quality
agricultural products, ensuring that the latter abide by the
standards set by all the parties involved, for instance resellers,
local government, agricultural units, and consumer unions.
Both forms of logistics involve IoT for quality monitoring (e.g.
product temperature and humidity variation while in storage)
as well as for automated inventory controls (e.g. how many
trucks were needed in order to move a given amount of
commodity across country and how much time did that take)
[34][35].

B. Smart Contracts: Parameters

Smart contracts rely on dynamic clauses which in turn
are formulated based on the negotiations between the parties
involved as well as on data fed from a smart agriculture
IoT infrastructure. Recall that both negotiations regarding any
smart contract and the various versions thereof are appended
to the original contract in a blockchain environment per the
requirements set forth in [36]. At any rate, when formulating
agricultural smart contracts care must be exercised because
of the sensitive nature of agricultural products. In [37], [38],
and [39] security guidelines are provided from a systems
perspective in order to thwart malevolent software agents.
Moreover, as is the case in any field physical field involving
smart contracts, asset digitization is an important issue, as
stated among others in [40]. Study of smart contracts with
formal methods is the focus of [41].



In order for digital contract clauses to change, hard data
must be obtained as stated earlier. In the case of soil or climate
factors, they can be represented as tuples which can contain
either numerical or categorical data. Depending on how factors
change over, certain similarity metrics can be built so that they
can serve as the basis for negotiation in smart contracts.

Let p and q be two tuples of the same cardinality, namely
|p| = |q| = n.

p
4
= (p1, . . . , pn)

q
4
= (q1, . . . , qn) (1)

When p and q contain only numerical data, then the absolute
value of the cosine similarity suffices and additionally, it is
computationally effective:

ρ (p, q)
4
=

|
∑n

i=1 piqi|√∑n
i=1 p

2
i

∑n
i=1 q

2
i

(2)

When the factor tuples contain also categorical data, then
the similarity metric in equation 2 must be modified. One
way to achieve that is to first separate the numerical from the
categorical data. Assume that there are m categorical entries
with 1 ≤ m ≤ n−1. Then, the categorical data from p and q
are placed in sets S and T respectively with |S| = |T | = m.
Thus, they have the form:

S
4
= {s1, . . . , sm}

T
4
= {t1, . . . , tm} (3)

In order to compare any two non-empty sets S1 and S2,
the Tanimoto coefficient can be used. The latter is defined as
follows:

τS1,S2

4
=
|S1 ∩ S2|
|S1 ∪ S2|

=
|S1 ∩ S2|

|S1|+ |S2| − |S1 ∩ S2|
(4)

Notice that the second form of equation 4 is preferable in
terms of performance for large sets since the intersection can
be efficiently computed. Moreover, the intersection size cannot
exceed by definition the smallest cardinality of the two sets
involved.

Now let us call p′ and q′ the parts of p and q which
contain only numerical data and are also tuples themselves
with cardinality n − m. Since they are tuples, the cosine
similarity as defined earlier can be clearly applied to p′ and
q′.

Given that both 0 ≤ ρ (·, ·) ≤ 1 and 0 ≤ τ·,· ≤ 1, then two
similarity metrics for tuples with numerical and categorical
data can be defined. The first is the geometric mean of the
cosine and the Tanimoto similarity coefficients:

g
4
=
√
ρ (p′, q′) · τS,T (5)

The geometric mean is known to be the strictest among the
three classical means (i.e. arithmetic, harmonic, geometric) in
the sense that it is systematically closer to the lowest of the
two factors.

Alternatively, the harmonic mean of the two similarity
coefficients when ρ (p′, q′) 6= 0 and τS,T 6= 0 can be computed
as:

h
4
=

2

ρ (p′, q′)
−1

+ τ−1S,T

= 2
ρ (p′, q′) · τS,T
ρ (p′, q′) + τS,T

(6)

However, neither equation 5 nor equation 6 take into account
the number of categorical tuples entries to the total number of
entries, which may be desirable in certain cases. To this end,
a weighted version of equation 6 can be derived as follows:

h′
4
=

n

(n−m) ρ (p′, q′)
−1

+mτ−1S,T

= n
ρ (p′, q′) · τS,T

(n−m) τS,T +mρ (p′, q′)
(7)

C. Smart Contracts: Scripting

How are smart contracts scripted? One answer is Solidity,
namely a high level, object-oriented, statically-typed language
based on C++, Python, and Javascript intended to develop
smart contracts for the Ethereum Virtual Machine (EVM). At
this point it should be highlighted that, contrary to popular
belief, Ethereum is not a cryptocurrency. Instead, it is the
name of the blockchain infrastructure designed to implement
and support the functionality of the Ether cryptocurrency. It is
noteworthy that contracts support inheritance.

In order to implement the cosine similarity metric of
equation (2) in Solidity, the source code (excluding array
initialization) could be like the following. Notice that mathe-
matical libraries for square root and absolute value are not yet
implemented. Although it is easy to implement the absolute
value, the square root needs some work. In this case, we
implement the well known Babylonian numerical algorithm
in an auxiliary method.

pragma s o l i d i t y ˆ 0 . 5 . 0 ;

c o n t r a c t MyContrac t {

f u n c t i o n SR ( u i n t x ) r e t u r n s ( u i n t y ) {

u i n t a = ( x + 1) / 2 ;
y = x ;
w h i l e ( a < y ) {

y = a ;
a = ( x / a + a ) / 2 ;
}
}

f u n c t i o n CS ( u i n t n ) r e t u r n s ( u i n t c s ) {

u i n t [ ] memory p = new u i n t ( n ) ;
u i n t [ ] memory q = new u i n t ( n ) ;
u i n t num , denomp , denomq ;



f o r ( u i n t i =0 ; i<n ; i ++) {
num += p [ i ]∗ q [ i ] ;
}

f o r ( u i n t i =0 ; i<n ; i ++) {
denomp += p [ i ]∗ p [ i ] ;
denomq += q [ i ]∗ q [ i ] ;
}

cs = num / SR ( denomp∗denomq ) ;
i f ( c s < 0)

cs = −cs ;
r e t u r n cs
}
}

V. CONCLUSIONS AND FUTURE WORK

This conference paper focuses on the potential applications
of smart contracts and IoT technologies to the growing field of
smart agriculture. In particular, smart contracts can be useful
in logistics, inventory, and the mass negotiations associated
with moving large food quantities. As a concrete example,
the cosine similarity metric has been implemented in Solidity,
a high level language for scripting smart contracts in the
Ethereum Virtual Machine (EVM) which is a popular platform.
This similarity metric allows checking whether some of the
factors involved in crop quality has been changed and, if
desired, be the basis for a new digital negotiation.

Regarding future work directions, more smart contracts
covering the entire spectrum of agricultural supply chain in
order for quality constraints set by all the parties involved be
met. For instance, monitoring the quantity, size, and texture
of fruits through the appropriate combination of sensors may
well be of interest for high end, luxury food trading routes.
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